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Abstract
One important goal in algorithm design is determining the best running time for solving a problem
(approximately). For some problems, we know the optimal running time, assuming certain conditional
lower bounds. In this paper, we study the d-dimensional geometric knapsack problem in which we are
far from this level of understanding. We are given a set of weighted d-dimensional geometric items like
squares, rectangles, or hypercubes and a knapsack which is a square or a (hyper-)cube. Our goal is to
select a subset of the given items that fit non-overlappingly inside the knapsack, maximizing the total
profit of the packed items. We make a significant step towards determining the best running time for
solving these problems approximately by presenting approximation algorithms whose running times
are near-linear, i.e., O(n · poly(log n)), for any constant d and any parameter ϵ > 0 (the exponent of
log n depends on d and 1/ϵ).

In the case of (hyper)-cubes, we present a (1 + ϵ)-approximation algorithm. This improves
drastically upon the currently best known algorithm which is a (1 + ϵ)-approximation algorithm
with a running time of nOϵ,d(1) where the exponent of n depends exponentially on 1/ϵ and d. In
particular, our algorithm is an efficient polynomial time approximation scheme (EPTAS). Moreover,
we present a (2 + ϵ)-approximation algorithm for rectangles in the setting without rotations and
a ( 17

9 + ϵ) ≈ 1.89-approximation algorithm if we allow rotations by 90 degrees. The best known
polynomial time algorithms for this setting have approximation ratios of 17

9 +ϵ and 1.5+ϵ, respectively,
and running times in which the exponent of n depends exponentially on 1/ϵ. In addition, we give
dynamic algorithms with polylogarithmic query and update times, having the same approximation
guarantees as our other algorithms above.

Key to our results is a new family of structured packings which we call easily guessable packings.
They are flexible enough to guarantee the existence of profitable solutions while providing enough
structure so that we can compute these solutions very quickly.
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1 Introduction

Knapsack is a fundamental problem in combinatorial optimization. We are given a knapsack
with a specified capacity W and a set of n items, each of them characterized by its size
si and its profit pi. The goal is to compute a set of items that fits into the knapsack,
maximizing the total profit. Knapsack is very well understood: there is an FPTAS for
the problem with a running time of only Õ(n + (1/ϵ)2.2) [10] with an asymptotically almost
matching conditional lower bound of (n + 1/ϵ)2−o(1) [9, 25]. Even more, there are dynamic
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26:2 Approximating the Geometric Knapsack Problem

algorithms for Knapsack that can maintain (1 + ϵ)-approximate solutions in polylogarithmic
update time whenever an item is inserted to or removed from the input [11, 17]. It is an
important goal in algorithm design to determine the best possible running time to solve (or
approximate) a problem. Besides Knapsack, there are also many other problems for which
we have (almost) matching upper and lower bounds, e.g., computing the Fréchet distance [4],
Least Common Subsequence [1, 5], Negative Triangles [29], or Graph Diameter [28].

A natural generalization of Knapsack is the d-dimensional geometric knapsack problem
in which the items are geometric objects like squares, rectangles, or hypercubes. Like in
Knapsack, we want to select a subset of the given items, but now we also require that
they are placed non-overlappingly inside the knapsack, which we assume to be a square
or a (hyper-)cube. The problem is motivated by many practical applications like placing
advertisements on a website, cutting pieces out of raw material like wood or metal, or loading
cargo into a ship or a truck. Formally, we assume that we are given an integer N such that
our knapsack is an axis-parallel square (if d = 2) or a (hyper-)cube (if d ≥ 3) where each edge
has length N . Also, we are given a set of items I where each item i ∈ I is a d-dimensional
(hyper-)cube or a d-dimensional (hyper-)cuboid with axis-parallel edges and a given profit.

Unfortunately, our understanding of the d-dimensional geometric knapsack problem
falls short in comparison to our understanding of Knapsack. There is a polynomial time
(1 + ϵ)-approximation algorithm for each ϵ > 0 if all input items are (hyper-)cubes, due to
Jansen, Khan, Lira, and Sreenivas [22]. In the running time of this algorithm, the exponent
of n depends exponentially on d and 1/ϵ. However, there is no (conditional) lower bound
known that justifies this. From all we know, it might still be possible to obtain a better
running time of the form f(ϵ, d)nO(1), for which the exponent of n depends neither on ϵ

nor on d, but it is only a small constant like 2 or even 1. Note that there are problems for
which we know conditional running time lower bounds that rule this out, e.g., lower bounds
of Ω(n2) or Ω(n3), based on assumptions like the (Strong) Exponential Time Hypothesis
or the 3-SUM conjecture (see, e.g., [1, 2, 6, 4, 5] and references therein). For example, for
the Graph Diameter problem there is a lower bound of Ω(m2), with m being the number of
edges of the given graph, for computing a better approximation ratio than 3/2 [28]. However,
no such lower bounds are known for d-dimensional geometric knapsack.

For the special case of squares, i.e., d = 2, there is a (1 + ϵ)-approximation known with a
running time of the form f(ϵ)nO(1) due to Heydrich and Wiese [18]. However, even in this
result the running time is much slower than linear time since the algorithm uses an initial
guessing step with Ω(n) options and for each of these option solves several linear programs
of size Ω(n) each. Furthermore, there is no dynamic algorithm known for d-dimensional
geometric knapsack, not even for the special case of squares (i.e., if d = 2).

If we allow more general shapes than squares, cubes, and hypercubes, we understand the
problem even less. For two-dimensional axis-parallel rectangles, the best known polynomial
time approximation algorithm is due to Gálvez, Grandoni, Ingala, Heydrich, Khan, and
Wiese [12], having an approximation ratio of 1.89 + ϵ. If it is allowed to rotate rectangles
by 90 degrees, then a (1.5 + ϵ)-approximation algorithm is known [12]. The problem is not
known to be APX-hard, so it may even admit a PTAS. Also in the mentioned results, the
exponent of n in the running time depends exponentially on 1/ϵ. However, we do not know
any lower bound of the needed running time to solve the problem. Thus, it might well be
possible that we can achieve these or similar results in a running time that is much faster,
e.g., O(n · poly(log n)). Also, it is open whether a dynamic algorithm exists for the problem.
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1.1 Our contribution
Our first result is a (1+ϵ)-approximation algorithm for the d-dimensional geometric knapsack
problem for squares, cubes, and hypercubes with a running time that is near-linear, i.e.,
O(n · poly(log n)) for any constant d and ϵ > 0, where the exponent of log n depends
(exponentially) on d as well as 1/ϵ. In particular, this drastically improves the exponent of n

in the running time in [22] from a value that is exponential in the dimension d and 1/ϵ to
only 1, which is in particular completely independent of d and 1/ϵ. This even implies that
our algorithm is an efficient polynomial time approximation scheme (EPTAS)1. Thus, up to
polylogarithmic factors, we obtain the fastest possible running time of a PTAS for any fixed
d and ϵ. Note that, for constant d, this yields a distinction to problems for which there are
lower bounds of Ω(n2) or Ω(n3) based on (S)ETH or other hypotheses, e.g., [1, 2, 6, 4, 5, 28].

For the case of rectangles, we present a (2 + ϵ)-approximation algorithm with a running
time of O(n · poly(log n)) for any constant ϵ > 0. If it is allowed to rotate the rectangles by
90 degrees, we obtain an approximation ratio of 17

9 + ϵ with the same running time bound.
Thus, our algorithms are much faster than the best known polynomial time algorithms for
the problem [12]; in their running times, the exponent of n depends exponentially on 1/ϵ

while our exponent is only 1. Although we need much less running time, our approximation
factors are not much higher than their ratios of 1.89 + ϵ and 1.5 + ϵ, respectively.

Moreover, we present the first dynamic algorithms for d-dimensional geometric knapsack
with hypercubes and rectangles with and without rotations by 90 degrees. These algorithms
maintain solutions with the same approximation guarantees as stated above, with poly-
logarithmic worst-case query and update times. In comparison, note that there are problems
for which there are polynomial conditional lower bounds for the update and query time for
dynamic algorithms [16]. We remark that our algorithms maintain implicit solutions in the
sense that after each update operation, the answers to all query operations refer to the same
fixed approximate solution. Note that after adding or removing a single item (e.g., a very
large but very profitable item), it can be necessary to change Ω(n) items in the current
solution in order to maintain a bounded approximation guarantee. Therefore, it is impossible
to maintain explicit solutions with our update and query times.

1.2 Techniques
The known algorithms for the d-dimensional geometric knapsack problem for squares, cubes,
hypercubes, and rectangles are based on the existence of structured packings into Oϵ,d(1)
boxes (i.e., a constant number of boxes for each fixed ϵ and d). In these algorithms, one
first guesses these boxes (i.e., enumerates all possibilities) which already yields a running
time bound of nOϵ,d(1). It is not clear how to make use of these structured packings without
guessing the boxes first. Instead, we use a different type of structured packings which we call
easily guessable packings. They are

(i) flexible enough so that they allow for very profitable solutions, and
(ii) structured enough so that we can compute these solutions very fast.

In these packings, each box is specified by some parameters (e.g. height and width) and we
can guess all but at most one parameter for each box in time O(poly(log n)). In contrast, in
the previous results, nΩ(1) time is needed already for one single parameter. However, for each
box, there may still be one parameter whose value we have not guessed yet. To determine
them, we use an important property of our easily guessable packings. There is a partition of
the input items and a partition of the boxes for which we have not yet guessed all parameters.

1 Note that there exists a function f such that for any n and k we have that (log n)k ≤ f(k) · nO(1).
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26:4 Approximating the Geometric Knapsack Problem

For each resulting subset of items, all items of this set can be assigned only to boxes in one
specific set of boxes in the partition. Moreover, all boxes in the latter set have a certain
(identical) value for the remaining (not yet guessed) parameter. This allows us to adapt the
indirect guessing framework from [18] to guess the remaining parameter approximately for
each box step by step, while losing only a factor of 1 + ϵ in our profit, compared to guessing
it exactly in time nΩ(1).

We refer to the full version of this paper [7] for missing proofs and details.

1.3 Other related work
Prior to the results for two-dimensional geometric knapsack for rectangles mentioned above,
a polynomial time (2 + ϵ)-approximation algorithm was presented by Jansen and Zhang [19]
in which the exponent of n in the running time is exponential in 1/ϵ. For the special case of
unweighted rectangles, the same authors gave a faster (2 + ϵ)-approximation algorithm with
a running time of O(n1/ϵ+1) [23]. If one allows pseudo-polynomial running time instead of
polynomial running time, there is also a (4/3 + ϵ)-approximation algorithm in the setting of
weighted rectangles known due to Gálvez, Grandoni, Khan, Ramírez-Romero, and Wiese [13],
having a running time of (nN)Oϵ(1). Also here, the exponent of nN is exponential in 1/ϵ.
In addition, there is a (1 + ϵ)-approximation algorithm by Adamaszek and Wiese [3] with
quasi-polynomial running time for any constant ϵ > 0, assuming quasi-polynomially bounded
input data. If the input objects are triangles that can be freely rotated, there is a polynomial
time O(1)-approximation algorithm due to Merino and Wiese [27].

Another way to generalize Knapsack is to allow several knapsacks into which the items
can be packed, possibly with different capacities. This generalization still admits (1 + ϵ)-
approximation algorithms with a running time of nOϵ(1) [8, 24], and even with a running
time of the form f(ϵ)nO(1) for some function f [20, 21]. Furthermore, there is a dynamic
algorithm known for the problem with polylogarithmic update time which also achieves an
approximation ratio of 1 + ϵ [11].

2 Algorithms for d-dimensional hypercubes

In this section we present our PTAS and dynamic algorithm for the geometric knapsack
problem with d-dimensional hypercubes. Let ϵ > 0 and assume w.l.o.g. that 1/ϵ ∈ N and
ϵ < 1/2d+2; we assume that d ∈ N is a constant. We are given a set of n items I where each
item i ∈ I is a hypercube with side length si ∈ N in each dimension and profit pi ∈ N, and
an integer N such that the knapsack has side length N (in each dimension). In the following,
we present a simplified version of our algorithm with a running time of O(n · poly(log N)),
which we can improve to O(n · poly(log n)) using more involved technical ideas, see [7].

In our algorithms, we use a special data structure to store our items I. This data
structure will allow us to quickly update the input and obtain important information about
the items in I. It is defined in the following lemma, which can be proven using standard
data structures for range counting/reporting for points in two dimensions (corresponding to
side length and profit of each item) [26].

▶ Lemma 1. There is a data structure for the items I that allows the following operations:
Insertion and deletion of an item in time O(log2 n).
Given four values a, b, c, d ∈ N, return the cardinality of the set I(a, b, c, d) := {i ∈ I :
a ≤ si ≤ b, c ≤ pi ≤ d} in time O(log n).
Given four values a, b, c, d ∈ N, return the set I(a, b, c, d) := {i ∈ I : a ≤ si ≤ b, c ≤ pi ≤
d} time O(log n + |I(a, b, c, d)|).
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(a) Packing of items into single boxes. (b) Packing of boxes into knapsack.

Figure 1 Visualization of packing using boxes.

In the following, we will refer to this data structure as our item data structure. Observe
that we can insert all given items I into it in time O(n log2 n). Additionally, we use balanced
binary search trees (see e.g. [14]) to store the set of item side lengths and profits; an item
can be inserted, deleted, and queried in time O(log n) in each of these search trees.

2.1 Easily guessable packing of hypercubes
Our algorithm is based on a structured packing into Oϵ,d(1) boxes, i.e., d-dimensional
hypercuboids, such that the profit of the packed items is at least (1 − O(ϵ))OPT, where OPT
denotes the optimal solution of the given instance. These boxes are packed non-overlappingly
inside the knapsack and each item is packed into one of these boxes (see Figure 1). Intuitively,
in our algorithm we will guess the sizes of these boxes and compute an assignment of items
into the boxes. Our boxes are designed such that we can make these guesses quickly and
such that it is easy to place all items that were assigned to each box.

In [22], a structured packing was presented that lead to a PTAS with a running time
of nOϵ,d(1) for our problem. They use two specific types of boxes. In the formal definition
of those, we need the volume and surface of a d-dimensional box B which we define as
VOLd(B) :=

∏d
d′=1 ℓd′(B) and SURFd(B) := 2

∑d
d′=1 VOLd(B)/ℓd′(B), respectively.

▶ Definition 2 (V-boxes and N -boxes [22]). Let B be a d-dimensional hypercuboid, I be a
set of items packed in it, and let ŝ be an upper bound on the side lengths of the items in I.
We say that B is

a V-box if its side lengths can be written as n1ŝ, n2ŝ, . . . , ndŝ where n1, n2, . . . , nd ∈ N+
and the volume of the packed items is at most VOLd(B) − ŝ SURFd(B)

2 ,
an N -box if its side lengths can be written as n1ŝ, n2ŝ, . . . , ndŝ where n1, n2, . . . , nd ∈ N+
and the number of packed items is at most

∏d
i=1 ni.

These boxes and the structured packing using them, however, is not enough for our
purposes since each parameter must be guessed. It is unclear how to do this faster than
in time nΩ(1), already for one single parameter. Therefore, we refine the packing presented
in [22] by adapting the type of boxes to include additional technical properties.

Our first type of boxes are N ∗-boxes which are a refinement of the aforementioned N -
boxes. For each N ∗-box B we specify two additional parameters smin(B) and smax(B) and
require for each item ∈ I packed in B that smin(B) ≤ si ≤ smax(B). These values smin(B)

SoCG 2024



26:6 Approximating the Geometric Knapsack Problem

(a) Sorted packing of an N ∗-box: each
item is packed into a single grid cell.

(b) NFDH packing of an S-box: items are
packed greedily into shelves.

Figure 2 Visualization of an N ∗- and an S-box for d = 2.

and smax(B) will help us in our computation later. Intuitively, the box B is partitioned into
a d-dimensional grid with spacing smax, such that each item in B is placed inside one of
these grid cells (similar as the N ∗-boxes), see Figure 2a.

▶ Definition 3 (N ∗-box). Let B be a d-dimensional hypercuboid with given values smin(B) ≥ 0
and smax(B) ≥ 0 and suppose we are given a packing of items I ′ ⊆ I inside B. We say
that B is an N ∗-box if smin(B) ≤ mini∈I′ si and smax(B) ≥ maxi∈I′ si and if its side
lengths can be written as n1(B)smax(B), . . . , nd(B)smax(B) with n1(B), . . . , nd(B) ∈ N such
that |I ′| ≤

∏d
i=1 ni(B).

Our second type of boxes are S-boxes. Intuitively, an S-box B contains only items that are
very small in each dimension compared to B. For technical reasons, we require that the
packed items do not use the full volume of B, even if we increase each item size to the next
larger power of 1 + ϵ. This will allow us to compute our solution efficiently since we may
round up item sizes and profits to powers of 1 + ϵ.

Throughout this paper, for any x > 0 we define ⌈x⌉1+ϵ to be the smallest power of 1 + ϵ

that is larger than x rounded down. Similarly, we define ⌊x⌋1+ϵ to be the largest power of
1 + ϵ that is smaller than x rounded up.

▶ Definition 4 (S-boxes). Let B be a d-dimensional hypercuboid with side length ℓd′(B) ∈ N0
for each d′ ∈ [d] and suppose we are given a packing of items I ′ ⊆ I inside B. We say
that B is a S-box if for each item i ∈ I ′ we have si ≤ ϵ mind′∈[d] ℓd′(B) and additionally∑

i∈I′⌈si⌉d
1+ϵ ≤ (1 − 2d · ϵ)VOLd(B).

For an S-box B, we can show that all items in I ′ can be packed inside B using the
Next-Fit-Decreasing-Height (NFDH) algorithm. NFDH is a greedy algorithm that orders the
items non-increasingly by their sizes and then packs them greedily in this order into shelves
within the box B (see Figure 2b).

▶ Lemma 5 (implied by Lemma 4 in [15]). Let B be a box and let I ′ be a set of items such
that si ≤ 2ϵℓmin(B) for each i ∈ I ′ and

∑
i∈I′⌈si⌉d

1+ϵ ≤ VOLd(B) − 2(d − 1) · ϵVOLd(B).
Then, NFDH finds a packing of I ′ into B.

We now prove that there is always a (1 + O(ϵ))-approximate easily guessable packing using
Oϵ,d(1) boxes, each of them being an N ∗- or an S-box. In order to do so we refine the
structured packing in [22] which uses N - and V-boxes. The key additional property is that



M. Buchem, P. Deuker, and A. Wiese 26:7

there are Oϵ(1) values k1, k2, . . . , kr such that each N ∗-box B contains only items whose
respective sizes are within the interval (kj−1, kj ] for some j. In particular, we have that
smin(B) = kj−1 and smax(B) = kj and the values k1, k2, . . . , kr yield a partition of the items
in I of the form (kj−1, kj ]. This will allows us to apply an indirect guessing framework later
to guess the values k1, k2, . . . , kr quickly. All remaining parameters of the boxes can be easily
guessed in time O(log N) each (and there are only Oϵ,d(1) parameters in total).

▶ Lemma 6 (Near-optimal packing of hypercubes). For any instance I of the d-dimensional
hypercube knapsack problem and any ϵ < 1/2d+2, there exists a packing with the following
properties:

i) It consists of N ∗- and S-boxes whose total number is bounded by a value Cboxes(ϵ, d)
depending only on ϵ and d.

ii) There exist values k1, k2, . . . , kr ∈ Z≥0 with r ∈ Oϵ,d(1) such that if B is an N ∗-box
there exists a value jB ∈ {1, 2, . . . , r} such that smax(B) = kjB

and smin(B) = kjB−1
with k0 := 0.

iii) For each S-box B and each d′ ∈ [d] we have that ℓd′(B) = ⌊x⌋1+ϵ for some x ∈ [N ].
iv) For each N ∗-box B and each d′ ∈ [d] we have that nd′(B) = ⌊n′⌋1+ϵ for some n′ ∈ [n] if

nd′(B) > 1/ϵ.
v) The total profit of the packing is at least (1 − 2O(d)ϵ)OPT.

Proof sketch. We start with the structured packing due to Jansen, Khan, Lira and Sreeni-
vas [22] which consists of Oϵ,d(1) many N - and V-boxes and items with a total profit of at
least (1 − 2d+2ϵ)OPT. We modify this packing as follows. First, we consider the V-boxes and
split each of them into at most Oϵ,d(1) many N ∗- and S-boxes. For each resulting N ∗-box B,
we define smax(B) to be the maximum size of an item packed into B. This yields a packing
satisfying property i). In order to satisfy property ii), we first introduce a value kj for each
distinct value smax(B) of the N ∗-boxes constructed so far. We order the resulting values
k1, ..., kr increasingly. Then, we split the N ∗-boxes into smaller boxes such that for each
resulting box B, the range of item sizes of B is contained in (kj−1, kj ] for some j; hence,
we define smin(B) := kj−1. We ensure that the number of boxes increases by at most a
factor of Oϵ,d(1) in this step. Next, we modify the packing to satisfy properties iii) and
iv). For each N ∗-box B and each dimension d′ ∈ [d], we round nd′(B) down to ⌊nd′(B)⌋1+ϵ.
This decreases the maximum number of items we can pack into B by at most a factor of
(1 + ϵ)d = 1 + O(ϵ); hence, also our profit reduces by at most this factor. Finally, for each
S-box B we round down each side length ℓd′(B) to ⌊ℓd′(B)⌋1+ϵ. Since all items in B are
small compared to each side length of B, our profit reduces by at most a factor of 1 + ϵ. ◀

2.2 Computing a packing
In this section we discuss how to compute our packing. Intuitively, we try to guess the packing
due to Lemma 6. We assume that all input items I are stored in our item data structure (see
to Lemma 1) and we discard all items with profit less than ϵ pmax

n where pmax := maxi∈I pi.
The total profit of the discarded items is at most n · ϵ pmax

n ≤ ϵOPT.
Let B denote the set of boxes due to Lemma 6. In our algorithm, we first guess all

parameters of the boxes in B apart from the values k1, . . . , kr. We then modify the indirect
guessing framework introduced by Heydrich and Wiese [18] to approximately compute the
values k1, . . . , kr. Our computed values might be imprecise in the sense that they yield a
solution whose profit could be by a factor 1 + ϵ lower than the solution due to Lemma 6.
However, our resulting boxes are guaranteed to fit inside of the knapsack.

SoCG 2024
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2.2.1 Guessing basic quantities
We start by guessing the number of N ∗- and S-boxes, respectively. Then, for each N ∗-box
B ∈ B we guess

the value jB indicating that smax(B) = kjB
and smin(B) = kjB−1; note that for jB there

are only Oϵ,d(1) possibilities,
the value nd′(B) for each dimension d′ ∈ [d]; for each value nd′(B) there are only O(log n)
possibilities.

For each S-box B ∈ B, we guess ℓd′(B) for each d′ ∈ [d]. Note that also here, for each of
these values there are only O(log N) possibilities. We denote by the basic quantities all these
guessed values for all boxes in B.

▶ Lemma 7. In time (log N)Oϵ,d(1) we can guess all basic quantities.

We do not know the values k1, k2, . . . , kr. However, recall that they yield a partition
of I with a set Ij := {i ∈ I : si ∈ (kj−1, kj ]} for each j ∈ [r]. We next guess additional
quantities which provide us with helpful information for the next step of our algorithm,
the indirect guessing framework. First, we guess approximately the profit that each set
Ij contributes to OPT. Formally, for each j ∈ [r] we guess p̂(j) := ⌊p(Ij ∩ OPT)⌋1+ϵ if
p(Ij ∩ OPT) ≥ ϵ

r OPT and p̂(j) := 0 otherwise. Since OPT ∈ [pmax, n · pmax), we have that
p̂j ∈ {0} ∪ [ ϵ

r pmax, n · pmax); hence, there are only O(log N) possibilities for p̂j .

▶ Lemma 8. The value p̂j for each j ∈ [r] can be guessed in time (log n)Oϵ,d(1) and they
satisfy

∑r
j=1 p̂(j) ≥ (1 − O(ϵ))OPT.

Observe that each N ∗-box B ∈ B can contain only items from IjB
. However, each S-box

B ∈ B might contain items from more than one set Ij . For each S-box B ∈ B and each set
Ij , we guess approximately the fraction of the volume B that is occupied by items from

Ij . Formally, for each such pair we define the value aB,j :=
∑

i∈I(B)∩Ij
⌈si⌉d

1+ϵ

VOLd(B) and guess the

value âB,j :=
⌈

aB,j

ϵ/r

⌉
ϵ/r, i.e., the value aB,j rounded up to the next larger integral multiple

of ϵ/r. Note that for each value âB,j there are only Oϵ,d(1) possibilities, and that there are
only Oϵ,d(1) such values that we need to guess.

▶ Lemma 9. For each S-box B ∈ B and each j ∈ [r] the value âB,j can be guessed in
time (log n)Oϵ,d(1). Moreover, for each S-box B ∈ B we have that

∑r
j=1 âB,jVOLd(B) ≤

(1 − 2d · ϵ)VOLd(B) + ϵVOLd(B).

2.2.2 Indirect guessing
The next step of our algorithm is to determine the values k1, k2, . . . , kr. Unfortunately, we
cannot guess them directly in polylogarithmic time, since there are N options for each of
them. In contrast to the other guessed quantities, it is not sufficient to allow only powers of
1 + ϵ for each of them. If we choose a value for some kj that is only a little bit too large,
then our boxes might not fit into the knapsack anymore, since for each N ∗-box B we have
that smax(B) = kjB

and the side length of B in each dimension d′ equals nd′(B)smax(B).
On the other hand, if we define some value kj only a little bit too small, then we might not
be able to assign items with enough profit to B, e.g., if B contains only one item which does
not fit anymore if we choose kj too small. Hence, we need a different approach to determine
the values k1, k2, . . . , kr. To this end, we modify the indirect guessing framework introduced
in [18] to fit our purposes.
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The main idea is to compute values k̃0, k̃1, k̃2, . . . , k̃r that we use instead of the values
k0, k1, k2, . . . , kr. They yield a partition of I into sets Ĩj := {i ∈ I : si ∈ (k̃j−1, k̃j ]}.
Intuitively, for each j we want to pack items from Ĩj into the space that is used by items in
Ij in the packing from Lemma 6. We will choose the values k̃1, k̃2, . . . , k̃r such that in this
way, we obtain almost the same profit as the packing of Lemma 6. Furthermore, we ensure
that k̃j ≤ kj for each j ∈ [r]. This implies that the side lengths of the resulting N ∗-boxes
are at most the side lengths of the N ∗-boxes due to Lemma 6 and, therefore, the guessed
N ∗-boxes can be feasibly packed into the knapsack.

Formally, we perform r iterations, one for each value kj . We define k̃0 := 0. Suppose
inductively that we have determined ℓ values k̃1, k̃2, . . . , k̃ℓ already for some ℓ ∈ {0, 1, ..., r−1}
such that k̃ℓ ≤ kℓ. We want to compute k̃ℓ+1 such that k̃ℓ+1 ≤ kℓ+1. To this end, we do a
binary search on the set S := {si : i ∈ I ∧ k̃ℓ < si}, using our item data structure. Our first
candidate value is the median of S which we can find in time O(log n) via our binary search
tree for the item sizes. For each candidate value s ∈ S, we estimate up to a factor of 1 + ϵ

the possible profit due to items in Ĩℓ+1 if we define k̃ℓ+1 := s. We will describe later how
we compute such an estimation. The objective is to find the smallest value s ∈ S such that
the estimated profit is at least (1 + ϵ)−1p̂(j). Hence, if for a specific guess s our obtained
profit due to s is at least (1 + ϵ)−1p̂(j), we restrict our set S to {si : i ∈ I ∧ k̃ℓ ≤ si ≤ s} and
continue with the next iteration of the binary search. If, however, the estimated profit due
to s is strictly less than (1 + ϵ)−1p̂(j), this implies that k̃ℓ+1 > s since otherwise the set of
items Ĩℓ+1 is a subset of the items considered for guess s and cannot yield a larger profit. We
restrict our set S to {si : i ∈ I ∧ si > s} and continue with the binary search until |S| = 1.

We denote by BN ∗ and BS the set of N ∗- and S-boxes in B due to Lemma 6, respectively.
Additionally, we denote by BN ∗(ℓ+1) the set of N ∗-boxes B with jB = ℓ+1 and by BS(ℓ+1)
the set of S-boxes B with âB,ℓ+1 > 0. Note that those are the only boxes that are relevant
for the current iteration in which we want to determine kℓ+1 (approximately). We also define
B(ℓ + 1) := BS(ℓ + 1) ∪ BN ∗(ℓ + 1).

We describe now how we estimate the obtained profit for one specific candidate choice of
s ∈ S. We try to pack items from Ĩℓ+1(s) :=

{
i ∈ I : si ∈ (k̃ℓ, s]

}
into

the N ∗-boxes BN ∗(ℓ + 1) and
the S-boxes BS(ℓ + 1), where for each S-box BS(ℓ + 1), we use a volume of at most
âB,ℓ+1 · VOL(B) and ensure that we pack only items i ∈ Ĩℓ+1(s) for which si ≤ ϵℓmin(B).

We solve this subproblem approximately via the following integer program (IP(s)). Intuitively,
we group items such that all items in the same group have the same size and profit, up to a
factor of 1 + ϵ. Formally, we define

a size class Qt = {i ∈ Ĩℓ+1(s) : si ∈ [(1 + ϵ)t, (1 + ϵ)t+1)} for each t ∈ TQ =
{⌊log1+ϵ(k̃ℓ)⌋, . . . , ⌈log1+ϵ(s)⌉}; we denote by ŝ(t) := (1 + ϵ)t+1 the corresponding
“rounded” size,
a profit class Pt′ = {i ∈ Ĩℓ+1(s) : pi ∈ [(1 + ϵ)t′

, (1 + ϵ)t′+1)} for each t′ ∈ TP =
{⌊log1+ϵ ϵ pmax

n ⌋, . . . , ⌈log1+ϵ pmax⌉}; we denote by p̂(t′) := (1 + ϵ)t′+1 the corresponding
“rounded” profit and
a set of pairs T := {(t, t′) : t ∈ TQ ∧ t′ ∈ TP }.

Our subproblem is now equivalent (up to a factor of 1 + ϵ in the profit) to choosing how
many items from each group are packed into which box, while maximizing the total profit of
these items, such that

for each N ∗-box B ∈ BN ∗(ℓ + 1) the number of items packed into B is at most the
number of grid cells denoted by n(B) :=

∏d
d′=1 n̂d′(B),

SoCG 2024
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for each S-box B ∈ BS(ℓ + 1) the total volume of items packed into B does not exceed
the designated volume for items in Ij reserved in B and
for each pair (t, t′) the number of items packed into all boxes is at most the number of
available items in the corresponding group.

(IP(s)) max
∑

(t,t′)∈T

∑
B∈B(ℓ+1)

xt,t′,Bp(t′)

s.t.
∑

(t,t′)∈T

xt,t′,B ≤ n(B) ∀B ∈ BN ∗(ℓ + 1)

∑
(t,t′)∈T

xt,t′,Bs(t)d ≤ aB,ℓ+1VOLd(B) ∀B ∈ BS(ℓ + 1)

∑
B∈B(ℓ+1)

xt,t′,B ≤ nt,t′ ∀(t, t′) ∈ T

xt,t′,B ∈ N0 ∀(t, t′) ∈ T , B ∈ B(ℓ + 1)

We cannot solve (IP(s)) directly; however, we show that we can solve it approximately,
losing only a factor of 1 + ϵ. We describe now how to do this in time (log1+ϵ(N))Oϵ(1).
We start by guessing the |B(ℓ + 1)| · |T |/ϵ = Oϵ,d(1) most profitable items in an optimal
solution of (IP(s)). To do this, we guess the profit type and size type of each of these
items as well as which box they are packed in. For a single item this yields a total amount
of Oϵ,d((log1+ϵ(N))2) many possibilities, and hence at most (log1+ϵ(N))Oϵ(1) possibilities
overall. We adjust (IP(s)) accordingly (i.e., reduce the right-hand sides of our constraints)
and solve the LP relaxation of the remaining problem in time

(
log1+ϵ(N)

)O(1), yielding a
solution x∗. We round it by simply defining x̄t,t′,B := ⌊x∗

t,t′,B⌋ for each (t, t′) ∈ T and each
B ∈ B(ℓ + 1). This yields a solution consisting of the guessed items together with x̄, where x̄

represents the remaining items in our solution. Since we guessed the |B(ℓ + 1)| · |T |/ϵ most
profitable items before but there are only |B(ℓ + 1)| · |T | variables, we solve (IP(s)) up to a
factor of 1 + ϵ.

▶ Lemma 10. There is an algorithm with a running time of (log1+ϵ(N))O(1) that computes
a (1 + ϵ)-approximate solution for (IP(s)) for each s; we denote by q(s) the value of this
solution. For two values s, s′ with s ≤ s′ we have that q(s) ≤ q(s′).

At the end of our binary search, we define k̃ℓ+1 to be the smallest value s ∈ S for which
q(s) ≥ (1 − ϵ)p̂(ℓ + 1). Let x∗

ℓ+1 denote the computed solution to (IP(s)) corresponding
to s = k̃ℓ+1. Based on the inductive assumption k̃ℓ ≤ kℓ and our choice of k̃ℓ+1, we can
show k̃ℓ+1 ≤ kℓ+1. This is crucial as k̃ℓ+1 determines the side lengths of an N ∗-box B with
jB = ℓ + 1. Thus, in order to be able to pack our guessed boxes into the knapsack we must
guarantee that these side lengths are not larger than the side lengths of the corresponding
box in the packing underlying Lemma 6.

▶ Lemma 11. We have that k̃ℓ+1 ≤ kℓ+1.

After completing the r rounds of our indirect guessing framework, we have obtained values
k̃1, k̃2, . . . , k̃r and r integral solutions to (IP(k̃1)), ..., (IP(k̃r)). We can construct a feasible
solution ALG by combining these solutions: for each j ∈ [r] and each N ∗-box B ∈ B we
define smax(B) := k̃jB

and we assign the items of each set Ĩj into the boxes in B according
to our solution to IP(k̃j)).

For each j ∈ {1, . . . , r}, each size class Qt, and each profit class Pt′ , there is a certain
number of items from the set Ĩj ∩ Qt ∩ Pt′ that our solution contains; we denote this number
by zj,t,t′ . It is irrelevant which exact items from this set we pick (up to a factor of 1 + ϵ in
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the profit). Thus, we simply order the items from the set Ĩj ∩ Qt ∩ Pt′ in non-decreasing
order of side lengths, select the first zj,t,t′ items, and assign them to the corresponding boxes.
Finally, we pack each S-box B using the NFDH-algorithm (Lemma 5) and each N ∗-box B

by placing each item into a single cell of the d-dimensional grid with side length smax(B).
This yields an algorithm with a running time of n · (log2 n) + (log N)Oϵ,d(1). In the full

version [7] we explain how we can improve it to n · (log2 n) + (log n)Oϵ,d(1). Key to this is to
guess the basic quantities and to solve each integer program (IP(s)) in time (log n)Oϵ,d(1),
using additional technical improvements such as restricting the range of the considered item
sizes and profits when solving (IP(s)). We would like to remark that the exponent of log n

depends on the value Cboxes(ϵ, d) in Lemma 6 which in turn depends on the (not precisely
specified) number of boxes used in the structured packing in [22].

▶ Theorem 12. There is a (1 + ϵ)-approximation algorithm for the d-dimensional hypercube
knapsack problem with a running time of n · (log2 n) + (log n)Oϵ,d(1).

2.3 Dynamic algorithm

The algorithmic techniques above can be combined with our item data structure to derive
a dynamic algorithm for the d-dimensional hypercube knapsack problem. Our algorithm
supports the following operations:

(i) Insertion and deletion of an item into our data structure,
(ii) Output a (1 + ϵ)-estimate of the value of the optimal solution,
(iii) Output a (1 + ϵ)-approximate solution ALG and
(iv) Query where a given item is contained in ALG.
For operation (i) we simply add or delete an item from our item data structure (see Lemma 1)
and our balanced binary search trees, which takes time O(log2 n). In order to execute
operation (ii), we run our algorithm described above, except for computing the explicit
packing of the items in the end. Instead, we simply return the total profit of our solutions
to the integer programs (IP(s)) that correspond the solution that we output at the end.
This takes time (log n)Oϵ,d(1) in total. If a (1 + ϵ)-approximate solution ALG is queried
(operation (iii)), we also compute the exact set of items and their packing as described
previously. Since their total number is |ALG|, we can compute and output ALG in time
O(|ALG| · (log n)) + (log n)Oϵ,d(1).

Finally, if it is queried whether a given item i ∈ I is in contained in ALG (operation (iv)),
we determine the value j ∈ {1, . . . , r}, the size class Qt, and the profit class Pt′ for which
i ∈ Ĩj ∩ Qt ∩ Pt′ . Recall that zj,t,t′ denotes the total number of items from this set we select
and we select the zj,t,t′ items in this set of shortest side length. Hence, we output “i ∈ ALG”
if i is among the shortest zj,t,t′ items in Ĩj ∩Qt ∩Pt′ , and “i /∈ ALG” otherwise. This ensures
that we give consistent answers between consecutive updates of the set I.

▶ Theorem 13. There is a dynamic algorithm for the d-dimensional hypercube knapsack
problem that supports the following operations:

(i) insertion or deletion of an item in time O(log2 n),
(ii) output a (1 + ϵ)-estimate of the value of the optimal solution in time (log n)Oϵ,d(1),
(iii) output a (1 + ϵ)-approximate solution ALG in time O(|ALG| · (log n)) + (log n)Oϵ,d(1),
(iv) query whether an item is contained in ALG in time (log n)Oϵ,d(1).
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Figure 3 Visualization of packing of L-, S-,H- and V-box, respectively.

3 Algorithms for rectangles

In this section we give an overview of our algorithms for two-dimensional knapsack for
rectangles (see [7] for a detailed description). First, we classify items into four groups: we say
that an item is large if it is large compared to edge length of the knapsack in both dimensions
and small if it is small in both dimensions.

An item of relatively large width (height) and relatively small height (width) is referred to
as vertical (horizontal). We construct easily guessable packing using four types of boxes. The
first type are L-boxes which contain only one large item each. Also, we use H-boxes inside
which horizontal items are stacked on top of each other (see Figure 3), and correspondingly
V-boxes for vertical items. Finally, we use S-boxes which are defined in the same manner
as in the case of (hyper-)cubes. We prove that there always exists a (2 + ϵ)-approximate
packing using these types of boxes.

▶ Lemma 14 (Informal). There exists an easily guessable packing for packing rectangles into
a two-dimensional knapsack with a profit of at least (1/2 − ϵ)OPT.

In these packings, we can guess the height of each box (of each type) in Oϵ(1) time and
the width of each S- and V-box in O(poly(log n)) time (and additionally some other basic
quantities). Then, we apply the indirect guessing framework in order to determine the widths
of the L- and H-boxes.

▶ Theorem 15. There is a (2 + ϵ)-approximation algorithm for the geometric knapsack
problem for rectangles with a running time of n · (log n)4 + (log n)Oϵ(1). Also, there is
a dynamic (2 + ϵ)-approximation algorithm for the problem which supports the following
operations:

insert or delete an item in time O(log4 n),
output a (2 + ϵ)-estimate of the value of the optimal solution, or query whether an item is
contained in ALG, in time (log n)Oϵ(1), and
output a (2 + ϵ)-approximate solution ALG in time O(|ALG| · (log n)) + (log n)Oϵ(1).

A natural open question is to improve our approximation ratio to 2 − δ for some con-
stant δ > 0. This seems difficult since there is provably no corresponding structured packing
with only Oϵ(1) boxes [12]. The known polynomial time (17/9 + ϵ)-approximation uses an
L-shaped container which is packed by a DP with a running time of nΩϵ(1) [12]. It is not
clear how to improve this to near-linear running time. However, if we are allowed to rotate
the rectangles by 90 degrees, then it is possible to construct an easily guessable packing with
Oϵ(1) boxes and an approximation ratio of only 17/9 + ϵ. We use here that we have more
freedom to modify the optimal packing by rotating some of its items.

▶ Lemma 16 (Informal). If we are allowed to rotate the input rectangles, there exists an easily
guessable packing into a two-dimensional knapsack with a profit of at least (9/17 − ϵ)OPT.
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On the other hand, it becomes harder to compute a solution that corresonds to our easily
guessable packing. The reason is that a horizontal or vertical item can now be assigned to
an H- or to a V-box. This is particularly problematic since these two types of boxes are
not treated symmetrically. Like before, we can guess the height of each box in time Oϵ(1).
However, for V-boxes this yields a different kind of restriction than for H-boxes.

▶ Theorem 17. There is a (17/9 + ϵ)-approximation algorithm for the geometric knapsack
problem for rectangles with rotations with a running time of n · (log n)4 + (log n)Oϵ(1). Also,
there is a dynamic (17/9 + ϵ)-approximation algorithm for the problem which supports the
following operations:

insert or delete an item in time O(log4 n),
output a (17/9 + ϵ)-estimate of the value of the optimal solution, or query whether an
item is contained in ALG, in time (log n)Oϵ(1),
output a (17/9 + ϵ)-approximate solution ALG in time |ALG| · (log n)3 + (log n)Oϵ(1).
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