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Abstract
We introduce and study a notion of decomposition of planar point sets (or rather of their chirotopes)
as trees decorated by smaller chirotopes. This decomposition is based on the concept of mutually
avoiding sets, and adapts in some sense the modular decomposition of graphs in the world of
chirotopes. The associated tree always exists and is unique up to some appropriate constraints. We
also show how to compute the number of triangulations of a chirotope efficiently, starting from its
tree and the (weighted) numbers of triangulations of its parts.
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1 Introduction

Two planar point sets are mutually avoiding if no line through two points from one set
separates two points from the other set (Figure 1 gives an example). Any set of n points
in general position contains two mutually avoiding subsets of size Ω(

√
n) each [6], a bound

that is asymptotically best possible [26], and smaller mutually avoiding subsets are actually
abundant [25, Theorem 1.3]. Mutually avoiding subsets have been applied to the study of
crossing families [6] and empty k-gons [26]. In this paper, we investigate their use for the
recursive decomposition of planar point sets. We also illustrate how such decompositions
facilitate the analysis of point sets on the task of counting triangulations.

Our approach is combinatorial and is inspired from the modular decomposition method,
which is an important tool in algorithmic graph theory (see e.g. [17]). Intuitively, we encode
a point set by a tree whose nodes correspond to subsets, each point appearing in a single
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23:2 A Canonical Tree Decomposition for Chirotopes

Figure 1 A set of 9 points with two mutually avoiding subsets of 4 and 5 points, respectively.

node, so that subtrees joined by an edge encode mutually avoiding subsets. Formally, the
tree rather encodes the chirotope of the point set, that is the function mapping each ordered
triple of points to its orientation (see below). Here are the main contributions presented here.

We introduce chirotope trees and show how they can be used to build and analyze
(chirotopes of) large point sets out of smaller ones.
We show how the number of triangulations of a chirotope given by a chirotope tree can
be computed from the (weighted) numbers of triangulations of its nodes.

We identify a uniquely defined canonical tree decomposition of a chirotope that describes
how much it decomposes into mutually avoiding parts.

We show that the proportion of realizable chirotopes that are indecomposable tends to 1.

The first three results hold both for abstract and realizable chirotopes. We conclude the
paper with several new open questions raised by canonical tree decompositions.

Throughout the paper, all point sets are finite, planar1 and in general position, meaning
that no three points are ever aligned (for simplicity). Given a finite set X, we write (X)3
for the set of triples (x, y, z) of distinct elements in X. We write [n] for the set {1, 2, . . . , n}.

1.1 Context and motivation

Let us first provide some context on the objects, methods and questions that we consider.

Realizable chirotopes. The chirotope of a set P = {pℓ}ℓ∈X of points in general position
labeled by X is the function

χP :


(X)3 → {−1, +1}

(x, y, z) 7→
{

+1 if px, py, pz are in counterclockwise order,
−1 if px, py, pz are in clockwise order.

This function encodes the labeled order type [15] of the point set. We say that chirotopes of
point sets are realizable to distinguish them from their combinatorial (abstract) generalization.

1 It would be non-trivial to adapt our construction to higher dimension.
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Representing realizable chirotopes. Deciding if a given function (X)3 → {−1, 1} is a
realizable chirotope turns out to be a challenging problem: it is equivalent to the existential
theory of the reals [11, Theorem 8.7.2] and NP-hard [24]. Whether this problem is in NP is
open, and, interestingly, a positive answer is equivalent to the existence of a (pseudorandom)
generator that produces a realizable chirotope of size n in time polynomial in n while
ensuring that every element has nonzero probability.2 The space of realizable chirotopes
is therefore difficult to explore, which makes it hard to test efficiently some conjectures in
discrete geometry3 or to check experimentally a geometric algorithm in the exact geometric
computing paradigm [23]. The present work grew out of an attempt to devise new ways of
constructing and representing (large) realizable chirotopes.

Abstract chirotopes. Most of our results hold in a more general setting. A chirotope on a
finite set X is a function χ : (X)3 → {−1, 1} that satisfies the following properties:

(symmetry) for any distinct x, y, z ∈ X,

χ(x, y, z) = χ(y, z, x) = χ(z, x, y) = −χ(z, y, x) = −χ(y, x, z) = −χ(x, z, y); (1)

(interiority) for any distinct t, x, y, z ∈ X,

χ(t, y, z) = χ(x, t, z) = χ(x, y, t) = 1 ⇒ χ(x, y, z) = 1; (2)

(transitivity) for any distinct s, t, x, y, z ∈ X,

χ(t, s, x) = χ(t, s, y) = χ(t, s, z) = χ(x, y, t) = χ(y, z, t) = 1 ⇒ χ(x, z, t) = 1. (3)

These functions are in correspondence with the relabeling classes of acyclic uniform oriented
matroids of rank 3 [11]. We note that any realizable chirotope is a chirotope. We may use
the term abstract chirotope to mean a chirotope that is not necessarily realizable.

Notions and properties for point sets that can be expressed by orientations generalize
to abstract chirotopes. For example, an element x ∈ X is extreme in a chirotope χ on X

if there exists y ∈ X \ {x} such that χ(x, y, z) is the same for all z ∈ X \ {x, y}. With this
definition, Carathéodory’s theorem generalizes to chirotopes [11, Theorem 9.2.1 (1)].

▶ Lemma 1. An element x ∈ X is not extreme in a chirotope χ on X if and only if there
exist three distinct elements a, b, c in X \ {x} such that χ(x, a, b) = χ(x, b, c) = χ(x, c, a) = 1.

Triangulations. Counting the triangulations supported by a given set of n points is a
classical problem in computational geometry (see the discussion in [18]). The fastest known
algorithm is due to Marx and Miltzow [18] and has complexity O(n(11+o(1))

√
n). It is quite

involved, and a simpler solution, due to Alvarez and Seidel [5], runs in time O(n22n).

Given a point set P = {pℓ}ℓ∈X , two segments pxpy and pzpt with distinct endpoints
in P cross if and only if χP (x, y, z) = −χP (x, y, t) and χP (z, t, x) = −χP (z, t, y). We can
therefore define the crossing of segments for chirotopes. A segment in a chirotope χ on X

is a pair of elements of X, and the segments xy and zt cross in χ if they satisfy the above
condition. A triangulation of χ is an inclusion-maximal family of segments such that no two
cross in χ. The algorithm of Alvarez and Seidel easily generalizes to abstract chirotopes.

2 A random generator can serve as a verifier for the problem, with the random bitstring as the certificate.
Conversely, we can run a random function and a random certificate through the verifier; if accepted, we
return that function, otherwise we return a fixed chirotope, e.g. n points in convex position.

3 For instance whether there exists a set of 30 points with no empty hexagon [21].
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Modular decomposition. The gist of modular decomposition is to break down discrete
structures to allow efficient recursion. These decompositions usually start by partitioning
the elements of the structure so that any two elements in a part (also called a module) are
indistinguishable “from the outside”. Choosing this partition as coarse as possible while being
nontrivial, and iterating the decomposition within each part yields a decomposition tree.
These ideas originated in graph theory [14], where modules gather vertices with the same
neighbors outside of the module, and several hereditary classes of graphs have well-behaved
modular decompositions, e.g. comparability graphs, permutation graphs and cographs [17].
Other examples of structures for which modular decompositions were developed include
boolean functions, set systems and permutations [19, 3]. Each structure requires an ad hoc
analysis that the proposed notion of modules leads to a well-defined decomposition, where
each object has a unique decomposition tree. The proportion of objects with nontrivial de-
composition is often vanishingly small (with exceptions, e.g. permutations [4]). Nevertheless,
such decompositions proved useful e.g. in devising fixed-parameter polynomial algorithms
for hard algorithmic problems [17, §7] or in solving counting problems [13, 10].

1.2 Our results
We now define our decomposition and state our main results. Sections 2 to 6 give the key
ideas behind these results, the details being deferred to the full version [12].

Bowtie decomposition. The fact that two point sets P and Q are mutually avoiding has
two interesting consequences at the level of chirotopes. First, the chirotope χP ∪{p∗} is, up to
relabeling, independent of the choice of the point p∗ ∈ Q. Second, the chirotope χP ∪Q is
completely determined by the chirotopes χP ∪{p∗} and χQ∪{q∗} for any choices of p∗ ∈ Q and
q∗ ∈ P . We can use this to decompose χP ∪Q in terms of χP ∪{p∗} and χQ∪{q∗}.

Let us express this decomposition. A sign function on a set X is a function (X)3 →
{−1, +1} that satisfies the symmetry condition (1). Let X and Y be disjoint sets, and let
x∗ /∈ X and y∗ /∈ Y . Given two sign functions χ on X ∪ {x∗} and ξ on Y ∪ {y∗}, we define
the bowtie κ

def= χ x∗1y∗ ξ as the sign function on X ∪ Y satisfying:
κ(x1, x2, x3) = χ(x1, x2, x3) if x1, x2, x3 are all in X;
κ(x1, x2, y) = χ(x1, x2, x∗) if x1, x2 are in X and y is in Y ;
κ(x, y2, y3) = ξ(y∗, y2, y3) if x is in X and y2, y3 are in Y ;

κ(y1, y2, y3) = ξ(y1, y2, y3) if y1, y2, y3 are all in Y .

(4)

This defines κ on (X ∪ Y )3 via the symmetry condition (1). Note that for mutually avoiding
point sets P and Q, χP ∪Q = χP ∪{p∗} p∗1q∗ χQ∪{q∗} for any choice of p∗ ∈ Q and q∗ ∈ P .

Bowtie products. While defined on sign functions, the bowtie operator also allows to
combine smaller chirotopes into larger ones. This works under the following conditions.

▶ Proposition 2. Let X and Y be disjoint sets, with |X|, |Y | ≥ 2, and let x∗ /∈ X and
y∗ /∈ Y . Let χ and ξ be chirotopes on X ∪ {x∗} and Y ∪ {y∗}.

(i) χ x∗1y∗ ξ is a chirotope if and only if x∗ and y∗ are extreme in χ and ξ.
(ii) χ x∗1y∗ ξ is a realizable chirotope if and only if χ and ξ are realizable and x∗ and y∗

are extreme in χ and ξ.
(iii) If (i) holds, then the extreme elements of χ x∗1y∗ ξ are the elements of X ∪ Y extreme

in χ or in ξ.
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We also show (Lemma 7) that 1 has associativity and commutativity properties. We say
that a chirotope κ is decomposable if there exist chirotopes χ and ξ, each on a strictly smaller
set, such that κ = χ x∗1y∗ ξ. If no such χ and ξ exist we say that κ is indecomposable.

Chirotope trees. Formally, a chirotope tree is a tree whose nodes are decorated with
chirotopes on disjoint ground sets, and whose edges select an element in the ground set of
each of their extremities so that (i) no element is selected more than once, and (ii) each
selected element is extreme in its chirotope. Any element selected by an edge of the chirotope
tree is called a proxy; for illustration purposes, we write the decorating chirotope as the label
of the node (if it is realizable, we may draw a realization) and we draw edges of the tree and
proxy elements in red, with the edge connecting the proxy elements. For example:

κ ξ

χ3

χ1

χ2

•

•

•• •• • •
x∗

1 x∗

y∗

z∗
x∗

3
x∗

2s∗
t∗ •

•
•r∗
s∗

t∗

•
•

••f

z∗

e
g

•
•

•a

b

x∗
•

•
•

y∗
c

d

Chirotope of a chirotope tree. To any chirotope tree T = (VT , ET ) we associate a sign
function χT as follows. For a node v of T , let χv denote the chirotope decorating it, and let
Xv denote the set of non-proxy elements of the ground set of χv. For x ∈ ∪w∈VT

Xw, the
representative RT (x, v) of x in the node v is x if x ∈ Xv, and otherwise it is the label of the
proxy selected in χv by the first edge on the path in T from v to the node containing x. For
distinct x, y, z ∈ ∪w∈VT

Xw, we let v(x, y, z) be the intersection node of the paths in T from
x to y,4 from y to z and from x to z (if two or three elements among x, y, z are in the same
Xw, then we set v(x, y, z) = w). We define a sign function χT on ∪w∈VT

Xw by5

χT (x, y, z) def= χv(R(x, v), R(y, v), R(z, v)) for v
def= v(x, y, z). (5)

For example, if T is the chirotope tree on the right in the previous picture we have χT (a, c, f) =
κ(r∗, s∗, t∗) = −1, where κ is the chirotope decorating the central node. The definition of
χT ensures the following property: if removing an edge in a tree T produces two subtrees T1
and T2, then χT is the bowtie product of χT1 and χT2 (Lemma 8).

▶ Proposition 3. For any chirotope tree T , χT is a chirotope. Moreover, if all chirotopes
decorating a node in T are realizable, then χT is realizable.

By Proposition 2(iii), the extreme points of χT are the non-proxy extreme points of its
decorating chirotopes. Hence, if T has k nodes, then χT has at least k + 2 extreme points.

Canonical chirotope trees. Let us consider a chirotope tree T and a node v of T . If
χv = κ s∗1t∗ ξ is decomposable, then v can be replaced by two nodes decorated with κ and
ξ, connected by an edge, so that the resulting chirotope tree T ′ satisfies χT ′ = χT (see
Section 3 for details). Hence, a chirotope χ corresponds to many chirotope trees, at least

4 Rather: from the node containing x to the node containing y, and similarly for (y, z) and (x, z).
5 R(x, v) replaces, i.e. serves as a proxy for, x for computing the sign χT (x, y, z) in the node v.

SoCG 2024



23:6 A Canonical Tree Decomposition for Chirotopes

one of which is decorated only by indecomposable chirotopes. However, even requesting
the chirotopes decorating the nodes to be indecomposable does not ensure that a unique
chirotope tree represents a given chirotope. Here are two trees with the same associated
chirotope on {a, b, c, d, e, f, g}.

•
•

•r∗
s∗

t∗

•
•

••f

z∗

e
g

•
•

•a

b

x∗
•

•
•

y∗
c

d

•
•

•
r∗ s∗

c

•
•

•
•

f

z∗ e
g

•

•
•a

b
x∗

•
•

•
t∗ y∗

d

It turns out that the chirotopes that are convex in the sense that all their elements are
extreme are the only source of redundancy (the chirotope in the above example is not convex,
but its restriction to {a, b, c, d, e} is). This leads us to define a chirotope tree as canonical if
every node is decorated by a convex or indecomposable chirotope, and if no edge connects
two nodes decorated by convex chirotopes.

▶ Theorem 4. For any chirotope χ, there is a unique canonical chirotope tree T with χT = χ.

Counting triangulations. Let Tκ denote the set of triangulations of a chirotope κ on X.
Given x∗ ∈ X, we let Pκ,x∗(s) =

∑
T ∈Tκ

sdegT (x∗) denote the generating polynomial of the
triangulations of κ, marking the degree of x∗. We prove that if κ = χ x∗1y∗ ξ, then

|Tκ| =
∑

T ′∈Tχ

T ′′∈Tξ

(
degT ′(x∗) + degT ′′(y∗) − 2

degT ′(x∗) − 1

)
=

∑
a,b≥2

(
a+b−2

a−1
)
[sa]Pχ,x∗(s) [tb]Pξ,y∗(t). (6)

More generally, given a chirotope tree T , we can compute the number of triangulations of χT

given, for each node v, the generating polynomial Pv of the triangulations of its decorating
chirotope χv that marks not only the degrees of each proxy, but also the presence of each
pair of proxies as an edge in the triangulation. If χv has nv points, k of which are proxies,
then Pv has k +

(
k
2
)

variables and can be computed from χv in time O
(
2nv+4knk+2

v

)
by a

simple modification of the Alvarez-Seidel algorithm [5].

▶ Proposition 5. Let T be a chirotope tree with m edges, in which each node has degree at
most k, and such that χT has size n. The number of triangulations of χT can be computed
from the polynomials {Pv : v a node of T} in time O

(
24kn2km

)
in the Real-RAM model.

As illustrations, we analyze a family of chirotope chains, obtaining a closed formula for its
number of triangulations (Proposition 12) via the kernel method from analytic combinatorics,
and implement our method for trees of arity 3 (see [12, Section 9] for the details and access
to the code). This implementation is merely a proof of concept, and it is beyond the scope
of this paper to optimize it or benchmark it, but we can mention that on a laptop, it took a
few seconds to count the triangulations of the example of Figure 3 page 15, that assembles a
set of 254 points from decorating chirotopes of size 9, and that it handles random ternary
chirotope trees with 146 nodes (1024 points) in less than 5 minutes.

Proportion of decomposable chirotopes among realizable ones. Finally, let tn denote
the number of realizable chirotopes of size n and dn denote the number of those that are
decomposable.
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▶ Theorem 6. For large n, we have 3
(
n − O(n−2)

)
tn−1 ≤ dn ≤ O(n−3)tn.

Since tn is of order n4n, we expect tn−1/tn to behave as Θ(n−4) (but only an upper bound
of this order is known). If this is indeed the case, the lower bound in our theorem behaves as
Θ(n−3)tn, i.e. our bounds are tight up to multiplicative constants. Unfortunately, we do not
have an analogue result for abstract chirotopes.

1.3 Discussion and related work
Originality with respect to other modular decomposition theories. The theory of modular
decomposition [19] does not offer any unifying model that specializes to various structures,
but rather proposes general guidelines for developing such a theory. The implementation of
these guidelines usually requires analyses that are specific to the objects at hand, and the
case of chirotopes is no exception: almost every step requires some specific geometric idea(s).

Among realizable chirotopes, the proportion of indecomposable ones tends to 1. This
is analogue to the well-known fact that most graphs are prime graphs for the modular
decomposition. The proof is, however, much more difficult and interesting than in the graph
case because (i) the number of realizable chirotopes grows slower than the number of graphs
on n vertices and (ii) this number is only known up to exponential corrections. In particular,
our proof uses some geometric constructions and is specific to the realizable setting.

Let us also mention that even if most graphs are prime graphs for the modular de-
composition, this decomposition has turned out useful in many ways: design of efficient
algorithms [17], enumeration and study of specific classes [9], . . . Similarly, for chirotopes,
our tree decomposition allows one for example to construct families of large chirotopes for
which enumerating triangulations is algorithmically easy (see Section 4).

Recursive constructions of point sets. Recursive constructions of point sets abund in
discrete geometry, and with some care several of them directly translate into recursively
defined canonical chirotope trees (e.g. Horton sets). The closest predecessor to (and
inspiration for) this work is the recursive decomposition of chains used by Rutschmann and
Wettstein [20, Theorem 15] to produce a new lower bound on the number of triangulations of
a n-points set. Their representation applies to a smaller subset of order types (the chains, of
which there are only exponentially many of size n), and decomposes every chain into parts of
constant size. It allows to count the triangulations of a chain of size n in O(n2) time based
on ideas similar to the proof of Equation (6), but tailored to the setting of chains. See the
full version [12] for a comparison to other related works [7, 1].

Counting triangulations. An extensive comparison between our method for counting
triangulations and the experimental results of Alvarez and Seidel [5] and Rutschmann and
Wettstein [20] is beyond the scope of this paper, all the more that the methods apply to
different classes of point sets and operate on different types of input. We nevertheless note
the following points.

The general method of Alvarez and Seidel takes as input an arbitrary point set. They
tested three methods on high-memory hardware for various types of point sets, and none
could handle any example of size 35 or more in less than 10 minutes.
Our method takes as input a (chirotope presented by a) decomposition tree. We tested it
on randomly-generated trees with decorating chirotopes of size 9 summing up to sets of
∼ 1000 points; it took less than 5 minutes on a laptop to count the triangulations.
The method of Rutschmann and Wettstein is based on formulas specific to the class of
chains and could handle examples of size 221.

SoCG 2024



23:8 A Canonical Tree Decomposition for Chirotopes

To us, this is an evidence that our approach is relevant for point sets that are highly
decomposable. This is similar to some of the usual benefits of modular decomposition: some
hard problems enjoy simple and effective solutions for instances that decompose well.

2 Chirotope trees

Here we implement the modular decomposition guidelines for (realizable) chirotopes.

When is a bowtie product a (realizable) chirotope? Let us first explain why a bowtie
χ x∗1y∗ ξ is a (realizable) chirotope exactly when χ and ξ are (realizable) chirotopes and x∗

and y∗ are extreme elements. See [12, Section 3] for the detailed proof.

Sketch of proof of Proposition 2 (i) and (ii). Suppose that two functions χ and ξ are such
that χ x∗1y∗ ξ is a chirotope. Since the properties of symmetry, interiority and transitivity
that characterize a chirotope are preserved by restriction, χ and ξ must themselves be
chirotopes. Furthermore, by Lemma 1, if x∗ is not extreme in χ, then we can find three
elements a, b, c such that χ(x∗, a, b) = χ(x∗, b, c) = χ(x∗, c, a) = 1. A simple case analysis
shows that these three elements and any two from Y must violate the transitivity axiom.

Going in the other direction, suppose that χ and ξ are chirotopes and x∗ and y∗ are
extreme. Simple case analysis reveals that χ x∗1y∗ ξ satisfies the interiority axiom and that
if five elements violate the transitivity axiom, then three must come from X and two from
Y (or vice-versa) and the three from X must surround x∗ (in the sense of Lemma 1). This
contradicts the assumption that x∗ is extreme and we conclude that χ x∗1y∗ ξ is indeed a
chirotope. Altogether, this proves Statement (i) for abstract chirotopes.

Now to Statement (ii). If χ x∗1y∗ ξ is a realizable chirotope then (i) implies that x∗ and
y∗ are extreme in χ and ξ, respectively. Moreover, any point set realizing χ x∗1y∗ ξ contains
a subset realizing χ and another one realizing ξ. Hence χ and ξ must be realizable chirotopes.
For the reverse direction, the key idea is that for any realizable chirotope χ and any element
x extreme for χ, there exists a realization P = {px, x ∈ X} of χ such that px is in an
unbounded cell of the arrangement of the set of lines

{
(pypz) : y, z ∈ X \ {x}, y ̸= z

}
. This

can be proved starting with any realization and applying a suitable projective transform. ◀

Iterating bowtie products. A nice feature of the bowtie when we want to perfom several
such operations is that it is commutative and associative under certain conditions.

▶ Lemma 7. Let χ, ξ, κ be chirotopes on disjoint sets X ∪ {x∗}, Y ∪ {y∗
1 , y∗

2} and Z ∪ {z∗},
with |X|, |Z| ≥ 2, |Y | ≥ 1. If the starred elements are extreme in their respective chirotopes,
then χ x∗1y∗

1
ξ = ξ y∗

1
1x∗ χ and (χ x∗1y∗

1
ξ) y∗

2
1z∗ κ = χ x∗1y∗

1
(ξ y∗

2
1z∗ κ).

The proof is elementary (see [12, Section 3]). Using the associativity of bowties requires
attention to the ground sets of the chirotopes at play. For instance, with the notation
of Lemma 7, writing (ξ y∗

1
1x∗ χ) y∗

2
1z∗ κ = ξ y∗

1
1x∗(χ y∗

2
1z∗ κ) is absurd, as in the right-

hand term y∗
2 does not belong to the ground set of χ (even though the left-hand term is

well-defined).

These commutativity and associativity properties make it possible to omit certain ordering
informations in expressions using bowtie products. For instance, Lemma 7 implies that

(χ1 x∗
1
1x∗

2
(χ2 y∗

2
1x∗

3
χ3)) z∗

2
1x∗

4
χ4 = χ1 x∗

1
1x∗

2
((χ2 z∗

2
1x∗

4
χ4) y∗

2
1x∗

3
χ3)

so one is tempted to represent these (and other equivalent) expressions by the following tree.
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χ2

χ1
•

χ3 • χ4•
• •

•

x∗
1

x∗
2

y∗
2 z∗

2x∗
3 x∗

4

The notion of chirotope tree systematizes this representation of expressions by trees.

Chirotope trees encode chirotopes (proof of Proposition 3). The sign function χT of a
chirotope tree T is defined so that the following property holds.

▶ Lemma 8. Let T be a chirotope tree and e = {v1, v2} be an edge of T , and let s1 and s2
be the elements selected by e in v1 and v2 respectively. If T1 and T2 denote the two chirotope
trees obtained by removing e from T , with vi ∈ Ti, then χT = χT1 s11s2 χT2 .

This lemma is proved via elementary manipulations of the definitions and case analysis;
see [12, Section 4].

The proof of Proposition 3 (stating that χT is a chirotope) is now a straightforward
induction using Lemma 8 and the fact that the bowtie of two (realizable) chirotopes whose
starred elements are extreme is a (realizable) chirotope (Proposition 2). Iterating this lemma,
we can actually compute the chirotope χT of a chirotope tree starting from the chirotopes
decorating each node, and iterating bowtie operations.

3 Canonical chirotope trees

Canonical chirotope trees arise naturally from two operations on chirotope trees.

Contraction. Let T be a chirotope tree and e = {v, v′} be an edge in T that selects s∗

and t∗ in χv and χv′ , respectively. The contraction of e in T is the tree T ′ obtained from T

by merging the nodes v and v′ into a new node vnew, decorated with χnew
def= χv s∗1t∗ χv′ .

We denote this transformation by T
e−→ T ′. By Proposition 2, χnew is a chirotope, and is

realizable if both χv and χv′ are realizable. Also, the extreme elements of χv and χv′ different
from s∗ and t∗ are extreme elements of χnew so that the proxy elements corresponding to
other edges of T are still extreme in their respective chirotopes in T ′; it follows that T ′ is
indeed a chirotope tree. Here is an example of a contraction of a tree (with χ = κ s∗1t∗ ξ).

κ ξ

χ3

χ1

χ2

•

•

•• •• • •
x∗

1 x∗

y∗

z∗
x∗

3
x∗

2s∗
t∗ (s∗,t∗)−−−−→ χ

χ1
•

χ3 • χ2•
• •

•

x∗
1

x∗

y∗
z∗

x∗
3 x∗

2
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23:10 A Canonical Tree Decomposition for Chirotopes

Split. Let T be a chirotope tree with a node v0 whose decoration χ has a nontrivial bowtie
decomposition χ = κ s∗1t∗ ξ. The split of T according to χ = κ s∗1t∗ ξ is the tree T ′ obtained
from T by replacing v0 by two nodes v1 and v2 that are decorated by κ and ξ, respectively,
and connected by an edge selecting s∗ in v1 and t∗ in v2. We denote this transformation by
T

χ−−−−−−→
κ s∗1t∗ ξ

T ′. Note that for any edge e connecting v0 to another vertex w in T , the element
s selected by e in v0 belongs to the ground set of either κ or ξ. Therefore, e is naturally seen
as an edge of T ′, connecting either v1 or v2 to w, depending on the set in which s lives. Here
is an example of a split of a tree according to the bowtie decomposition χ = κ s∗1t∗ ξ.

χ

χ1
•

χ3 • χ2•
• •

•

x∗
1

x∗

y∗
z∗

x∗
3 x∗

2 χ−−−−−−→
κ s∗1t∗ ξ

κ ξ

χ3

χ1

χ2

•

•

•• •• • •
x∗

1 x∗

y∗

z∗
x∗

3
x∗

2s∗
t∗

Properties. The contraction and split decomposition operations are inverse of one another
in the sense that (with the notation of the previous two paragraphs)

T
χ−−−−−−→

κ s∗1t∗ ξ
T ′ ⇒ T ′ (s∗,t∗)−−−−→ T, and T

(s∗,t∗)−−−−→ T ′ ⇒ T ′ χnew−−−−−−−−→
χv s∗1t∗ χv′

T. (7)

Moreover, contractions and splits do not change the associated chirotope [12, Section 4].

▶ Proposition 9. If T
e−→ T ′ or if T

χv0−−−−−−→
κ y∗1z∗ ξ

T ′, then χT = χT ′ .

Canonical chirotope trees are unique (proof of Theorem 4). As explained in Section 1.2, we
define a chirotope tree as canonical if every node is decorated by a convex or indecomposable
chirotope, and if no edge connects two nodes decorated by convex chirotopes. Consider the
following rewriting rules on the set of chirotope trees:

T
♢−→ T ′ if T ′ is obtained from T by contracting an edge between two convex chirotopes;

T
1−→ T ′ if T ′ is obtained from T by splitting a nonconvex node of T .

We write T ⇒ T ′ if T
♢−→ T ′ or T

1−→ T ′. As usual, for any rewriting rule →, we write →∗ for
the rewriting rule consisting in any number (possibly zero) of successive applications of →.

Let T tr
χ denote the chirotope tree with a single node decorated with χ. By Proposition 9,

starting with T tr
χ and applying ⇒ any number of times only produces chirotope trees whose

associated chirotope is χ. Moreover, by definition, a chirotope tree is canonical if and only if
the rewriting rule ⇒ does not apply to it. Our proof that every chirotope χ admits a unique
canonical chirotope tree (Theorem 4) decomposes as follows (see [12, Section 4]).

We prove that ⇒ terminates, i.e. every rewriting sequence T0 ⇒ T1 ⇒ . . . ⇒ Tn ⇒ . . . is
finite; this implies the existence of at least one canonical chirotope tree associated with χ.
We prove the accessibility from T tr

χ of all canonical chirotope trees T with χT = χ; i.e. we
always have T tr

χ ⇒∗ T .
We finally prove that ⇒ is confluent: starting with T tr

χ and iterating ⇒ in any way
always leads to the same final state T . Together with the previous point, this implies the
uniqueness of a canonical chirotope tree associated with χ.
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4 Counting triangulations

We now examine how to count the triangulations of a chirotope described as a chirotope tree.

4.1 The principle
Let κ = χ x∗1y∗ ξ where χ and ξ are chirotopes on X ∪ {x∗} and Y ∪ {y∗}, with X and Y

disjoint, x∗ /∈ X and y∗ /∈ Y . Let πY →x denote the map that sends every element of Y to x.
We extend this map to triangulations by putting, for any triangulation T of κ

πY →x(T ) def= {{πY →x(a), πY →x(b)} : {a, b} ∈ T} \ {{x, x}}.

x∗
y∗

X Y

T ∈ Tκ T ′ = πY→x∗(T ) T ′′ = πX→y∗(T )TXY

Y

z′

z z

X X Y Y

z′

z

Figure 2 A triangulation T of κ = χ x∗1y∗ ξ, the projection of T on X ∪ {x∗}, the set TXY , and
the projection of T on Y ∪ {y∗}.

Given a set of edges T of χ x∗1y∗ ξ, not necessarily a triangulation, and two sets A and
B, we let TAB denote the set of edges of T with one element in A and the other in B. As
illustrated in Figure 2, any triangulation T of κ decomposes into triangulations of χ and ξ

and a set TXY of non-crossing edges. This can be turned into a bijection (see [12, Section 7]
for a proof).

▶ Proposition 10. With the above notation, for any triangulation T of κ, the sets T ′ def=
πY →x∗(T ) and T ′′ def= πX→y∗(T ) are triangulations of χ and ξ, respectively, and TXY is a
maximal set of noncrossing edges between the neighbors of x∗ in T ′ and the neighbors of y∗

in T ′′.
Conversely, for any triangulations T ′ of χ and T ′′ of ξ and any maximal set H of non-

crossing edges between the neighbors of x∗ in T ′ and the neighbors of y∗ in T ′′, there exists a
unique triangulation T ∈ Tκ such that T ′ = πY →x∗(T ), T ′′ = πX→y∗(T ) and H = TXY .

Recall that for a chirotope α and an element a∗, the polynomial Pα,a∗(s) =
∑

T ∈Tα
sdegT (a∗)

counts the triangulations of α while marking the degree of a∗. Here are examples with
Pχ,x∗(s) = s3(s + 1) and Pξ,y∗(t) = t2(1 + t + t2).

•

••
• •x∗

•

••
• •x∗

•

••
• •x∗

s3 s4χ

• ••

• •y∗

• ••

• •y∗

• ••

• •y∗

• ••

• •y∗

ξ t2 t4 t3

Proposition 10 implies Formula (6) which expresses |Tκ| for κ
def= χ x∗1y∗ ξ from Pχ,x∗(s) and

Pξ,y∗(t). To iterate this computation through several bowtie products, we need to determine

SoCG 2024



23:12 A Canonical Tree Decomposition for Chirotopes

not only |Tκ|, but Pκ,z∗(t) for some extreme point z∗ of κ, to be used as a proxy point in a
subsequent bowtie product. For z∗ ∈ Y we replace Pξ,y∗(t) by two bivariate polynomials:

Q∈
ξ,y∗,z∗(t, u) =

∑
T ∈Tξ

{y∗,z∗}∈T

tdegT (y∗)udegT (z∗) and Q/∈
ξ,y∗,z∗(t, u) =

∑
T ∈Tξ

{y∗,z∗}/∈T

tdegT (y∗)udegT (z∗).

Note that Pξ,y∗(t) = Q∈
ξ,y∗,z∗(t, 1) + Q/∈

ξ,y∗,z∗(t, 1). In the example

• ••

• •

z∗

y∗

• ••

• •

z∗

y∗

• ••

• •

z∗

y∗

• ••

• •

z∗

y∗

ξ t2u3

{y∗, z∗} /∈ T

t4u4

{y∗, z∗} ∈ T

t3u3

{y∗, z∗} /∈ T

we have Q∈
ξ,y∗,z∗(t, u) = t4u4 and Q/∈

ξ,y∗,z∗(t, u) = t2u3(1 + t). Here is our refinement of
Formula (6), see [12, Section 8] for a proof.

▶ Proposition 11. Let κ = χ x∗1y∗ ξ where χ and ξ are chirotopes on X ∪{x∗} and Y ∪{y∗},
with X and Y disjoint, x∗ /∈ X and y∗ /∈ Y . For any z∗ ∈ Y extreme in ξ we have

Pκ,z∗(u) =
∑

a,b≥2

(
a+b−2

a−1
)
[sa]Pχ,x∗(s)[tb]Q/∈

ξ,y∗,z∗(t, u)

+
∑

a,b≥2
Ra,b(u)[sa]Pχ,x∗(s) [tb]Q∈

ξ,y∗,z∗(t, u), with Ra,b(u) =
a−1∑
i=0

(
a+b−i−3

b−2
)
ui.

4.2 Example: asymptotic analysis of a family of chirotope chains
Consider the two following chirotopes on {x∗, y∗, z, c}:

χ(0) = •

•

• •
c

z

x∗ y∗
and χ(1) = •

•

• •
c

z

x∗ y∗

Each of χ(0) and χ(1) has a unique triangulation, which contains the edge {x∗, y∗} and where
each vertex has degree 3. Thus,

Pχ(0),y∗(s) = Pχ(1),y∗(s) = s3,

Q∈
χ(0),x∗,y∗(t, u) = Q∈

χ(1),x∗,y∗(t, u) = t3u3,

Q/∈
χ(0),x∗,y∗(t, u) = Q/∈

χ(1),x∗,y∗(t, u) = 0.

For i ∈ N let χ
(0)
i denote a copy of χ(0) relabeled by x∗ 7→ x∗

i , y∗ 7→ y∗
i , z 7→ zi,

c 7→ ci. We define χ
(1)
i to be a copy of χ(1) with the same relabeling. For any word

σ = σ1σ2 . . . σk ∈ {0, 1}k we put χ(σ) def= χ
(σ1)
1 y∗

1
1x∗

2
χ

(σ2)
2 y∗

2
1x∗

3
. . . y∗

k−1
1x∗

k
χ

(σk)
k . This

expression translates into a chirotope tree, actually a chain, for example for χ(01101):

•
•

• •
c1

z1

x∗
1 y∗

1 •
•

• •
c2
z2

y∗
2x∗

2

•
•

• •
c3
z3

y∗
3x∗

3 •
•

• •
c4

z4

x∗
4 y∗

4 •
•

• •
c5
z5

y∗
5x∗

5
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The chirotopes χ(0) and χ(1) are indecomposable (and non-convex), so these trees are
canonical and Theorem 4 ensures that χ(σ) = χ(σ′) if and only if σ = σ′. Moreover, χ(0) and
χ(1) are realizable so χ(σ) is realizable by Proposition 2 (ii) and is the chirotope of a set of
2k + 2 points, k of which are interior. It turns out that the number of triangulations of χ(σ)

depends only on the length of σ, and there is a closed formula for this number!

▶ Proposition 12. For every σ ∈ {0, 1}k we have

∣∣Tχ(σ)

∣∣ =
3(2k + 1)

(4k+2
2k+1

)
(2k + 2)(4k + 1) −

4k
(2k+2

k+1
)

2k + 1 ∼k→∞
3 − 2

√
2√

2π

16k

k3/2 .

Recall that for σ ∈ {0, 1}k, the chirotope χ(σ) has 2k + 2 points. In particular, up to a
multiplicative constant,

∣∣Tχ(σ)

∣∣ has the same asymptotics as the number of triangulations of
2k + 2 points in convex position.

Proof. We make a detour via infinite words and we use bivariate generating functions. Let
τ ∈ {0, 1}N be an infinite binary word, let τk be its kth letter, and let τ [k] denote its prefix
of length k. We introduce the shorthands

Pk(u) def= P
χ(τ[k]),y∗

k

(u) and Qk(t, u) def= Q∈
χ

(τk)
k

,x∗
k

,y∗
k

(t, u) = t3u3 as before.

Since χ(τ [k+1]) = χ(τ [k])
y∗

k
1x∗

k+1
χ

(τk+1)
k+1 , we can apply Proposition 11 with z∗ = y∗

k+1 to get

Pk+1(u) =
∑

a,b≥2
Ra,b(u) [sa]Pk(s) [tb]Qk+1(t, u) = u3

2k+1∑
a=0

Ra,3(u) [sa]Pk(s).

Using Ra,3(u) =
a−1∑
i=0

(
a − i

1

)
ui = u

(1 − u)2 (ua − 1) + a

1 − u
, we can develop

Pk+1(u) = u4

(1 − u)2

2k+1∑
a=0

[sa]Pk(s) ua

︸ ︷︷ ︸
= Pk(u)

− u4

(1 − u)2

2k+1∑
a=0

[sa]Pk(s)︸ ︷︷ ︸
= Pk(1)

+ u3

(1 − u)

2k+1∑
a=0

a [sa]Pk(s)︸ ︷︷ ︸
= P ′

k
(1)

,

which rewrites as Pk+1(s) − s4

(1 − s)2 Pk(s) = − s4

(1 − s)2 Pk(1) + s3

1 − s
P ′

k(1) . (8)

Let us introduce the formal series F (s, u) def=
∑

k≥1 Pk(s)uk. Note that F (1, u) =∑
k≥1 Pk(1)uk is the generating series of the number of triangulations of χ(τ [k]). Since

χ(τ [k]) is realizable, we have Pk(1) ≤ 302k+2 [22]. Moreover, each Pk has degree 2k + 1 and
nonnegative coefficients, so that, for s > 0, we have |Pk(s)| ≤ (30s)2k+2. This implies that F

is analytic in the two variables s and u on the domain D = {(s, u) : |s|2 · |u| < 1
30 }, which

contains in particular the point (1, 0). Now, multiplying Equation (8) by uk+1 and summing
up for k ≥ 1, we obtain the functional equation on D(

1 − us4

(1 − s)2

)
F (s, u) = us3

(
1 − s

(1 − s)2 F (1, u) + 1
1 − s

∂sF (1, u)
)

, (9)

where ∂sF (s, u) denotes the derivative of F according to the first variable s.
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23:14 A Canonical Tree Decomposition for Chirotopes

The right-hand term of Equation (9) is linear in F (1, u) and ∂sF (1, u). Let us apply the
standard kernel method (see, e.g., [8]): since F (s, u) is analytic near (1, 0), we can evaluate
Equation (9) for some s(u) that cancels the coefficient 1 − us4

(1−s)2 , called the kernel, and such
that s(u) is close to 1 when u is close to 0. Two functions satisfy these conditions:

s1(u) = −1 +
√

1 + 4
√

u

2
√

u
and s2(u) = 1 −

√
1 − 4

√
u

2
√

u
.

Substituting into Equation (9) yields the following linear system:
s1(u)

(1 − s1(u))2 F (1, u) − 1
1 − s1(u)∂sF (1, u) = 1

s2(u)
(1 − s2(u))2 F (1, u) − 1

1 − s2(u)∂sF (1, u) = 1
. (10)

Solving this linear system gives us the closed form F (1, u) = s1(u) + s2(u) − s1(u)s2(u) − 1.
Recovering the number of triangulations of χ(τ [k]) then amounts to computing a Taylor
expansion, and the asymptotic expression follows either by using Stirling formula, or directly
from the formula of F (1, u) by singularity analysis. We elaborate on these computations in
[12, Section 8]. ◀

4.3 The general method (proof of Proposition 5)
The method generalizes to chirotope trees of arbitrary arity (see [12, Section 9] for details).

Sketch of proof of Proposition 5. For each node v, we define a polynomial Pv that counts
the triangulations of the chirotope χv decorating v, while marking two types of information: (i)
the degree of each proxy of χv, and (ii) which edges between proxies of χv are contained in the
triangulation. If χv has k proxies, then Pv has k variables {x1, . . . , xk} for (i) and

(
k
2
)

variables
{yi,j}1≤i<j≤k for (ii). Moreover if we write Pv under the form Pv =

∑
h∈H Rh(x1, . . . , xk) · h

where H is the set of monomials in the variables yi,j appearing in Pv, then each monomial
h ∈ H is of degree at most 1 in each yi,j , each polynomial Rh(x1, . . . , xk) is of degree at most
n in each xi, and |H| = O(16k) (here we use that the proxies are in convex position).

Proposition 11 can be generalized to describe how the polynomial Pv changes when a leaf
of a chirotope tree is merged with its parent node. If the parent node has k proxies then this
computation can be done by doing O(n216k) multiplications of (k − 1)-variate polynomials
of degree at most n, so in O(n2k16k) time. Starting from a chirotope tree T and merging the
leaves one after another, we reduce the tree to a single node, whose polynomial counts the
triangulations of χT . In the course of this computation, no polynomial has partial degree
more than n with respect to any of their variables, so the bound O(n2k16k) is valid for every
merging, so that the total time complexity is bounded by O(mn2k16k). We believe that this
bound is not tight but improving it is beyond the scope of this paper. ◀

As a proof of concept, we implemented this method for trees of arity 2 and 3, both the
modification of the Alvarez-Seidel algorithm and the recursive counting (see [12, Section 9]).
Our implementation runs within Sagemath to take advantage of basic functions for the
manipulation of multivariate polynomials, but is mostly basic python. We made little effort
in optimizing it, yet it only takes a few seconds to compute that the number of triangulations
of the chirotope of size 254 presented by the tree of Figure 3 is

592 966 751 293 974 711 252 579 414 478 724 131 868 483 318 559 312 640 993 804 562 350 446
478 462 502 194 102 338 465 347 793 563 468 964 711 887 069 260 192 677 783 5079 385 675
578 362 313 461 572 573 372 584 158 103 703 847 713 232 664 ≈ 5.92966751.10180



M. Bouvel, V. Feray, X. Goaoc, and F. Koechlin 23:15

149387, 8
156275, 8

137096, 0

148608, 1
120098, 0

106709, 1
117424, 0

111356, 1
128656, 1

143533, 0

147501, 0

121428, 8

153344, 8

148530, 8

122328, 0

108621, 0

125189, 8

105748, 0

126115, 8

137932, 1
150073, 8

141548, 8

111533, 8

116110, 0122656, 1
132409, 8

101789, 8

126356, 1

131532, 0

144635, 8

125618, 1

99101, 1

101107, 8

131406, 1

154208, 1

133730, 8

Figure 3 A chirotope tree of 36 nodes, each decorated with a chirotope of size 9, adding up to
254 elements. The numbers next to each node indicate the identifier of the decorating chirotope in
the order type database [2] and the label of the red proxy in this database.

5 The number of decomposable chirotopes (Theorem 6)

We now outline the proof of Theorem 6, whose details are presented in [12, Section 5]. Let
Xn be the set of realizable chirotopes on [n], X ∗

n ⊂ Xn the subset of those in which n is
extreme, Dn ⊂ Xn the subset of those that are decomposable, and I∗

n = X ∗
n \ Dn the subset

of those that are indecomposable and in which n is extreme. We put tn = |Xn|, t∗
n = |X ∗

n |,
dn = |Dn| and i∗

n = |I∗
n|. We claim that i∗

n ≥ 3
n (tn − dn). Indeed, letting ext(χ) denote the

number of extreme elements of a chirotope χ, we have by symmetry∑
χ∈Xn\Dn

ext(χ) =
∣∣{(χ, i) ∈ (Xn \ Dn) × [n] : i is extreme in χ}

∣∣ = ni∗
n.
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It follows that i∗
n

tn − dn
= 1

n(tn − dn)
∑

χ∈Xn\Dn

ext(χ) ≥ 1
n(tn − dn)3(tn − dn) = 3

n
.

Now, given χ ∈ Dn, let us fix a nontrivial decomposition χ = χ′
1 x∗1y∗ χ′

2, with χ′
1 a

chirotope on M ∪ {x∗} for some subset M ⊂ [n], and χ′
2 a chirotope on ([n] \ M) ∪ {y∗}. We

let n1
def= |M | and n2

def= n − n1. We then let χ1 denote the chirotope on [n1 + 1] obtained by
renaming, in χ′

1, the (extreme) element x∗ as n1 + 1 and M as [n1] increasingly. Similarly,
we let χ2 denote the chirotope on [n2 + 1] obtained by renaming in χ′

2 the set [n] \ M as
[n2] increasingly and the (extreme) element y∗ as n2 + 1. By construction, χ1 ∈ X ∗

n1+1 and
χ2 ∈ X ∗

n2+1. The map (χ, M) 7→ (χ1, χ2, M) is an injection (its reverse amounts to relabeling
χ1 and χ2 according to M and taking a bowtie product). As a consequence we have

dn ≤
∑

n1+n2=n
n1,n2≥2

(
n

n1

)
t∗
n1+1 t∗

n2+1. (11)

On the other hand, the chirotopes χ1 x∗1y∗ χ2 are different for any χ1 ∈ X3 and χ2 ∈
Xn−1 \ Dn−1 (this can easily be seen e.g. via Theorem 4). Since there are 2 chirotopes on
{1, 2, 3}, it follows that dn ≥ 2

(
n
2
)
i∗
n−1 and we have

3n(tn−1 − dn−1) ≤ dn ≤
∑

n1+n2=n
n1,n2≥2

(
n

n1

)
t∗
n1+1 t∗

n2+1. (12)

The most difficult part of the proof is to show that the right hand sum is O(n−3tn). We fix
some ε > 0 independent of n and consider separately the contributions where min(n1, n2) < εn

and those where min(n1, n2) ≥ εn. The former contribution is easily controlled using two
classical facts [16]: tn ≤ e2n(n − 1)4n and there exists K ∈ (0, 1/8] such that, for all n ≥ 3,
we have tn+1 ≥ K n4 tn. Controlling the latter contribution requires new geometric ideas
and is beyond the scope of this extended abstract (see [12, Section 5]).

6 Some open problems

Let us conclude this presentation by sampling some of directions of enquiry this work opens.

1. Here we used canonical chirotope trees as a tool to put together large chirotopes out of
smaller ones, and we therefore considered the chirotope tree as given. One could, however,
start with some point set and set out to compute the decomposition tree. This raises the
following computational questions. How efficiently can one find a partition of a given
(realizable) chirotope into two mutually avoiding parts or decide that none exists? Or,
going even further, compute the canonical chirotope tree of a given (realizable) chirotope?

2. Can crossing-free structures besides triangulations be counted efficiently from the chirotope
tree? What about other statistics of a chirotope such as the number of k-sets or the
number of crossing pairs?

3. What is the proportion of indecomposable (abstract) chirotopes? (Our proof of Theorem 6
uses that tn/tn−1 ≥ Ω(n4) and we know no analogue of this in the abstract setting.)
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