
Dynamic Convex Hulls for Simple Paths
Bruce Brewer #

Kahlert School of Computing, University of Utah, Salt Lake City, UT, USA

Gerth Stølting Brodal #

Department of Computer Science, Aarhus University, Denmark

Haitao Wang #

Kahlert School of Computing, University of Utah, Salt Lake City, UT, USA

Abstract
We consider two restricted cases of the planar dynamic convex hull problem with point insertions
and deletions. We assume all updates are performed on a deque (double-ended queue) of points.
The first case considers the monotonic path case, where all points are sorted in a given direction, say
horizontally left-to-right, and only the leftmost and rightmost points can be inserted and deleted.
The second case, which is more general, assumes that the points in the deque constitute a simple
path. For both cases, we present solutions supporting deque insertions and deletions in worst-case
constant time and standard queries on the convex hull of the points in O(log n) time, where n is the
number of points in the current point set. The convex hull of the current point set can be reported
in O(h + log n) time, where h is the number of edges of the convex hull. For the 1-sided monotone
path case, where updates are only allowed on one side, the reporting time can be reduced to O(h),
and queries on the convex hull are supported in O(log h) time. All our time bounds are worst case.
In addition, we prove lower bounds that match these time bounds, and thus our results are optimal.
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1 Introduction

Computing the convex hull of a set of n points in the plane is a classic problem in compu-
tational geometry. In the static setting, several algorithms can compute the convex hull in
O(n log n) time [2,14], or in output-sensitive O(n log h) time [7,23]; we use h to denote the
size of the convex hull throughout the paper. Linear time is also possible for certain special
cases, e.g., if points are sorted [2, 14] or points are vertices of a simple path [15,25].

Overmars and van Leeuwen [27] studied the problem in the dynamic context where points
can be inserted and deleted. Their data structure can support the insertion and deletion
of points in O(log2 n) time, where n is the number of points stored. The convex hull itself
can be output in O(h) time and queries on the convex hull can be answered in O(log n)
time. Some example convex hull queries are (see Figure 1): Determine whether a point q is
outside the convex hull, and if yes, compute the tangents (i.e., find the tangent points) of the
convex hull through q. Given a direction ρ, compute an extreme point on the convex hull
along ρ. Given a line ℓ, determine whether ℓ intersects the convex hull, and if yes, find the

© Bruce Brewer, Gerth Stølting Brodal, and Haitao Wang;
licensed under Creative Commons License CC-BY 4.0

40th International Symposium on Computational Geometry (SoCG 2024).
Editors: Wolfgang Mulzer and Jeff M. Phillips; Article No. 24; pp. 24:1–24:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bruce.brewer@utah.edu
https://orcid.org/0009-0008-2995-148X
mailto:gerth@cs.au.dk
https://orcid.org/0000-0001-9054-915X
mailto:haitao.wang@utah.edu
https://orcid.org/0000-0001-8134-7409
https://doi.org/10.4230/LIPIcs.SoCG.2024.24
https://arxiv.org/abs/2403.05697
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


24:2 Dynamic Convex Hulls for Simple Paths

p1
pn

t1

t2

e1

e2

pρ

ρ
q

ℓ

Figure 1 The convex hull (dashed) of a simple path p1, . . . , pn (solid). Three types of convex hull
queries are shown (dotted): the tangent points t1 and t2 with a query point q outside the convex hull;
the extreme point pρ in direction ρ; and the two convex hull edges e1 and e2 intersecting a line ℓ.

two edges (bridges) on the convex hull intersected by ℓ. Tangent and extreme point queries
are examples of decomposable queries, which are queries whose answers can be obtained
in constant time from the query answers for any constant number of subsets that form a
partition of the point set. In contrast, bridge queries are not decomposable.

Chan [8] improved the update (insertion/deletion) time to amortized O(log1+ε n), for
any ε > 0. Tangent and extreme point queries are supported in O(log n) time, and the convex
hull can be reported in O(h log n) time. The bridge query time was increased to O(log3/2 n).
The update time was subsequently improved to amortized O(log n log log n) by Brodal and
Jacob [4] and Kaplan, Tarjan, Tsioutsiouliklis [22], and to amortized O(log n) by Brodal
and Jacob [5]. Chan [9] improved the time for bridge queries to 2O

(√
log log n log log log n

)
log n,

with the same amortized update time. It is known that sub-logarithmic update time and
logarithmic query time are not possible. For example, to achieve O(log n) time extreme point
queries, an amortized update time Ω(log n) is necessary [4].

In this paper, we consider the dynamic convex hull problem for restricted updates, where
we can achieve worst-case constant update time and logarithmic query time. In particular,
we assume that the points are inserted and deleted in a deque (double-ended queue) and that
they are geometrically restricted. We consider two restrictions: The first is the monotone
path case, where all points in the deque are sorted in a given direction, say horizontally
left-to-right, and only the leftmost and rightmost points can be inserted and deleted. The
second case allows the points to form a simple path, where updates are restricted to both
ends of the path. The simple path problem was previously studied by Friedman, Hershberger,
and Snoeyink [13], who supported deque insertions in amortized O(log n) time, deletions in
amortized O(1) time, and queries in O(log n) time. Bus and Buzer [6] considered a special
case of the problem where insertions only happen to the “front” end of the path and deletions
are only on points at the “rear” end. They achieved O(1) amortized update time to support
O(h) time hull reporting. However, hull queries were not considered in [6]. Wang [33] recently
considered a special monotone path case where updates are restricted to queue-like updates,



B. Brewer, G. S. Brodal, and H. Wang 24:3

i.e., insert a point to the right of the point set and delete the leftmost point of the point set.
Wang called it window-sliding updates and achieved amortized constant time updates, hull
queries in O(log h) time,1 and hull reporting in O(h) time.

1.1 Our results
We present data structures for the monotone path and the simple path variants. For both
problems, we support deque insertions and deletions in worst-case constant time. We can
answer extreme point, tangent, and bridge queries in O(log n) time, and we can report the
convex hull in O(h + log n) time. For the one-sided monotone case, where updates are only
allowed on one side, the reporting time can be reduced to O(h), and convex hull queries are
supported in O(log h) time. That is, they are only dependent on the current hull size and
independent of the number of points in the set. In addition, we show that these time bounds
are the best possible by proving matching lower bounds. The previous and new bounds for
the various versions of the dynamic convex hull problem are summarized in Table 1.

Our results are obtained by a combination of several ideas. To support deque updates,
we partition the deque into left and right parts and treat these parts as two independent
stack problems. Queries then need to compose the convex hull information from both the
stack problems. This strategy has previously been used by Friedman, Hershberger, and
Snoeyink [13] and by Wang [33]. To support deletions in the stack structures, we store
rollback information when performing insertions. When one of the stacks becomes nearly
empty, we repartition the deque into two new stacks of balanced sizes. To achieve worst-case
bounds, the repartition is done with incremental global rebuilding ahead of time [26]. To
achieve worst-case insertion time, we perform incremental merging of convex hull structures,
where we exploit that the convex hulls of two horizontally separated sets can be combined in
worst-case O(log n) time [27] and that the convex hulls of a bipartition of a simple path can
be combined in O(log2 n) time [16]. To reduce the query bounds for the 1-sided monotone
path problem to be dependent on h instead of n, we adopt ideas from Sundar’s priority queue
with attrition [30]. In particular, we partition the stack of points into four lists (possibly
with some interior points removed), of which three lists are in convex position, and three
lists have size O(h). We believe this idea is interesting in its own right as, to our knowledge,
this is the first time Sundar’s approach has been used to solve a geometric problem.

1.2 Other related work
Andrew’s algorithm [2] is an incremental algorithm that explicitly maintains the convex hull
of the points considered so far. It can add the next point to the right and left of the convex
hull in amortized O(1) time. Preparata [28] presented an insertion-only solution maintaining
the convex hull in an AVL tree [1] that supports the insertion of an arbitrary point in O(log h)
time, queries on the convex hull in O(log h) time, and reporting queries in O(h) time. For
the stack version, where updates form a stack, a general technique to support deletions is by
having a stack of rollback information, i.e., the changes performed by the insertions. The
time bound for deletions will then match that for insertions, provided that insertion bounds
are worst-case. Applying this idea to [28], we have a stack dynamic convex hull solution with
O(log h) time updates. Note that these time bounds hold for arbitrary new points inserted
without geometric restrictions. The only limitation is that updates form a stack.

1 The runtime was O(log n) in the conference paper but was subsequently improved to O(log h) in the
arXiv version https://arxiv.org/abs/2305.08055.
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Table 1 Known and new results for dynamic convex hull on paths. OA are amortized time
bounds. – denotes operation is not supported. For an update, h denotes the maximum size of the
hull before and after the update. DL = delete left, IR = insert right, etc.

Reference DL IL IR DR Queries Reporting
No geometric restrictions
Preparata [28] + rollback – – O(log h) O(log h) O(log h) O(h)
Monotone path
Andrews’ sweep [2] – OA(1) OA(1) – O(log h) O(h)
Wang [33] OA(1) – OA(1) – O(log h) O(h)
New (Theorem 5) O(1) O(1) O(1) O(1) O(log n) O(h + log n)
New (Theorem 6) – – O(1) O(1) O(log h) O(h)
Simple path
Friedman et al. [13] OA(1) OA(log n) OA(log n) OA(1) O(log n) –
Bus and Buzer [6] OA(1) – OA(1) – – O(h)
New (Theorem 7) O(1) O(1) O(1) O(1) O(log n) O(h + log n)

Hershberger and Suri [19] considered the offline version of the dynamic convex hull
problem, assuming the sequence of insertions and deletions is known in advance, supporting
updates in amortized O(log n) time. Hershberger and Suri [20] also considered the semi-
dynamic deletion-only version of the problem, supporting initial construction and a sequence
of n deletions in O(n log n) time.

Given a simple path of n vertices, Guibas, Hershberger, and Snoeyink [16] considered the
problem of building a data structure so that the convex hull of a query subpath (specified by
its two ends) can be (implicitly) constructed to support queries on the convex hull. Using a
compact interval tree, they gave a data structure of O(n log log n) space with O(log n) query
time. The space was recently improved to O(n) by Wang [32]. There are also other problems
in the literature regarding convex hulls for simple paths. For example, Hershberger and
Snoeyink [18] considered the problem of maintaining convex hulls for a simple path under
split operations at certain extreme points, which improves the previous work in [11].

Notation. We define some notation that will be used throughout the paper. For any
compact subset R of the plane (e.g., R is a set of points or a simple path), let H(R) denote
the convex hull of R and let |H(R)| denote the number of vertices of H(R). We also use ∂R

to denote the boundary of R.
For a dynamic set P of points, we define the following operations: InsertRight: Insert

a point to P that is to the right of all of the points of P ; DeleteRight: Delete the
rightmost point of P ; InsertLeft: Insert a point to P that is to the left of all the points
of P ; DeleteLeft: Delete the leftmost point of P ; HullReport: Report the convex
hull H(P ) (i.e., output the vertices of H(P ) in cyclic order around H(P )). We also use
StandardQuery to refer to standard queries on H(P ). This includes all decomposable
queries like extreme point and tangent queries. It also includes certain non-decomposable
queries like bridge queries. Other queries, such as deciding if a query point is inside H(P ),
can be reduced to bridge queries.

We define the operations for the dynamic simple path π similarly. For convenience, we
call the two ends of π the rear end and the front end, respectively. As such, instead of “left”
and “right”, we use “rear” and “front” in the names of the update operations. Therefore,
we have the following four updates: InsertFront, DeleteFront, InsertRear, and
DeleteRear, in addition to HullReport and StandardQuery as above.
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Outline. We present our algorithms for the monotone path problem in Section 2 and for
the simple path problem in Section 3. Due to the space limit, many details and proofs are
omitted but can be found in the full paper.

2 The monotone path problem

In this section, we study the monotone path problem where updates occur only at the extremes
in a given direction, say, the horizontal direction. That is, given a set of points P ⊂ R2, we
maintain the convex hull of P , denoted by H(P ), while points to the left and right of P

may be inserted to P and the rightmost and leftmost points of P may be deleted from P .
Throughout this section, we let n denote the size of the current set P and h = |H(P )|. For
ease of exposition, we assume that no three points of P are collinear.

If updates are allowed at both sides (resp., at one side), we denote it the two-sided (resp.
one-sided) problem. We call the structure for the two-sided problem the “deque convex hull,”
where we use the standard abbreviation deque to denote a double-ended queue (according
to Knuth [24, Section 2.2.1], E. J. Schweppe introduced the term deque). The one-sided
problem’s structure is called the “stack convex hull”.

In what follows, we start with describing a “stack tree” in Section 2.1, which will be used
to develop a “deque tree” in Section 2.2. We will utilize the deque tree to implement the
deque convex hull in Section 2.3 for the two-sided problem. The deque tree, along with ideas
from Sundar’s priority queues with attrition [30], will also be used for constructing the stack
convex hull in Section 2.4 for the one-sided problem.

2.1 Stack tree
Suppose P is a set of n points in R2 sorted from left to right. Consider the following
operations on P (assuming P = ∅ initially). (1) InsertRight; (2) DeleteRight; (3)
TreeRetrieval: Return the root of a balanced binary search tree (BST) that stores all
points of the current P in the left-to-right order. We have the following lemma.

▶ Lemma 1. Let P be an initially empty set of n points in R2 sorted from left to right. There
exists a “Stack Tree” ST (P ) for P supporting the following operations: (1) InsertRight:
O(1) time; (2) DeleteRight: O(1) time; (3) TreeRetrieval: O(log n) time.

Remark. Note that the statement of Lemma 1 is not new. Indeed, one can simply use a
finger search tree [3, 17,31] to store P to achieve the lemma (in fact, TreeRetrieval can
even be done in O(1) time). We propose a stack tree as a new implementation for the lemma
because it can be applied to our dynamic convex hull problem. When we use the stack tree,
TreeRetrieval will be used to return the root of a tree representing the convex hull of P ;
in contrast, simply using a finger search tree cannot achieve the goal (the difficulty is how to
efficiently maintain the convex hull to achieve constant time update). Our stack tree may be
considered a framework for Lemma 1 that potentially finds other applications as well.

Structure of the stack tree. The stack tree ST (P ) consists of a sequence of trees Ti for
i = 0, 1, . . . , ⌈log log n⌉. Each Ti is a balanced BST storing a contiguous subsequence of P

such that for any j < i, all points of Ti are to the left of each point of Tj . The points of
all Ti’s form a partition of P . We maintain the invariant that |Ti| is a multiple of 22i and
0 ≤ |Ti| ≤ 22i+1 , where |Ti| represents the number of points stored in Ti. (The right side of ℓ

in Figure 2 is a stack tree).

SoCG 2024
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Figure 2 Illustrating a deque tree, comprising two stack trees separated by the vertical line ℓ.

To achieve worst-case constant time insertions, the process of joining two trees is performed
incrementally over subsequent insertions. Specifically, we apply the recursive slowdown
technique of Kaplan and Tarjan [21], where every 2i+1-th insertion, i ≥ 1, performs delayed
incremental work toward joining Ti−1 with Ti, if such a join is deemed necessary.

Remark. The critical observation of our algorithm is that because the ranges of the trees
do not overlap, we can join adjacent trees Ti and Ti+1 to obtain (the root) of a new balanced
BST that stores all points in Ti ∪ Ti+1 in O(log(|Ti| + |Ti+1|)) time. Later in the paper
we generalize this idea to horizontally neighboring convex hulls which can be merged in
O(log(|H(Ti)| + |H(Ti+1)|)) time [27] and to convex hulls over consecutive subpaths of a
simple path which can be merged in O(log |H(Ti)| · log |H(Ti+1)|) time [16].

InsertRight. Suppose we wish to insert into P a point p that is right of all points of P .
We start with inserting p into the tree T0, which takes O(1) time as |T0| = O(1). Next, we

perform O(1) delayed incremental work on a tree Ti for a particular index i. To determine i,
we maintain a counter N that is a binary number. Initially, N = 1, and it is an invariant
that N = 1 + n. For each insertion, we increment N by one and determine the index i of the
digit which flips from 0 to 1, indexed from the right where the rightmost digit has index 0.
Note that there is exactly one such digit. Then, if i ≥ 1, we perform incremental work on Ti

(i.e., joining Ti−1 with Ti). To find the digit i in O(1) time, we represent N by a sequence
of ranges, where each range represents a contiguous subsequence of digits of 1’s in N . For
example, if N is 101100111, then the ranges are [0, 2], [5, 6], [8, 8]. After N is incremented by
one, N becomes 101101000, and the ranges become [3, 3], [5, 6], [8, 8]. Therefore, based on
the first two ranges in the range sequence, one can determine the digit that flips from 0 to 1
and update the range sequence in O(1) time (note that this can be easily implemented using
a linked list to store all ranges, without resorting to any bit tricks).

After i is determined, we perform incremental work on Ti as follows. We use a variable nj

to maintain the size of each tree Tj , i.e., nj = |Tj |. For each tree Tj , with j ≥ 1, we say
that Tj is “blocked” if there is an incremental process for joining a previous Tj−1 with Tj

(more details to be given later) and “unblocked” otherwise (T0 is always unblocked). If Ti

is blocked, then there is an incremental process for joining a previous Ti−1 with Ti. This
process will complete within time linear in the height of Ti, which is O(2i), since |Ti| ≤ 22i+1 .
We perform the next c steps for the process for a sufficiently large constant c. If the joining
process is completed within the c steps, we set Ti to be unblocked.
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Next, if Ti is unblocked and ni ≥ 22i+1 (in this case by Observation 2 ni is exactly equal
to 22i+1), our algorithm maintains the invariant that Ti+1 must be unblocked by Lemma 3.
In this case, we first set Ti+1 to be blocked, and then we start an incremental process to
join Ti with Ti+1 without performing any actual steps. For reference purpose, let T ′

i refer to
the current Ti and let Ti start over from ∅. Using this notation, we are actually joining T ′

i

with Ti+1. Although the joining process has not been completed, we follow the convention
that T ′

i is now part of Ti+1; hence, we update ni+1 = ni+1 + ni. Also, since Ti is now empty,
we reset ni = 0. This finishes the work due to the insertion of p. See the full paper for the
proofs of Observation 2 and Lemma 3.

▶ Observation 2.
1. If ni ≥ 22i+1 , then ni = 22i+1 .
2. It holds that ni = 0 or 22i ≤ ni ≤ 22i+1 for i ≥ 1, and n0 ≤ 4.

▶ Lemma 3.
1. If n0 ≥ 4, then T1 must be unblocked.
2. If i ≥ 1 and ni ≥ 22i+1 right after the process of joining Ti−1 with Ti is completed, then

Ti+1 must be unblocked.

As we only perform O(1) incremental work, the total time for inserting p is O(1).

DeleteRight. To perform DeleteRight, we maintain a stack that records the changes
made on each insertion. To delete a point p, p must be the most recently inserted point, and
thus all changes made due to the insertion of p are at the top of the stack. To perform the
deletion, we simply pop the stack and roll back all the changes during the insertion of p.

TreeRetrieval. To perform TreeRetrieval, we start by completing all incremental joining
processes. Then, we join all trees Ti’s in their index order. This results in a single BST T

storing all points of P . In applications, we usually need to perform binary searches on T ,
after which we need to continue processing insertions and deletions on P . To this end, when
constructing T as above, we maintain a stack that records the changes we have made. Once
we are done with queries on T , we use the stack to roll back the changes and return the
stack tree to its original form right before the TreeRetrieval operation.

The runtime is O(log n) because the heights of all trees Ti form a geometric series
(i.e.,

∑⌈log log n⌉
i=1 2i = O(log n)). The detailed analysis can be found in the full paper.

2.2 Deque tree
The deque tree is built upon stack trees. We have the following lemma, where Tree-
Retrieval is defined in the same way as in Section 2.1.

▶ Lemma 4. Let P be an initially empty set of n points in R2 sorted from left to right.
There exists a “Deque Tree” data structure DT (P ) for P supporting the following operations:
(1) InsertRight: O(1) time; (2) DeleteRight: O(1) time; (3) InsertLeft: O(1) time;
(4) DeleteLeft: O(1) time; (5) TreeRetrieval: O(log n) time.

The statement of Lemma 4 is not new because we can also use a finger search tree [3, 17]
to achieve it. Here, we propose a different method for our dynamic convex hull problem.

DT (P ) consists of two stack trees STL(PL) and STR(PR) built from opposite directions,
where PL and PR are the subsets of P to the left and right of a vertical dividing line ℓ,
respectively (see Figure 2). To insert a point to the left of P , we insert it to STL(PL). To

SoCG 2024
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delete the leftmost point of P , we delete it from STL(PL). For insertion/deletion on the
right side of P , we use STR(PR). For TreeRetrieval, we perform TreeRetrieval on
both STL(PL) and STR(PR), which result in two balanced BSTs; then, we join these two
trees into a single one. The time complexities of all these operations are as stated Lemma 4.

To make this idea work, we need to make sure that neither STL(PL) nor STR(PR) is
empty. To this end, we apply incremental global rebuilding [26, Section 5.2.2], where we
dynamically adjust the dividing line ℓ. The details are in the full paper. Note that using two
stacks to form a deque structure is a natural idea and has been used elsewhere, e.g., [11, 18].

2.3 Two-sided monotone path dynamic convex hull
We can tackle the 2-sided monotone path dynamic convex hull problem using the deque
tree. Suppose P is a set of n points in R2. In addition to the operations InsertRight,
DeleteRight, InsertLeft, DeleteLeft, HullReport, as defined in Section 1, we also
consider the operation HullTreeRetrieval: Return the root of a BST of height O(log h)
that stores all vertices of the convex hull H(P ) (so that binary search based operations
on H(P ) can all be supported in O(log h) time). We will prove the following theorem.

▶ Theorem 5. Let P ⊂ R2 be an initially empty set of points, with n = |P | and h = |H(P )|.
There exists a “Deque Convex Hull” data structure DH(P ) of O(n) space that supports the
following operations: (1) InsertRight: O(1) time; (2) DeleteRight: O(1) time; (3)
InsertLeft: O(1) time; (4) DeleteLeft: O(1) time; (5) HullTreeRetrieval: O(log n)
time; (6) HullReport: O(h + log n) time.

Remark. The time complexities of the four update operations in Theorem 5 are obviously
optimal. The lower bound proved in the full paper establishes that the other two operations
are also optimal. In particular, it is not possible to reduce the time of HullTreeRetrieval
to O(log h) or reduce the time of HullReport to O(h) (but this is possible for the one-sided
case as shown in Section 2.4).

The deque convex hull is a direct application of the deque tree from Section 2.2. We
maintain the upper hull and lower hull of H(P ) separately. In the following, we only discuss
how to maintain the upper hull, as maintaining the lower hull is similar. By slightly abusing
the notation, let H(P ) refer to the upper hull only in the following discussion.

We use a deque tree DT (P ) to maintain H(P ). The DT (P ) consists of two stack trees STL

and STR. Each stack tree is composed of a sequence of balanced search trees Ti’s; each such
tree Ti stores left-to-right the points of the convex hull H(P ′) for a contiguous subsequence P ′

of P . We follow the same algorithm as the deque tree with the following changes. During
the process of joining Ti−1 with Ti, our task here becomes merging the two hulls stored in
the two trees. To perform the merge, we first compute the upper tangent of the two hulls.
This can be done in O(log(|Ti−1| + |Ti|)) time [27]. Then, we split the tree Ti−1 into two
portions at the tangent point; we do the same for Ti. Finally, we join the relevant portions
of the two trees into a new tree that represents the merged hull of the two hulls. The entire
procedure takes O(log(|Ti−1| + |Ti|)) time. This time complexity is asymptotically the same
as joining two trees Ti−1 and Ti as described in Section 2.1, and thus we can still achieve
the same performances for the first five operations as in Lemma 4; in particular, to perform
HullTreeRetrieval, we simply call TreeRetrieval on the deque tree. Finally, for
HullReport, we first perform HullTreeRetrieval to obtain a tree representing H(P ).
Then, we perform an in-order traversal on the tree, which can output H(P ) in O(h) time.
Thus, the total time for HullReport is O(h + log n).
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2.4 One-sided monotone path dynamic convex hull
Let P be a set of n points in R2. Consider the following operations on P (with P = ∅ initially):
InsertRight, DeleteRight, HullTreeRetrieval, HullReport, as in Section 2.3.
Applying Theorem 5, we can perform HullTreeRetrieval in O(log n) time and perform
HullReport in O(h + log n) time. We have the following theorem, which reduces the
HullTreeRetrieval time to O(log h) and reduces the HullReport time to O(h).

▶ Theorem 6. Let P ⊂ R2 be an initially empty set of points, with n = |P | and h = |H(P )|.
There exists a “Stack Convex Hull” data structure SH(P ) of O(n) space that supports the
following operations: (1) InsertRight: O(1) time; (2) DeleteRight: O(1) time; (3)
HullTreeRetrieval: O(log h) time; (4) HullReport: O(h) time.

The main idea to prove Theorem 6 is to adapt ideas from Sundar’s algorithm in [30] for
priority queue with attrition as well as the deque convex hull data structure from Section 2.3.
As in Section 2.4, we maintain the upper and lower hulls of H(P ) separately. By slightly
abusing the notation, let H(P ) refer to the upper hull only in the following discussion.

For any two disjoint subsets P1 and P2 of P , we use P1 ≺ P2 to denote the case where all
points of P1 are to the left of each point of P2. Our data structure maintains four subsets
A1 ≺ A2 ≺ A3 ≺ A4 of P . Each Ai, 1 ≤ i ≤ 3, is a convex chain, but this may not be true
for A4. Further, the following invariants are maintained during the algorithm (which are
strongly inspired by Sundar’s method [30]): (1) Vertices of H(P ) are all in

⋃4
i=1 Ai; (2) A1 is

a prefix of the vertices of H(P ) sorted from left to right; (3) A1 ∪ A2 and A1 ∪ A3 are both
convex chains; (4) |A1| ≥ |A3| + 2 · |A4|. Note that the second and fourth invariants imply
that |A1|, |A3|, and |A4| are all bounded by O(h), which helps to achieve O(log h) time for
HullTreeRetrieval and O(h) time for HullReport.

We omit the details, which can be found in the full paper.

3 The simple path problem

In this section, we consider the dynamic convex hull problem for a simple path. Let π be a
simple path of n vertices in the plane (note that π consists of n − 1 line segments and each
segment endpoint is defined to be a vertex of π). Unless otherwise stated, a “point” of π

always refers to a vertex of it (this is for convenience also for being consistent with the notion
in Section 2). For ease of discussion, we assume that no three vertices of π are colinear.

For any subpath π′ of π, let |π′| denote the number of vertices of π, and H(π′) the convex
hull of π′, which is also the convex hull of all vertices of π′.

We designate the two ends of π as the front end and the rear end, respectively. We consider
the following operations on π: InsertFront, DeleteFront, InsertRear, DeleteRear,
StandardQuery, and HullReport, as defined in Section 1. The following theorem
summarizes the main result of this section.

▶ Theorem 7. Let π ⊂ R2 be an initially empty simple path, with n = |π| and h = |H(π)|.
There exists a “Deque Path Convex Hull” data structure PH(π) of O(n) space that supports
the following operations: (1) InsertFront: O(1) time; (2) DeleteFront: O(1) time; (3)
InsertRear: O(1) time; (4) DeleteRear: O(1) time; (5) StandardQuery: O(log n)
time; (6) HullReport: O(h + log n) time.

Remark. The lower bound in the full paper implies that all these bounds are optimal even
for the “one-sided” case. In particular, it is not possible to reduce the time of HullTree-
Retrieval to O(log h) or reduce the time of HullReport to O(h). This is why we do not

SoCG 2024



24:10 Dynamic Convex Hulls for Simple Paths

consider the one-sided simple path problem separately. For answering standard queries, our
algorithm first constructs four BSTs representing convex hulls of four (consecutive) subpaths
of π whose union is π and then uses these trees to answer queries. The height of the two trees
for the two middle subpaths are O(log n) while the heights of the other two are O(log log n).
As such, all decomposable queries can be answered in O(log n) time. We show that certain
non-decomposable queries can also be answered in O(log n) time, such as the bridge queries.

In what follows, we prove Theorem 7. One crucial property we rely on is that the
convex hulls of two subpaths of a simple path intersect at most twice and thus have at
most two common tangents as observed by Chazelle and Guibas [10]. Let π1 and π2 be
two consecutive subpaths of π. Suppose we have two BSTs representing H(π1) and H(π2),
respectively. Compared to the monotone path problem, one difficulty here (we refer to it as
the “path-challenge”) is that we do not have an O(log n) time algorithm to find the common
tangents between H(π1) and H(π2) and thus merge the two hulls. The best algorithm we
have takes O(log2 n) time by a nested binary search, assuming that we have two “helper
points”: a point on each convex hull that is outside the other convex hull [16].

It is tempting to apply the deque hull idea of Theorem 5 (i.e., consider the points in
the “path order” along π). We could get the same result as in Theorem 5 except that
the HullTreeRetrieval operation now takes O(log2 n) time and HullReport takes
O(h + log2 n) time due to the path-challenge. As such, our main effort below is to achieve
O(log n) time for StandardQuery and O(h + log n) time for HullReport.

Before presenting our data structure, we introduce in Section 3.1 several basic lemmas
which we will use on several occasions later on.

3.1 Basic lemmas
The following two lemmas, both from [16], will be used later.

▶ Lemma 8 (Guibas, Hershberger, and Snoeyink [16], Lemma 5.1). Let π1 and π2 be two
consecutive subpaths of π. Suppose the convex hull H(πi) is stored in a BST of height
O(log |πi|), for i = 1, 2. We can do the following in O(log(|π1| + |π2|)) time: Determine
whether H(π2) is completely inside H(π1) and if not find a “helper point” p ∈ ∂H(π2) such
that p ∈ ∂H(π1 ∪ π2) and p /∈ ∂H(π1).

▶ Lemma 9 (Guibas, Hershberger, and Snoeyink [16], Section 2). Let π1 and π2 be two
consecutive subpaths of π. Suppose the convex hull H(πi) is stored in a BST of height
O(log |πi|), i = 1, 2. We can compute a BST of height O(log(|π1| + |π2|)) that stores the
convex hull of π1 ∪ π2 in O(log |π1| · log |π2|) time.

The following lemma provides a tool for answering bridge queries, obtained with the help
of the binary search algorithm of Overmars and van Leeuwen [27] for computing the common
tangents of two convex polygons separated by a line. See the full paper for the detailed proof.

▶ Lemma 10. Let H1, H2, . . . , be a collection of O(1) convex polygons, each represented by a
BST or an array so that binary search on each convex hull can be supported in O(log n) time.
Let H be the convex hull of all these convex polygons. We can answer the following queries
in O(log n) time each, where n is the total number of vertices of all these convex polygons.
1. Bridge queries: Given a query line ℓ, determine whether ℓ intersects H, and if yes, find

the edges of H that intersect ℓ.
2. Given a query point p, determine whether p ∈ H, and if yes, determine whether p ∈ ∂H.
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ST (πr): stack tree for H(πr)

|πr| = Θ(log2 n)

ST (πf): stack tree for H(πf)

|πf | = Θ(log2 n)

{ {
|πr

m| = Θ(n) |πf
m| = Θ(n)

BST BST

T r
m T f

m

{ {π− = πr ∪ πr
m π+ = πf

m ∪ πf

Figure 3 A schematic view of the deque path convex hull data structure P H(π).

3.2 Structure of the deque path convex hull P H(π)
We partition π into four (consecutive) subpaths πr, πr

m, πf
m, and πf from the front to the

rear of π. As such, πf and πr contain the front and rear ends, respectively. Further, let
π+ = πf ∪ πf

m and π− = πr ∪ πr
m. Our algorithm maintains the following two invariants.

Invariants: (1) 1
4 ≤ |π+|/|π−| ≤ 4. (2) |πf | = O(log2 |π+|) and |πr| = O(log2 |π−|).

Note that the invariants imply |πf
m|, |πr

m| = Θ(n), where n = |π|. The first invariant
resembles the partition of P by a dividing line ℓ in our deque tree in Section 2.2. As with
the deque tree, in order to maintain the first invariant, we use the global rebuilding idea [26].
The details can be found in the full paper.

We use a stack tree ST (πf ) to maintain the convex hull H(πf ), with the algorithm in
Lemma 9 for merging two hulls of two consecutive subpaths. More specifically, we consider
the vertices of πf following their order along the path (instead of left-to-right order as in
Section 2.1) with insertions and deletions only at the front end. Whenever we need to join two
neighboring trees, we merge the two hulls of their subpaths by Lemma 9. Due to the second
invariant, merging all trees of ST (πf ) takes O(log2 log n) time, after which we obtain a single
tree of height O(log log n) that represents H(πf ). Similarly, we build a stack tree ST (πr)
for H(πr) but along the opposite direction of the path. See Figure 3 for an illustration.

Define n+ = |π+|, which is Θ(n). In order to maintain the second invariant, when πf

is too big due to insertions, we will cut a subpath of length Θ(log2 n+) and concatenate
it with πf

m. When πf becomes too small due to deletions, we will split a portion of πf
m of

length Θ(log2 n+) and merge it with πf ; but this split is done implicitly using the rollback
stack for deletions. As such, we need to build a data structure for maintaining πf

m so that
the above concatenate operation on πm can be performed in O(log2 n+) time (this is one
reason why the bound for πf in the second invariant is set to O(log2 n+)). We process π− in
a symmetric way. The way we handle the interaction between πf

m and πf (as well as their
counterpart for π−) are one main difference from our approach for the two-sided monotone
path problem in Section 2.3; again this is due to the path-challenge.

Our data structure for πf
m is simply a balanced BST T f

m, which stores the convex
hull H(πf

m). In particular, we will use T f
m to support the above concatenation operation

(denoted by Concatenate) in O(log2 n) time. For reference purpose, this is summarized in
the following lemma, which is an immediate application of Lemma 9.

▶ Lemma 11. Given a BST of height O(log |τ |) representing a simple path τ of length
O(log2 n) such that the concatenation of πm

f and τ is still a simple path, we can perform the
following Concatenate operation in O(log2 n) time: Obtain a new tree T f

m of height O(log n)
that represents the convex hull H(πf

m), where πf
m is the new path after concatenating with τ .
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Similarly, we use a balanced BST T r
m to store the convex hull H(πr

m). We have a similar
lemma to the above for the Concatenate operation on πr

m.
The four trees ST (πr), T r

m, T f
m, and ST (πf ) constitute our deque path convex hull data

structure PH(π) for Theorem 7; see Figure 3. In the following, we discuss the operations.

3.3 Standard queries
For answering a decomposible query σ, we first perform a TreeRetrieval operation
on ST (πf ) to obtain a tree Tf that represents H(πf ). Since |πf | = O(log2 n), this takes
O(log2 log n) time as discussed before. We do the same for ST (πr) to obtain a tree Tr

for H(πr). Recall that the tree T f
m stores H(πf

m) while T r
m stores H(πr

m). We perform
query σ on each of the above four trees. Based on the answers to these trees, we can obtain
the answer to the query σ for H(π) because σ is a decomposable query. Since the heights of
Tf and Tr are both O(log log n), and the heights of T f

m and T r
m are O(log n), the total query

time is O(log n).
If σ is a bridge query, we apply Lemma 10 on the above four trees. The query time

is O(log n).

3.4 Insertions and deletions
InsertFront and DeleteFront are handled by the data structure for π+, i.e., T f

m and
ST (πf ), while InsertRear and DeleteRear are handled by the data structure for π−.

InsertFront. Suppose we insert a point p to the front end of π. We first perform the insertion
using ST (πf ). To maintain the second invariant, we must handle the interaction between
the largest tree Tk of ST (πf ) and the tree T f

m. Recall that n+ = |π+| and n+ = Θ(n).
According to the second invariant and the definition of the stack tree ST (πf ), we have

|Tk| = O(log2 n+), and we can assume a constant c such that the total size of all trees of
ST (πf ) smaller than Tk is at most c · log2 n+. We set the size of Tk to be (c + 1) · log2 n+.
During the algorithm, whenever |Tk| > (c + 1) · log2 n+ and there is no incremental process
of joining Tk−1 with Tk, we let T ′

k = Tk and let Tk = ∅, and then start to perform an
incremental Concatenate operation to concatenate T ′

k with T f
m. The operation takes

O(log2 n+) time by Lemma 11. We choose a sufficiently large constant c1 so that each
Concatenate operation can be finished within c1 · log2 n+ steps. For each InsertFront
in future, we run c1 steps of this Concatenate algorithm. As such, within the next log2 n+

InsertFront operations in future, the Concatenate operation will be completed. If there
is an incremental Concatenate operation (that is not completed), then we say that T f

m is
dirty; otherwise, it is clean.

If T f
m is dirty, an issue arises during a StandardQuery operation. Recall that during a

StandardQuery operation, we need to perform queries on H(πf
m) by using the tree T f

m.
However, if T f

m is dirty, we do not have complete information for T f
m. To address this

issue, we resort to persistent data structures [12,29]. Specifically, we use a persistent tree
for T f

m so that if there is an incremental Concatenate operation, the old version of T f
m

can still be accessed (we call it the “clean version”); as such, a partially persistent tree
suffices for our purpose [12,29]. After the Concatenate is completed, we designate the new
version of T f

m as clean and the old version as dirty; in this way, at any time, there is only
one clean version we can refer to. During a StandardQuery operation, we can perform
queries on the clean version of T f

m. Similarly, during the query, if there is an incremental
Concatenate process, T ′

k is also dirty, and we need to access its clean version (i.e., the
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version right before T ′
k started the Concatenate operation). To solve this problem, before

we start Concatenate, we make another copy of T ′
k, denoted by T ′′

k . After Concatenate
is completed, we make T ′′

k refer to null. The above strategy causes additional O(log2 n+) time,
i.e., update the persistent tree T f

m and make a copy T ′′
k . To accommodate this additional

cost, we make the constant c1 large enough so that all these procedures can be completed
within the next log2 n+ InsertFront operations.

Recall that once we are about to start a Concatenate operation for T ′
k, Tk becomes

empty. We can show that Concatenate will be completed before another Concatenate
operation starts. See the full paper for the detailed argument. As such, there cannot be two
concurrent Concatenate operations from Tk to T f

m.

DeleteFront. As before, we keep a stack of changes to our data structure PH(π) due to
the InsertFront operations. For each DeleteFront, we simply roll back the changes.

InsertRear and DeleteRear. Handling updates at the rear end is the same, but using T r
m

and ST (πr) instead. We omit the details.

3.5 Reporting the convex hull H(π)
We show that the convex hull H(π) can be reported in O(h + log n) time.

As in the algorithm for StandardQuery, we first obtain in O(log n) time the four trees
Tf , Tr, T f

m, and T r
m representing H(πf ), H(πr), H(πf

m), and H(πr
m), respectively. Then,

we can merge these four convex hulls using Lemma 9 in O(log2 n) time and compute a
BST T (π) representing H(π). Finally, we can output H(π) by traversing T (π) in additional
O(h) time. As such, in total O(h + log2 n) time, H(π) can be reported. To reduce the
time to O(h + log n), we first enhance our data structure PH(π) by having it maintain the
common tangents of H(πf

m) and H(πr
m) during updates. The details are in the full paper.

Remark. As discussed in the full paper, it is possible to achieve O(h + log n) time for
HullReport without enhancing the data structure. Nevertheless, we choose to present
the enhanced data structure for two reasons: (1) Enhancing the data structure will make
the HullReport algorithm much simpler; (2) the enhanced data structure helps us to
obtain in O(log n log log n) time a tree of height O(log n) to represent H(π), improving the
aforementioned O(log2 n) time algorithm.
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