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Abstract
The Earth Mover’s Distance is a popular similarity measure in several branches of computer science.
It measures the minimum total edge length of a perfect matching between two point sets. The
Earth Mover’s Distance under Translation (EMDuT) is a translation-invariant version thereof. It
minimizes the Earth Mover’s Distance over all translations of one point set.

For EMDuT in R1, we present an Õ(n2)-time algorithm. We also show that this algorithm is
nearly optimal by presenting a matching conditional lower bound based on the Orthogonal Vectors
Hypothesis. For EMDuT in Rd, we present an Õ(n2d+2)-time algorithm for the L1 and L∞ metric.
We show that this dependence on d is asymptotically tight, as an no(d)-time algorithm for L1 or L∞

would contradict the Exponential Time Hypothesis (ETH). Prior to our work, only approximation
algorithms were known for these problems.
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1 Introduction

Earth Mover’s Distance (EMD). EMD, also known as geometric transportation or geo-
metric bipartite matching, is a widely studied distance measure (see, e.g., [29, 6, 5, 7, 37,
31, 25, 24, 1, 3]) that has received significant interest in computer vision, starting with the
work of [39]. Depending on the precise formulation, EMD is a distance measure on point
sets, distributions, or functions. In this paper, we study the following formulation of EMD
as measuring the distance from a set of blue points B to a set of red points R:

EMDp(B, R) = min
injective ϕ : B→R

∑
b∈B

∥b − ϕ(b)∥p.
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25:2 Fine-Grained Complexity of Earth Mover’s Distance Under Translation

Here, the minimization goes over all injective functions from B to R, i.e., ϕ encodes a perfect
matching of the points in B to points in R, and the cost of a matching is the total length
of all matching edges, with respect to the Lp metric, 1 ⩽ p ⩽ ∞. When the value of p is
irrelevant, we may drop the subscript p.

The EMDp problem is to compute the value EMDp(B, R) for given sets B, R ⊆ Rd of
sizes |B| ⩽ |R| = n. This general problem is sometimes called the asymmetric EMD. The
symmetric EMD is the special case with the additional restriction |B| = |R|. Intuitively, the
asymmetric EMD asks whether B is similar to some subset of R, while the symmetric variant
compares the full sets B and R. In this paper, we assume the dimension d to be constant.

We briefly discuss algorithms for EMD. Note that EMD can be formulated as a mincost
matching problem on a bipartite graph with vertices R ∪ B, where edge lengths are equal to
the point-to-point distances. This graph has |R| · |B| = O(n2) edges and solving bipartite
mincost matching by the Hungarian method yields an exact algorithm for EMD with running
time O(n3). Alternatively, by combining geometric spanners with recent advancements in
(approximate) mincost flow solvers, one can obtain fast approximation algorithms for EMD.
For instance, symmetric EMD in L2 metric can be solved in time n(log(n)/ε)O(d) [31]. See
also [29, 7, 25, 24, 1, 3] for more approximation algorithms. Conditional lower bounds are
also known, but they apply only when the dimension is super-constant [37].

Earth Mover’s Distance under Translation (EMDuT). We study a variant of EMD that is
invariant under translations, and thus compares shapes of point sets, ignoring their absolute
positions:

EMDuTp(B, R) = min
τ∈Rd

EMDp(B + τ, R).

Here, B + τ = {b + τ | b ∈ B} is the translated point set. See Figure 1 for an illustration
of this distance measure. Again, we call asymmetric EMDuTp the problem of computing
EMDuTp(B, R) for given sets B, R of size |B| ⩽ |R| = n, and the symmetric variant comes
with the additional restriction |B| = |R|. This measure was introduced by Cohen and
Guibas [18], who presented heuristics as well as an exact algorithm with respect to the
squared Euclidean distance. Later, Klein and Veltkamp [32] designed a 2-approximation
algorithm for symmetric EMDuTp running in asymptotically the same time as any EMD
algorithm. Cabello, Giannopoulos, Knauer, and Rote [14] designed (1 + ε)-approximation
algorithms for EMDuT2 in the plane, running in time Õ(n4/ε4) for the asymmetric variant
and Õ(n3/2/ε7/2) for the symmetric variant.1 Eppstein et al. [22] proposed algorithms to
solve the symmetric EMDuT1 and symmetric EMDuT∞ problems in the plane, that run in
O(n6 log3 n) time. We remark that most of these works also study variants of EMDuT under
more general transformations than translations, but in this paper we focus on translations.

We are not aware of any other research on EMDuT, which is surprising, since translation-
invariant distance measures are well motivated, and the analogous Hausdorff distance under
translation [26, 38, 27, 2, 34, 33, 12, 15] and Fréchet distance under translation [4, 35, 30, 8,
10, 23, 11] have received considerably more attention.

1 Here and throughout the paper we use Õ notation to ignore logarithmic factors, i.e., Õ(T ) =⋃
c⩾0 O(T (log T )c).
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Figure 1 Given a set of (solid) blue points B and a set of red points R, our goal is to find
a translation τ (shown in green) and a perfect matching from B + τ to R (shown in black) that
minimizes the total distance of matched pairs.

1.1 Our results
We study EMDuT from the perspective of fine-grained complexity. We design new algorithms
and prove conditional lower bounds over R1, as well as for L1 and L∞ over Rd.

EMDuT in 1D. Over R1 all Lp metrics are equal. We present the following new algorithms.

▶ Theorem 1 (1D Algorithms). (Symmetric:) Given sets B, R ⊆ R of size n = |B| = |R|,
EMDuT(B, R) can be computed in time O(n log n). (Asymmetric:) Given sets B, R ⊆ R of
size m = |B| ⩽ n = |R|, EMDuT(B, R) can be computed in time O(mn(log n + log2 m)).

Note that for m = Ω(n), for the asymmetric variant we obtain near-quadratic time Õ(n2),
while for the symmetric variant we obtain near-linear time Õ(n). We fully explain this
gap, by proving a matching conditional lower bound showing that no algorithm solves the
asymmetric variant in strongly subquadratic time O(n2−δ) for any δ > 0, for m = Ω(n). In
fact, we present a stronger lower bound that even rules out fast approximation algorithms,
not only fast exact algorithms. Our lower bound assumes the Orthogonal Vectors Hypothesis
(OVH), a widely-accepted conjecture from fine-grained complexity theory; for a definition
see Section 4.

▶ Theorem 2 (1D Lower Bound). Assuming OVH, for any constant δ > 0 there is no
algorithm that, given ε ∈ (0, 1) and sets B, R ⊆ R of size n = |R| ⩾ |B| = Ω(n), computes a
(1 + ε)-approximation of EMDuT(B, R) in time O(n2−δ/εo(1)).

As a corollary, the same conditional lower bound holds for EMDuTp over Rd, for any
d ⩾ 1 and 1 ⩽ p ⩽ ∞, since subsets of R can be embedded into Rd for any dimension d and
any Lp metric.

Let us give a brief overview of these results. In the symmetric setting, we establish that
f(τ) := EMD(B + τ, R) is a unimodal function in τ , i.e., it is first monotone decreasing
and then monotone increasing, and thus its minimum can be found easily. In contrast,
in the asymmetric setting the function f(τ) can have up to Θ(n2) disconnected global
minima. Intuitively, our lower bound shows that any algorithm needs to consider each one
of these global near-minima, and therefore the running time must be quadratic in order to
determine which near-minimum is the actual global minimum. To obtain our algorithm in
the asymmetric setting, we use a sweep algorithm with an intricate event handling data
structure.

SoCG 2024
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EMDuT for L1 and L∞ metric in higher dimensions. We extend the work of Eppstein et
al. [22] for point sets in Rd, leading to the following algorithms.

▶ Theorem 3 (Algorithms for L1 and L∞ metric, Asymmetric). Given sets B, R ⊆ Rd of
size m = |B| ⩽ n = |R|, EMDuT1(B, R) and EMDuT∞(B, R) can be computed in time
O(mdnd+2 logd+2 n).

We explain that such a dependence on dimension is unavoidable, by establishing a more
coarse-grained lower bound compared to our 1D results: We show that no algorithm can solve
the problem in time no(d). In fact, we present a stronger lower bound that even rules out
fast approximation algorithms. Our lower bound assumes the Exponential Time Hypothesis
(ETH) [28], which is a well-established conjecture from fine-grained complexity theory.

▶ Theorem 4 (Lower Bound for L1 and L∞ metric, Symmetric). Assuming ETH, there is no
algorithm that, given ε ∈ (0, 1) and sets B, R ⊆ Rd of size n = |B| = |R|, computes a (1 + ε)-
approximation of EMDuT1(B, R) in time ( n

ε )o(d). The same holds for EMDuT∞(B, R).

Note that our lower bound pertains to the symmetric setting, while our algorithm
addresses the more general asymmetric setting. Hence, these results together cover both the
symmetric and the asymmetric setting.

Let us give a brief overview of these results. For the algorithm, we establish an arrangement
of complexity O(mdnd) such that the optimal translation τ is attained at one of the vertices
within this arrangement. Our algorithm is obtained by computing the EMD at each vertex.
The lower bound is proven via a reduction from the k-Clique problem. In our construction,
each coordinate of the translation τ chooses one vertex from a given k-Clique instance. We
design gadgets that verify that every pair of selected nodes indeed forms an edge.

1.2 Open problems
EMDuT in 1D. Over R1, we leave open whether there are fast approximation algorithms:
Can a constant-factor approximation be computed in time O(n2−δ) for some constant δ > 0?
Or even in time Õ(n)? Can a (1 + ε)-approximation be computed in time Õ(n2−δ/poly(ε))
for some constant δ > 0 (independent of n and ε)? Or even in time Õ(n/poly(ε))?

EMDuT for L1 and L∞ metric in higher dimensions. For the L1 and L∞ metric in
dimension d ⩾ 2 we leave open to determine the optimal constant c > 0 such that the
problem can be solved in time nc·d+o(d).

EMDuT for L2 metric in higher dimensions. The L2 metric is the most natural measure
in the geometric settings, making EMDuT2 a well motivated problem. The most pressing
open problem is to determine the complexity of the EMDuT2 problem in any dimension
d ⩾ 2.

It is known that the EMDuT2 problem cannot be solved exactly. Namely, for any point set
R ⊂ Rd of size n, if B consists of n copies of the point (0, . . . , 0), then EMDuT2(B, R) is the
(cost of the) Geometric Median of R. Because the Geometric Median has no exact algebraic
expression (even for d = 2) [9], there is no exact algorithm for EMDuT2 in dimension d ⩾ 2.

We therefore need to relax the goal and ask for an approximation algorithm. Geometric
Median has a very fast (1 + ε)-approximation algorithm running in time O(nd log3(1/ε)) [17],
so the reduction from Geometric Median to EMDuT2 does not rule out very fast approxima-
tion algorithms for EMDuT2.
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This is in stark contrast to what we know about the EMDuT2 problem, as almost all of
our techniques in this paper completely fail for this problem. We neither obtain an algorithm
running in time nO(d), nor can we prove a lower bound ruling out time no(d). On the lower
bound side, all we know is the lower bound from 1D, ruling out (1 + ε)-approximation
algorithms running in time O(n2−δ/εo(1)) for any constant δ > 0. On the algorithms side,
one can observe that after fixing the matching from B to R, the problem of finding the
optimal translation τ for this matching is the Geometric Median problem and thus has a
(1 + ε)-approximation algorithm running in time O(nd log3(1/ε)). By trying out all nO(n)

possible matchings, one can obtain a (1 + ε)-approximation algorithm for EMDuT2 running
in time nO(n) log3(1/ε) for any constant d. We pose as an open problem to close this huge
gap between the quadratic lower and exponential upper bound (for (1 + ε)-approximation
algorithms with a 1/εo(1) dependency on ε in the running time).

2 Preliminaries

We use [n] to denote {1, . . . , n}. All logarithms are base 2. For every x ∈ R we let ⌊x⌉ ∈ Z
be the unique integer such that x − ⌊x⌉ ∈ (−1/2, 1/2]. Consider a set of blue points B ⊆ Rd

and a set of red points R ⊆ Rd. Fix an Lp norm, for any 1 ⩽ p ⩽ ∞. Denote by Φ the set of
all injective functions ϕ : B → R, i.e., Φ is the set of all perfect matchings from B to R. For
any matching ϕ ∈ Φ and any translation τ ∈ Rd we define the cost

DB,R,p(ϕ, τ) =
∑
b∈B

∥b + τ − ϕ(b)∥p.

We will ignore the subscript p when it is clear from the context. Note that we can express
EMD and EMDuT in terms of this cost function as

EMDp(B, R) = min
ϕ∈Φ

DB,R,p(ϕ, (0, . . . , 0)) and EMDuTp(B, R) = min
ϕ∈Φ

min
τ∈Rd

DB,R,p(ϕ, τ).

3 Algorithm in one dimension

We first consider computing EMDuTp(B, R) for two point sets B, R in R1. For ease of
presentation, assume that R and B are indeed sets, and thus there are no duplicate points.
We can handle the case of duplicate points by symbolic perturbation. Observe, that the
distance between a pair of points b, r in any Lp metric is simply ∥b−r∥p = ∥b−r∥1 = |b−r|. In
Section 3.1, we describe a very simple O(n log n) time algorithm to compute EMDuTp(B, R)
(as well as an optimal matching ϕ∗ and translation τ∗ that realize this distance) when B and
R both contain exactly n points. In Section 3.2, we consider the much more challenging case
where |B| = m and |R| = n differ. For this case we develop an O(nm(log n + log2 m)) time
algorithm to compute EMDuTp(B, R). Omitted proofs are included in the full version [13].

A matching ϕ is said to be monotonically increasing if and only if for every pair of blue
points b′ < b we also have ϕ(b′) < ϕ(b). We show the following crucial property.

▶ Lemma 5. When B, R ⊂ R there is an optimal matching ϕ that is monotonically increasing.

3.1 Symmetric case
In the symmetric case (|R| = |B|), Lemma 5 uniquely defines an optimal matching. Let
B = {b1, . . . , bn} and R = {r1, . . . , rn} be the points in increasing order. Now, the optimal
translation τ∗ is the value for τ that minimizes DB,R(ϕ, τ) =

∑n
i=1 |bi − ri + τ |. Thus, it

corresponds to the median of b1 − r1, . . . , bn − rn, which we can compute in O(n log n) time.

SoCG 2024
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Figure 2 Schematic representation of the graph G = ϕ ⊗ ϕ′ used in the proof of Lemma 7. Each
edge exists if and only if exactly one edge from either ϕ or ϕ′ is present. Green edges arise from
the matching ϕ′, while yellow edges arise from the matching ϕ. Initially, we demonstrate that the
connected components of this graph are paths. Then, considering that the matchings are monotone,
it follows that the edges of these paths are non-crossing. This implies that consecutive red vertices
on these paths are monotone. Hence, if we translate to the right, the matching ϕ′ is superior to ϕ.

▶ Theorem 6. We can compute EMDuT(R, B) in 1D in O(n log n) time when |R| = |B|.

3.2 Asymmetric case
We will present an O(mn(log n + log2 m)) time algorithm to compute EMDuT(B, R), for
the case that m ⩽ n. Consider the cost f(τ) = minϕ∈Φ DB,R(ϕ, τ) as a function of τ . The
minimum of this function is EMDuT(B, R). The main idea is then to sweep over the domain
of f , increasing τ from −∞ to ∞, while maintaining (a representation of) f and a matching
ϕ that realizes cost f(τ) = DB,R(ϕ, τ). We also maintain the best translation τ∗ ⩽ τ (i.e.
with minimal cost) among the translations considered so far (and if there are multiple such
translations, the smallest one), so at the end of our sweep, τ∗ is thus an optimal translation.

Properties of f . By Lemma 5, for any τ , there exists an optimal monotonically increasing
matching between B +τ and R. So, we restrict our attention to such monotonically increasing
matchings. Observe that any such matching ϕ corresponds to a partition of B into runs, i.e.
maximal subsequences of consecutive points, B1, . . . , Bz, so that the points bt−k, . . . , bt in a
run Bi are matched to consecutive red points ru−k, . . . , rr, for some ru = ϕ(bt). Moreover, for
any such a matching ϕ, the function DB,R(ϕ, τ) is piecewise linear in τ , and each breakpoint
is a translation τ for which there is a pair (b, r) ∈ B × R with b + τ = r. It then follows that
f(τ) is also piecewise linear in τ . Furthermore, the breakpoints of f are of two types. A type
(i) breakpoint is a translation such that there is a pair (b, r) ∈ B × R with b + τ = r, and
a type (ii) breakpoint if there are two different matchings ϕ, ϕ′ that both realize the same
minimum cost DB,R(ϕ, τ) = DB,R(ϕ′, τ). We show the following key lemma, which lets us
characterize the breakpoints of type (ii) more precisely.

▶ Lemma 7. Let ϕ be an optimal monotone matching of EMDp(B + τ, R), and let ϕ′ be an
optimal monotone matching of EMDp(B + τ ′, R) for some τ ′ > τ . Then, ϕ′(b) ⩾ ϕ(b) for all
b ∈ B.

See Figure 2 for a sketch of the proof of Lemma 7. The full proof is in the full version [13].

▶ Corollary 8. A breakpoint τ of type (ii) corresponds to a pair of monotonically increasing
matchings ϕ, ϕ′ for which for all points b ∈ B we have ϕ(b) ⩽ ϕ′(b). Furthermore, consider a
run bs, . . . , bt of ϕ and a point bi with i ∈ {s, . . . , t}. If ϕ(bi) < ϕ′(bi), then ϕ(bj) < ϕ′(bj)
for all j ∈ {i, . . . , t}.

▶ Lemma 9. The function f(τ) is piecewise linear, and consists of O(nm) pieces.
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ϕ′

τ

∆′
j

gi

Bi

ru ru+t−sbtbs bj

ϕ
∆j

0

τ ′

Figure 3 Each point bj in a run Bi = bs, . . . , bt defines a (piecewise)-linear function ∆′
j . Each

suffix bj , . . . , bt then defines a linear function ∆j , expressing the cost of switching from matching ϕ

to ϕ′. The lower envelope gi of these functions then defines the first type (ii) event τ ′ of run Bi.

Proof. As argued above, f is piecewise linear. What remains is to argue that there are
O(nm) breakpoints. For every pair of points (bi, rj) ∈ B × R there is only one translation τ

such that b + τ = r, so clearly there are at most O(nm) breakpoints of type (i). At every
breakpoint of type (ii), there is at least one blue point bi that was matched to rj and gets
matched to some rk with k > j. This also happens at most once for every pair bi, rj . Hence,
the number of breakpoints of type (ii) is also O(nm). ◀

In our sweep line algorithm we will maintain a current optimal matching ϕ. At each
breakpoint of type (i) we will have an event to update the cost function of the matching.
Furthermore, it follows from Corollary 8 that when we sweep over a breakpoint of type (ii),
we can decompose the changes to the matching using a series of atomic events. In each such
atomic event there is some suffix bj , . . . , bt of a run bs, . . . , bt that ϕ currently matches to
ru−j , . . . , ru that will become matched to ru−j+1, . . . , ru+1. As we argued in the proof of
Lemma 9, the total number of such events is only O(nm). Next, we express how we can
efficiently compute the next such atomic event, and handle it.

Consider a run Bi = bs, . . . , bt induced by ϕ at time τ . Our aim is to find the smallest
τ ′ ⩾ τ at which there is an atomic type (ii) event involving a suffix bj , . . . , bt of Bi. Hence,
for a given suffix bj , . . . , bt, we wish to maintain when it starts being beneficial to match
bj , . . . , bt to ru−j+1, . . . , ru+1 rather than to ru−j , . . . , ru.

Let ∆′
j represent the change in cost when we match b = bj to r′ = rv+1 rather than to

r = rv, ignoring that rv+1 may already be matched to some other blue point. We have that

∆′
j(τ) = |b − r′ + τ | − |b − r + τ | =


r′ − r if b + τ ⩽ r,

r + r′ − 2b − 2τ if r < b + τ < r′,

r − r′ if b + τ ⩾ r′.

Observe that this function is piecewise linear, and decreasing (more precisely, non-
increasing). Moreover, the breakpoints coincide with type (i) breakpoints of f at which b + τ

coincides with a red point. Hence, in between any two consecutive events, we can consider
∆′

j as a linear function. See Figure 3 for an illustration.
We can then express the cost of changing the matching for the entire suffix bj , . . . , bt as

∆j(τ) =
∑t

k=j ∆′
k(τ). This function is again decreasing, piecewise linear, and has breakpoints

that coincide with type (i) breakpoints of f . When ∆j(τ) becomes non-positive it becomes
beneficial to match the suffix bj , . . . , bt to ru−j+1, . . . , ru+1. Hence, the first such translation
is given by a root of ∆j(τ). Note that there is at most one such root since ∆j is decreasing.

SoCG 2024
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ff ′

ττ∗

Figure 4 We sweep the domain of f , while maintaining a representation of the current piece f ′

of f , and the best translation τ∗ ⩽ τ found so far. Breakpoints correspond to type (i) or type (ii)
events.

It now follows that (if it exists) the root τ ′ of the function gi(τ) = minj∈{s,...,t} ∆j(τ)
expresses the earliest time that there is a suffix bj , . . . , bt for which it is beneficial to update
the matching. As before, this function is decreasing and piecewise linear. Hence, we obtain:

▶ Lemma 10. Let [τ1, τ ′] ∋ τ be a maximal interval on which f(τ) is linear, let τ ′ be a type
(ii) breakpoint, and let ϕ be an optimal matching for τ . Then there is a run Bi induced by ϕ,
and τ ′ is a root of the function gi(τ).

Representing the lower envelope gi. At any moment of our sweep, we maintain a single
piece of gi. Hence, this piece is the lower envelope of a set of linear functions ∆s, . . . , ∆t. We
will maintain this lower envelope using an adapted version of the data structure by Overmars
and van Leeuwen [36]. Ideally, we would maintain the lower envelope of ∆s, . . . , ∆t directly.
However, reassigning a single blue point bj in the matching ϕ, may cause many functions ∆k

to change. So, we implicitly represent each function ∆j as a sum of ∆′
k functions.

▶ Lemma 11. Let Bi be a run of size k. We can represent the current piece of the lower
envelope gi such that we can find the root of (this piece of) gi in O(log k) time, and insert or
remove any point in Bi in O(log2 k) time.

The main algorithm. Our main algorithm sweeps the space of all possible translations,
while maintaining an optimal matching ϕ for the current translation τ , a representation of
the current piece of the function f (i.e., the linear function f ′ for which f(τ) = f ′(τ)), and
the best translation τ∗ ⩽ τ found so far. To support the sweep, we also maintain a Lemma 11
data structure for each run Bi induced by ϕ, and a global priority queue. The Lemma 11
data structure allows us to efficiently obtain the next type (ii) event of a run Bi. The global
priority queue stores all type (i) events, as well as the first type (ii) event of each run.

We initialize the priority queue by inserting all translations for which a pair (b, r) ∈ B ×R

coincide as type (i) events. Let τ0 be the first such event. For a translation τ < τ0, the
matching ϕ that assigns bi to ri is optimal (by Lemma 5). Hence, we use ϕ as the initial
matching. We compute the corresponding function f ′ expressing the cost of ϕ, construct the
data structure of Lemma 11 on the single run induced by ϕ, and query it for its first type (ii)
event. We add this event to the priority queue. All of this can be done in O(mn) time.

To handle a type (i) event involving point bj , we remove it from the data structure for its
run and add it back in the same place with its updated linear function ∆′

j(τ). We query the
data structure to find the next type (ii) event of the run Bi containing bj , and update the
event of Bi in the global priority queue if needed. Finally, if bj is aligned with ϕ(bj) in the
event, we update f ′ by adding the function 2(bj + τ − ϕ(bj)) and evaluate it. Handling an
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event of type (i) takes O(log n + log2 m) time, as it involves a constant number of operations
in the global priority queue, each taking O(log(nm)) = O(log n) time, and a constant number
of operations involving the Lemma 11 data structures, each taking O(log2 m) time.

To handle a type (ii) event where the matching changes for points bj , . . . , bt ∈ Bi, we
remove each point from the data structure for Bi and then add them to the run they are
now a part of (which can be either the existing run Bi+1 or a new run in between Bi and
Bi+1). This takes O(log2 m) time per point, but as argued in Lemma 9 each point can only
be involved in O(n) events of this type, so over all events, this takes O(nm log2 m) time.
We then recompute the type (ii) events corresponding to the at most two affected runs in
O(log m) time, and update them in the global priority queue in O(log n) time. Here, we
update f ′ by adding the (linear) cost function ∆i(τ) associated with the event.

Thus, we handle a total of O(nm) events of type (i), each taking O(log n + log2 m) time,
and O(nm) events of type (ii), which take a total of O(nm(log n + log2 m)) time as well.

Once we have processed all events, the algorithm has found an optimal translation τ∗.
We run the sweep once more from the start, and stop at translation τ∗, then report the
current matching ϕ as an optimal matching. Together with Theorem 6, this thus establishes
Theorem 1.

4 Lower bound in one dimension

In the Orthogonal Vectors problem (OV) we are given two sets of vectors X, Y ⊆ {0, 1}d

of size |X| = |Y | = n and the task is to decide whether there exist x ∈ X and y ∈ Y with
x · y = 0, where x · y =

∑d
i=1 x[i] · y[i]. A naive algorithm solves this problem in time O(n2d).

▶ Hypothesis 12 (Orthogonal Vectors Hypothesis (OVH) [42, 41]). No algorithm solves the
Orthogonal Vectors problem in time O(n2−δdc) for any constants δ, c > 0.

In this section we prove the following theorem.

▶ Theorem 13. Assuming OVH, for any constant δ > 0 there is no algorithm that, given
sets B, R ⊆ R of size n = |R| ⩾ |B| = Ω(n), computes EMDuT(B, R) in time O(n2−δ). This
even holds with the additional restriction B, R ⊆ {0, 1, . . . , O(n4)}.

Observe that this immediately implies Theorem 2 because each coordinate is polynomially
bounded. Hence, we focus on of Theorem 13. We only give the main ideas of the proof here.
In particular, in Section 4.1 we construct the vector gadgets, and in Section 4.2 we present
the reduction. Omitted details, and the full correctness argument are in the full version [13].

4.1 Vector gadgets
We have two different types of gadgets depending on whether a vector belongs to set X or Y

(see Figure 5 for illustration):

▶ Definition 14 (Red Vectors). For a vector x ∈ {0, 1}d, create a group of points R(x) to
consist of: 8d points at the coordinate 0, and 8d points at the coordinate 4d + 1. Next, for
every i ∈ {1, . . . , d}: (i) if x[i] = 0, we put points {4i−3, 4i−2, 4i−1, 4i}, and (ii) if x[i] = 1,
we put points {4i − 2, 4i − 1}.

▶ Definition 15 (Blue Vectors). For a vector y ∈ {0, 1}d, create a group of points B(y): (i)
if y[i] = 0 put points {4i − 2, 4i − 1}, and (ii) if y[i] = 1 put points {4i − 3, 4i}.

Next, we show that the above gadgets simulate the orthogonality.
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Figure 5 Gadgets for red and blue vectors in d = 2. The top figure shows R(x) for x = (1, 0),
and the bottom figure illustrates B(y) for y = (0, 1). Since x and y are orthogonal, each blue point
corresponds to a red point with the same coordinate.

▶ Lemma 16. Let x, y ∈ {0, 1}d be d-dimensional vectors.
1. If x and y are orthogonal then EMD(B(y), R(x)) = 0.
2. If x and y are not orthogonal then EMD(B(y) + τ, R(x)) ⩾ 1 for all τ ∈ R.
Moreover, for every τ ∈ R, we have EMD(B(y) + τ, R(x)) ⩾ |τ |. If |τ | ⩾ 4d + 1, then we
even have EMD(B(y) + τ, R(x)) = |τ | · c1 + c2, where c1 = 2d and c2 = −4d2 − d.

4.2 Reduction
Now we use the vector gadgets from the previous section to reduce from the Orthogonal
Vectors problem to EMDuT. Specifically, given an OV instance X, Y ⊆ {0, 1}d of size n,
we construct sets B, R ⊆ R such that from EMDuT(B, R) we can easily infer whether X, Y

contains an orthogonal pair of vectors or not. Our reduction takes time O(nd) to construct
the sets B, R, in particular the constructed sets have size O(nd). Hence, if there would be
an algorithm computing EMDuT(B, R) in time O(|R|2−δ) for some constant δ > 0, then our
reduction would yield an algorithm for OV running in time O((nd)2−δ), which contradicts
OVH (Hypothesis 12). That is, assuming OVH, EMDuT(B, R) cannot be computed in time
O(|R|2−δ) for any constant δ > 0.

For the reduction we can assume that n is odd, because if n is even, one can simply add
a vector consisting exclusively of 1s to both X and Y . We can also assume that d ⩽ n, since
otherwise the naive algorithm for OV already runs in time O(n2d) = O(nd2). Our reduction
constructs the following point sets, for ∆ := 1000dn:

Red Points: For the ith vector xi ∈ X, we create five red gadgets R(xi)(1), . . . , R(xi)(5).
For each k ∈ [5], we translate R(xi)(k) by (i + kn) · (n − 1)∆ and call it (i + kn)th red cell.
Blue Points: For the jth vector yj ∈ Y , we create a blue gadget B(yj) and translate it
by j · n∆. This set of points is called the jth blue cell.

We create five copies of red points for a technical reason that will become clear later
(just three copies is enough, but then we would need to argue about two types of optimal
translations in the analysis). We denote the set of all red points by R, and the set of all blue
points by B. This concludes the construction. Observe that B, R can be constructed in time
O(nd), as claimed, and that their coordinates are in {0, . . . , O(dn3)} ⊆ {0, . . . , O(n4)}. Let
c1 and c2, where c1, c2 are the constants (that depend on d) from Lemma 16. Let

Λ := c1∆ · (n2 − 1)/4 + c2 · (n − 1).

We now claim that the sets X, Y contain orthogonal vectors if and only if EMDuT(B, R) ⩽
Λ. Thus, from the value EMDuT(B, R) we can then easily infer whether X, Y contain
orthogonal vectors. In the full version [13], we analyze the properties of the construction,
and formalize the proof. This leads to Theorem 13 as claimed.
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Figure 6 On the left the gadget (Bi,j , Ri,j), and on the right the gadget (B′
i,j , R′

i,j).

5 Lower bounds in higher dimension

In this section, we prove conditional lower bounds for approximating EMDuT with the L1
or L∞ norm. Our lower bounds assume the popular Exponential Time Hypothesis (ETH),
which postulates that the 3-SAT problem on N variables cannot be solved in time 2o(N) [28].

▶ Theorem 17. Assuming ETH, there is no algorithm that, given ε ∈ (0, 1) and B, R ⊆ Rd of
size |B| = |R| = n, computes a (1+ε)-approximation of EMDuT1(B, R) (or EMDuT∞(B, R))
and runs in time ( n

ε )o(d).

We prove our lower bounds by a reduction from the k-Clique problem: Given a graph
G = (V, E) with N nodes, decide whether there exist distinct nodes v1, . . . , vk ∈ V such
that (vi, vj) ∈ E for all 1 ⩽ i < j ⩽ k. Here, we always assume that k is constant. A naive
algorithm solves the k-Clique problem in time O(Nk). It is well known that this running
time cannot be improved to No(k) assuming ETH.

▶ Theorem 18 ([16]). Assuming ETH, the k-Clique problem cannot be solved in time No(k).

In our lower bounds we will use the following lemma that combines gadgets (B1, R1), . . . ,

(Bk, Rk) into a single instance (B, R) whose cost is essentially the total cost of all gadgets.
To prove this lemma, we simply place the gadgets sufficiently far apart.

▶ Lemma 19 (Gadget Combination Lemma). Let 1 ⩽ p ⩽ ∞. Given sets B1, R1, . . . , Bk, Rk ⊂
Rd of total size n with |Bi| ⩽ |Ri| for all i ∈ [k], in time O(nd) we can compute sets B, R ⊂ Rd

of total size n such that

EMDuTp(B, R) = min
τ∈Rd

k∑
i=1

EMDp(Bi + τ, Ri).

Proof Sketch. For a sufficiently large number U we construct the sets B :=
⋃k

i=1 Bi + (U ·
i, 0, . . . , 0) and R :=

⋃k
i=1 Ri + (U · i, 0, . . . , 0), i.e., we place the gadgets sufficiently far apart.

Then one can argue that any optimal matching must match points in Bi to points in Ri,
and thus the EMDuT cost splits over the gadgets as claimed. ◀

In Section 5.1 we prove the lower bound for the L1 norm in the asymmetric setting,
i.e., we allow |B| to be smaller than |R| = n. In the full version [13], we show that we can
actually strengthen this lower bound to hold even in the symmetric setting |B| = |R| = n.
Additionally, we prove the lower bound for the L∞ norm in the symmetric setting.
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5.1 Lower bound for L1 asymmetric
In this section we prove Theorem 17 for the L1 norm in the asymmetric setting, i.e., we relax
the condition |B| = |R| to |B| ⩽ |R|.

We are given a k-Clique instance G = ([N ], E). We set the dimension to d := k. In what
follows by pi,u,j,v,b ∈ Rd we denote the point with coordinates, for ℓ ∈ [d],

(pi,u,j,v,b)ℓ =


u if ℓ = i,

v if ℓ = j,

b otherwise.

We construct the following 2
(

k
2
)

gadgets. For any 1 ⩽ i < j ⩽ k we construct

Bi,j := {(0, . . . , 0)}, Ri,j := {pi,u,j,v,0 | (u, v) ∈ E},

B′
i,j := {(0, . . . , 0)}, R′

i,j := {pi,u,j,v,N | (u, v) ∈ E}.

The cost of these gadgets has the following properties.2

▶ Lemma 20. Let 1 ⩽ i < j ⩽ k. For any τ ∈ Rd we have

EMD1(Bi,j + τ, Ri,j) + EMD1(B′
i,j + τ, R′

i,j) ⩾ (d − 2)N,

and equality holds if τ ∈ [N ]d and (τi, τj) ∈ E. Moreover, for any τ ∈ Rd with (⌊τi⌉, ⌊τj⌉) ̸∈ E

we have

EMD1(Bi,j + τ, Ri,j) + EMD1(B′
i,j + τ, R′

i,j) ⩾ (d − 2)N + 1.

Proof. Observe that

EMD1(Bi,j + τ, Ri,j) = min
(u,v)∈E

∥(0, . . . , 0) + τ − pi,u,j,v,0∥1

= min
(u,v)∈E

|τi − u| + |τj − v| +
∑

ℓ̸=i,j

|τℓ|

⩾ min
(u,v)∈E

|τi − u| + |τj − v| +
∑

ℓ ̸=i,j

τℓ,

where equality holds if τ ∈ [N ]d. We similarly bound

EMD1(B′
i,j + τ, R′

i,j) ⩾ min
(u,v)∈E

|τi − u| + |τj − v| +
∑

ℓ ̸=i,j

N − τℓ,

where equality holds if τ ∈ [N ]d. Summing up and bounding the absolute values by 0, we
obtain

EMD1(Bi,j + τ, Ri,j) + EMD1(B′
i,j + τ, R′

i,j) ⩾ (d − 2)N.

If τ ∈ [N ]d and (τi, τj) ∈ E, then we can pick u, v with |τi − u| + |τj − v| = 0, and we obtain
equality.

Moreover, for any τ ∈ Rd with (⌊τi⌉, ⌊τj⌉) ̸∈ E, note that since (τi, τj) has L∞ distance at
most 1/2 to (⌊τi⌉, ⌊τj⌉), it has L∞ distance at least 1/2 to any other grid point. In particular,
(τi, τj) has L∞ distance at least 1/2 to any (u, v) ∈ E. Since L∞ distance lower bounds L1
distance, we obtain min(u,v)∈E |τi − u| + |τj − v| ⩾ 1/2. This yields(

EMD1(Bi,j + τ, Ri,j)+
EMD1(B′

i,j + τ, R′
i,j)

)
⩾ 2 min

(u,v)∈E

(
|τi − u| + |τj − v|

)
+ (d − 2)N ⩾ (d − 2)N + 1. ◀

2 Recall that ⌊x⌉ denotes the closest integer to x, while [x] denotes {1, . . . , x}.



K. Bringmann, F. Staals, K. Węgrzycki, and G. van Wordragen 25:13

We apply the Gadget Combination Lemma to the gadgets Bi,j , Ri,j , B′
i,j , R′

i,j for 1 ⩽
i < j ⩽ d. The EMDuT1 of the resulting point sets B, R is the sum of the costs of the
gadgets. Hence, the above lemma implies the following. If G has a k-Clique v1, . . . , vk, then
τ := (v1, . . . , vk) ∈ [N ]d has a total cost of

(
d
2
)

· (d − 2)N =: Λ. On the other hand, if G

has no k-Clique, then for any τ ∈ Rd there exist 1 ⩽ i < j ⩽ k with (⌊τi⌉, ⌊τj⌉) ̸∈ E (as
otherwise (⌊τ1⌉, . . . , ⌊τk⌉) would form a k-Clique). Thus, each pair of gadgets contributes
cost at least (d − 2)N , and at least one pair of gadgets contributes cost at least (d − 2)N + 1,
so the total cost is at least

(
d
2
)

· (d − 2)N + 1 = Λ + 1.
For any ε < 1/Λ, a (1 + ε)-approximation algorithm for EMDuT1 could distinguish cost

at most Λ and cost at least Λ + 1, and thus would solve the k-Clique problem. Hence, if
we would have a (1 + ε)-approximation algorithm for EMDuT1 running in time (n/ε)o(d),
then by setting ε := 0.9/Λ and observing n = O(N2), 1/ε = O(Λ) = O(N), and d = k,
we would obtain an algorithm for k-Clique running in time (n/ε)o(d) = O(N3)o(k) = No(k),
which contradicts ETH by Theorem 18.

6 Algorithms in higher dimensions

Given two sets R and B of n points in the plane, Eppstein et al. [22] show how to compute a
translation τ∗ minimizing EMDuT1(B, R) with respect to the L1-distance in O(n6 log3 n)
time. We observe that their result can be generalized to point sets in arbitrary dimension d,
leading to an O(mdnd+2 logd+2 n) time algorithm.

Furthermore, we show that our approach can also be used to obtain an O(mdnd+2 logd+2 n)
time algorithm for finding a translation that minimizes EMDuT∞(B, R), i.e. the Earth
Mover’s Distance with respect to the L∞ distance. For point sets in R2, this immediately
follows by “rotating the plane by 45◦” and using the algorithm for L1. For higher dimensions
this trick is no longer immediately applicable. However, we show that our algorithm can also
directly be applied to the L∞ distance, even for point sets in Rd, with d > 2.

Earth Mover’s Distance without Translation. We first describe an algorithm to compute
EMDp(B, R) in Rd. Note that we assume to work in the Real RAM model, hence we need a
strongly-polynomial algorithm. Naively, one can achieve that in O(m2n) time by computing
the bipartite graph, and solving maximum weight matching in bipartite graph in strongly
polynomial time by Edmonds and Karp [21]. Here, however, we can use the fact that
points are in Rd. To the best of our knowledge, the best algorithm in this setting is due
to Vaidya [40]. However, he only considers the case when both point sets are in R2 and
have size n = m in R2. He shows that one can compute EMDp(B, R) (with p ∈ {1, ∞}) in
O(n2 log3 n) time in this setting. Furthermore, he states (without proof) that for point sets
in Rd, that the running time increases by at most O(logd n). We briefly sketch the algorithm
and fill in the missing details for the higher-dimensional setting in the full version [13].

▶ Theorem 21. Given a set B of m points in Rd, and a set of n ⩾ m red points in Rd, there
is an O(n2 logd+2 n) time algorithm to compute EMDp(B, R), for p ∈ {1, ∞}.

Earth Mover’s Distance under Translation in L1. The sets B and R are aligned in
dimension i, or i-aligned for short, if there is a pair of points b ∈ B, r ∈ R for which
bi = ri. Eppstein et al. [22] show that for two point sets in R2, there exists an optimal
translation τ∗ that aligns B and R in both dimensions. They explicitly consider all O((nm)2)
translations that both 1-align and 2-align B + τ and R. For each such a translation τ ,
computing an optimal matching can then be done in O(n2 log3 n) time [40], thus leading to
an O(n4m2 log3 n) time algorithm. We now argue that we can generalize the above result to
higher dimensions.
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▶ Theorem 22. Given B and R we can find an optimal translation τ∗ that realizes
EMDuT1(B, R) in O(mdnd+2 logd+2 n) time.

Proof. Recall the definition of the cost function

DB,R,1(ϕ, τ) =
∑
b∈B

L1(b + τ, ϕ(b)) =
∑
b∈B

d∑
i=1

|bi + τi − ϕ(b)i|.

For a fixed matching ϕ, this is a piecewise linear function in τ . In particular, DB,R,1(ϕ, τ) is
a sum of piecewise linear functions fb,i(τ) = |bi + τi − ϕ(b)i|. For each such a function there
is a hyperplane hb,ϕ(b),i in Rd given by the equation τi + bi − ϕ(b)i = 0, so that for a point
(translation) τ ∈ Rd on one side of (or on) the hyperplane, fb,i(τ) is linear in τ (i.e. on one side
we have f(τ) = τi +bi −ϕ(b)i, whereas on the other side we have f(τ) = −τi −bi +ϕ(b)i). Let
Hϕ = {hb,ϕ(b),i | b ∈ B, i ∈ {1, . . . , d}} denote the set of all such hyperplanes, and consider
the arrangement A(Hϕ). It follows that in each cell of A(Hϕ), the function DB,R,1(ϕ, τ) is a
linear function in τ , and that DB,R,1(ϕ, τ) thus has its minimum at a vertex of A(Hϕ).

We extend the set of hyperplanes Hϕ to include the hyperplane hb,r,i for every pair
(b, r) ∈ B × R, and every i ∈ {1, . . . , d}, rather than just the pairs (b, ϕ(b)). Let H be the
resulting set. A minimum of DB,R,1(ϕ, τ) still occurs at a vertex of A(H) (as A(H) includes
all vertices of A(Hϕ)). Moreover, observe that H now actually contains the hyperplanes Hϕ,
for every matching ϕ ∈ Φ, so also those of an optimal matching ϕ∗. It thus follows that such
a global minimum D1(ϕ∗, τ∗) occurs at a vertex τ∗ of A(H).

So, to compute an optimal matching ϕ∗ and its τ∗ (and thus EMDuT(B, R)) we can
1. explicitly compute (all vertices of) A(H),
2. for each such a vertex τ ∈ A(H) (which is some candidate translation), compute an

optimal matching ϕτ between the sets B + τ and R, and
3. report the matching (and corresponding translation) that minimizes total cost.

The set H contains mnd hyperplanes, and thus A(H) contains O((mnd)d) = O(mdnd)
vertices. Computing A(H) takes O(mdnd) time [19, 20]. For each such a vertex (translation),
we can compute an optimal matching in O(n2 logd+2 n)) time using the algorithm from
Theorem 21. This thus yields an O(mdnd+2 logd+2 n) time algorithm in total. ◀

Earth Mover’s Distance under Translation in L∞. In the full version [13] we use a similar
approach as in Theorem 22. We prove that there is a set H of O(mnd2) hyperplanes in
Rd, so that for any matching ϕ, there is a minimum cost translation that is a vertex of
the arrangement A(H). We can thus again compute such an optimal matching (and the
translation) by trying all O(mdnd) vertices. This yields the following result, thereby also
establishing Theorem 3.

▶ Theorem 23. Given B and R we can find an optimal translation τ∗ that realizes
EMDuT∞(B, R) in O(mdnd+2 logd+2 n) time.
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