
Map-Matching Queries Under Fréchet Distance on
Low-Density Spanners
Kevin Buchin #Ñ

Department of Computer Science, TU Dortmund, Germany

Maike Buchin #Ñ

Faculty of Computer Science, Ruhr-Universität Bochum, Germany

Joachim Gudmundsson #Ñ

School of Computer Science, University of Sydney, Australia

Aleksandr Popov # Ñ

Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands

Sampson Wong # Ñ

Department of Computer Science, University of Copenhagen, Denmark

Abstract
Map matching is a common task when analysing GPS tracks, such as vehicle trajectories. The
goal is to match a recorded noisy polygonal curve to a path on the map, usually represented as a
geometric graph. The Fréchet distance is a commonly used metric for curves, making it a natural
fit. The map-matching problem is well-studied, yet until recently no-one tackled the data structure
question: preprocess a given graph so that one can query the minimum Fréchet distance between all
graph paths and a polygonal curve. Recently, Gudmundsson, Seybold, and Wong [13] studied this
problem for arbitrary query polygonal curves and c-packed graphs. In this paper, we instead require
the graphs to be λ-low-density t-spanners, which is significantly more representative of real-world
networks. We also show how to report a path that minimises the distance efficiently rather than
only returning the minimal distance, which was stated as an open problem in their paper.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Map Matching, Fréchet Distance, Data Structures

Digital Object Identifier 10.4230/LIPIcs.SoCG.2024.27

Funding Aleksandr Popov: Supported by the Dutch Research Council (NWO) under the project
number 612.001.801.
Sampson Wong: Supported in part by Starting Grant 1054-00032B from the Independent Research
Fund Denmark under the Sapere Aude research career programme.

1 Introduction

Location data is ubiquitous, and analysis of that data is a common task. GPS trajectories of
vehicles or people often suffer from being noisy or skipping large portions of the movement.
To analyse them more precisely, one may use map matching. The idea is that the vehicles
move on a road network, so one could snap their trajectories to a road network in a way that
most closely resembles the original. We assume that the trajectory is a polygonal curve and
the map is a geometric graph in the plane.

The map-matching problem has received considerable attention, with multiple surveys
comparing the various approaches on different types of data [1, 7, 15, 16, 24, 25]. The Fréchet
distance is a natural measure of similarity for polygonal curves [3, 11], taking into account
the ordering of the points of the polygonal curves and capturing the maximal distance along
them. There is a host of work considering map matching specifically under the Fréchet

© Kevin Buchin, Maike Buchin, Joachim Gudmundsson, Aleksandr Popov, and
Sampson Wong;
licensed under Creative Commons License CC-BY 4.0

40th International Symposium on Computational Geometry (SoCG 2024).
Editors: Wolfgang Mulzer and Jeff M. Phillips; Article No. 27; pp. 27:1–27:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kevin.buchin@tu-dortmund.de
https://ls11-www.cs.tu-dortmund.de/staff/buchin
https://orcid.org/0000-0002-3022-7877
mailto:maike.buchin@rub.de
https://informatik.rub.de/buchin/
https://orcid.org/0000-0002-3446-4343
mailto:joachim.gudmundsson@sydney.edu.au
https://www.sydney.edu.au/engineering/about/our-people/academic-staff/joachim-gudmundsson.html
https://orcid.org/0000-0002-6778-7990
mailto:alex@apopov.eu
https://apopov.eu/
https://orcid.org/0000-0002-0158-1746
mailto:sawo@di.ku.dk
https://sites.google.com/view/sampsonwong/
https://orcid.org/0000-0003-3803-3804
https://doi.org/10.4230/LIPIcs.SoCG.2024.27
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 Map-Matching Queries Under Fréchet Distance on Low-Density Spanners

distance [2, 5, 6, 8, 9, 14, 22], including a seminal paper by Alt, Efrat, Rote, and Wenk [2].
Their algorithm requires O(mn log mn log n) time and O(mn) space to match a polygonal
curve of length m to a planar graph G = (V, E) with complexity |V | + |E| = n. As shown via
a conditional lower bound by Gudmundsson, Seybold, and Wong [13], this query time is close
to optimal for planar graphs: there is no algorithm that runs in O((mn)1−δ) time for any
δ > 0 that solves this problem after polynomial-time preprocessing of the graph. However,
real-world road networks are rarely planar due to the presence of bridges and tunnels, so we
would like to find other assumptions on the graph that also allow for faster query times.

Chen, Driemel, Guibas, Nguyen, and Wenk [8] study the map-matching problem under
realistic input assumptions, which aim to exclude particular types of degenerate instances
to provide stronger results. In their work in particular, the graph has low density and the
trajectory is c-packed. A polygonal curve is called c-packed if in any ball of radius r, the
total length of the curve inside the ball is at most cr. We can use a similar definition for
geometric graphs by measuring the total length of the edges inside the ball. Unfortunately,
c-packedness is a strong assumption that is difficult to satisfy. We instead define low-density
graphs, which are more representative of real-world networks.

▶ Definition 1. A geometric graph P = (V, E) is λ-low density [21, 23] if for every disk of
radius r > 0 in the plane, there are at most λ edges of length at least 2r intersecting the disk.

Our work has no assumptions on the trajectories at the expense of stricter assumptions
on the maps. Most often one will have a large number of trajectories being mapped to a
relatively complex network, so to avoid the steep dependency on network complexity when
matching every trajectory, we consider the query version of the problem. We preprocess
the map so that we can quickly answer many map-matching queries, where each query is a
trajectory. To our knowledge, this problem has only been studied on c-packed graphs [13, 14].
Gudmundsson and Smid [14] show an approach for c-packed trees with long edges and query
trajectories with long edges. Gudmundsson et al. [13] assume that the graph is c-packed,
but do not impose any restrictions on the query trajectories. However, c-packedness is not a
realistic assumption for graphs representing road networks. Consider the example map of
Figure 1: it is not c-packed for any constant c, as that would require the total length of the
roads be at most cr in all disks of radius r, and it is instead often much closer to cr2. On
some scale, this problem arises with many road networks, including city streets or motorways.
Therefore, we would like to devise an approach with more realistic assumptions on the graph.

We instead assume that our graph has low density, defined above. As observed by Chen
et al. [8], the value of density does not grow with the considered area on the map, and road
networks typically have low density; it is also a strictly weaker assumption than packedness.
We further assume that the graph is a t-spanner. A geometric graph is a t-spanner if for any
two vertices, the length of the shortest path between them in the graph is at most t times
larger than the Euclidean distance between them. Road networks, in particular in urban
areas, are typically good spanners [4, 19]. For the example of Figure 1, it is clear that the
road network is a t-spanner and λ-low density for low t and λ. Compared to previous work,
our assumptions make the approach significantly more applicable on real-life road networks.

In this paper, we solve the map-matching query problem under realistic assumptions:

▶ Problem 2. Given a geometric graph P , construct a data structure that can answer the
following queries: for a polygonal curve Q in R2,
1. compute minπ dF(π, Q) and
2. report arg minπ dF(π, Q),
where π ranges over all paths between two vertices in P and dF denotes the Fréchet distance.

K. Buchin, M. Buchin, J. Gudmundsson, A. Popov, and S. Wong 27:3

Carre

r d
'Aragó

Carre
r d

'Aragó
Carrer de Muntaner

Carre

r d
e París

gusta

Carr

er d

el R
osse

lló

er de Muntaner

Ca

bau

Project
ea Hospital

r

Figure 1 An example road network, in Barcelona. The total road length in a disk of radius r

is closer to cr2 than cr, so this road network is not c-packed. However, the number of long edges
intersecting the purple disk is small, and the red path is not much longer than the blue path, so the
network is λ-low density and a t-spanner for small λ and t. Map data from OpenStreetMap [20].

We present a (1 + ε)-approximation under the assumptions listed above. Our approach
differentiates from previous work by Gudmundsson et al. [13] in two key aspects:

we require the graph P to be λ-low density and a t-spanner, rather than c-packed, which
is a more realistic assumption for a road network [4, 8, 19];
we solve the problem of reporting the path that minimises the Fréchet distance, which
was stated as an open problem in their paper.

In order to achieve these results, we have to use different techniques, albeit at the cost of
a

√
n factor replacing a polylogarithmic factor in the running time and space. Where the

paper by Gudmundsson et al. [13] uses a semi-separated pair decomposition, we construct a
hierarchy of small balanced separators and store appropriate associated data to guide the
search for the optimal Fréchet distance. A balanced separator of a graph P = (V, E) is a
set of vertices S ⊆ V that splits P into connected components of size at most c · |V | for
constant c. Combining the changes in analysis and the capability to report a path, we get
the following result. Here n = |V | + |E| for a geometric graph P = (V, E), and m is the
number of vertices on the query polygonal curve.

▶ Theorem 3. Suppose we are given a λ-low-density t-spanner of complexity n and a fixed
0 < ε < 1. Let χ = 1/ε2 log 1/ε and let φ = (λ/ε3 + t2/ε2)2. In expected time O(λχ2n

5/2 log n)
and using O(λχ2n

3/2) space, we can construct a data structure (1+ε)-approximating Problem 2
that performs distance queries in time O(φ · λ/ε · m

√
n log mn · (log2 n + φ log n + φ · λ/ε)),

and answers the reporting queries for a path of length ℓ in O(ℓ/ε) additional time.

In a typical setting, λ and t are small constants. We need O(n3/2 · 1/ε4 · log2 1/ε) space,
resolving to O(n3/2) for fixed ε, and we support distance queries in time O(ε−7m

√
n log mn ·

(log2 n + ε−6 log n + ε−7)), or O(m
√

n log mn · log2 n) for fixed ε.
The rest of the paper is organised as follows. After covering some preliminaries in

Section 2, we first tackle the simpler problem of finding a path in the graph that most closely
follows a line segment between two vertices of the graph in terms of the Fréchet distance in
Section 3. In that setting, we find a 3-approximation. The data structure we develop there
is used later for obtaining a search window for when the end points of the path are not given.

SoCG 2024

27:4 Map-Matching Queries Under Fréchet Distance on Low-Density Spanners

In Section 4, we generalise this to an arbitrary query line segment that does not have to start
or end at a graph vertex, and show how to achieve a (1 + ε)-approximation. We also describe
how to report a path that corresponds to a (1 + ε)-approximation. Finally, in Section 5, we
show how to combine the segment queries in order to handle a complete polygonal curve.

2 Preliminaries

In this paper, we work with geometric graphs, that is, graphs embedded in the plane with
straight-line edges. For a graph P = (V, E), we denote its complexity with n = |V | + |E|.

We denote the fact that a path π goes from u ∈ V to v ∈ V by π : u ⇝ v; and π ◦ σ

denotes the composition (concatenation) of paths π, σ. Denote the Euclidean distance
between points x, y ∈ R2 with ∥x − y∥. We can consider the edges weighted by defining the
weight of an edge e ∈ E as |e| = ∥u − v∥ for e connecting u, v ∈ V . We define the graph
distance dP as the shortest path distance along the graph between any two vertices u, v ∈ V :
dP (u, v) =

∑
e∈π|e|, where π : u⇝ v is a shortest path in P between u and v.

We assume our input graph has low density in this paper, as defined previously. We need
to define two more graph properties that we use in our construction.

▶ Definition 4. A graph P = (V, E) is τ -lanky [17] if for every disk of radius r > 0 centred
at any vertex v ∈ V , there are at most τ edges of length at least r that are cut by the disk.

Here an edge is cut by a disk if exactly one of its endpoints is inside the disk. It is easy to
see that a τ -lanky graph has bounded degree of at most τ ; and that any λ-low-density graph
is also λ-lanky. Let us also formally define a t-spanner.

▶ Definition 5. A graph P = (V, E) is called a t-spanner if for any two vertices u, v ∈ V ,
we have dP (u, v) ≤ t · ∥u − v∥.

A query is a polygonal curve in the plane, that is, a sequence of points in R2 connected
with line segments. For a query curve Q, let m be the number of points in the sequence.

3 Straight Path Queries

In this section, we present a 3-approximation to the following problem, so that for the value
r that we return, we have minπ dF(π, uv) ≤ r ≤ 3 · minπ dF(π, uv).

▶ Problem 6. Given a geometric graph P = (V, E), construct a data structure that can
answer the following queries: for a pair of vertices u, v ∈ V , compute minπ dF(π, uv), where
π : u⇝ v is a path in P .

Let n = |V | + |E|. To solve Problem 6 efficiently, we impose an additional constraint
on P – we require in this section that P has a graph property satisfying two criteria:
1. the property is decreasing monotone, so it holds on all induced subgraphs;
2. and any graph with the property admits a small separator.

An example of such a property is planarity: any subgraph of a planar graph is planar,
and the existence of small separators in planar graphs is a classical result [18]. However, not
all road networks are planar, as most road networks include bridges and tunnels. Instead, we
require that P is τ -lanky [17]. It is trivial to show that any subgraph of a τ -lanky graph
is also τ -lanky; and Le and Than [17] show that a τ -lanky graph of complexity n admits a
balanced separator of size O(τ

√
n) that can be found in O(τn) expected time.

In Section 4, we show how to generalise the query to arbitrary segment endpoints and
how to improve the result to a (1 + ε)-approximation for any fixed ε > 0.

K. Buchin, M. Buchin, J. Gudmundsson, A. Popov, and S. Wong 27:5

Intuition. When constructing the data structure, we can use the algorithm by Alt et al. [2]
in order to compute the Fréchet distance between a line segment and a path in the graph.
At query time, running that algorithm would be prohibitively slow. We also want to achieve
subquadratic storage, so we cannot precompute the distances for all pairs of vertices.

Broadly, the idea is to find sufficient structure in the graph to be able to find a small set
of vertices so that any path in the graph passes through at least one of these vertices; we call
them transit vertices. Then we can precompute the distances between the optimal path and
the line segment when going from any vertex of the graph to one of the transit vertices. At
query time, we then only need to find an optimal transit vertex. Since we are composing two
paths, the computed distance is only a 3-approximation.

More specifically, a balanced separator in a graph forms a set of transit vertices. We can
compute them hierarchically and store the separators and the precomputed distances in a
binary tree. With some organisation, at query time, we can efficiently find all the relevant
transit vertices – the ones that may separate the two query vertices on a path.

Data structure. We construct a hierarchy of separators on the graph and store it with
some extra information in a binary tree. Each node in the tree represents both an induced
subgraph of P , and a separator of that induced subgraph. Consider the node i corresponding
to some induced subgraph Pi = (Vi, Ei) of P . Conceptually, the node represents the balanced
separator Si, so the subset of vertices of Pi, splitting it into two subgraphs Ai and Bi.

The root stores S1 and the extra information for all pairs from V × S1, so the top-level
balanced separator for the entire graph. The two children of each node correspond to the
subgraphs Ai and Bi. The recursion ends when the subgraphs in the leaves have constant
size. In a leaf i, assign Si = Vi, so compute the distances for all pairs of vertices.

For every pair of vertices (u, s) ∈ Vi × Si, we store minπ dF(π, us), where π : u⇝ s in P .
(Note that a path π may leave Pi.) We call all vertices in Si transit vertices; and all pairs
(u, s) for which we store the distances are called transit pairs.

In addition, for each vertex u ∈ V , we store a pointer to the tree node i so that u ∈ Si.
There is exactly one such node in the tree for every vertex: if a vertex is part of a separator,
it will not be in an induced subgraph further down in the recursion, and if it is never chosen
to be in a separator, then it belongs to a leaf, which is treated as Si in its entirety.

Construction. We construct the hierarchy top–down, computing the separators on the
induced subgraphs at every level using the result of Le and Than [17]. For each transit
pair (p, s) in a node, we compute the appropriate Fréchet distance in the entire graph using
the algorithm by Alt et al. [2], extended by Gudmundsson et al. [13, Lemma 4.3]. As we
construct the separators, we also store in a table the pointer for each vertex to the correct
node.

Distance query. Suppose the query is to find the minimal Fréchet distance between the
segment uv and any path between u and v. Initialise opt = ∞. First, we use the table to
find the pointers to the two nodes in the tree i and j so that u ∈ Si and v ∈ Sj . Then we
find their lowest common ancestor, call it node a. For every node a′ on the path from a to
the root of the tree, perform the following procedure, updating opt. At the end, return opt.

Denote Dxy = minπ dF(π, xy) over all π : x ⇝ y. For the query uv, denote D′
x =

minr∈uv∥r − x∥, so the shortest distance between x and any point on uv. For all s ∈ Sa′ ,
fetch the stored Dus and Dsv and compute D′

s. Then compute D = max(Dus, Dsv) + D′
s

and finally assign opt = min(opt, D).

SoCG 2024

27:6 Map-Matching Queries Under Fréchet Distance on Low-Density Spanners

Running time analysis. For the distance queries, we take O(1) time to follow the pointers;
O(log n) time to find the lowest common ancestor; and then O(1) time to check the distance
per transit vertex. As we check all transit vertices on the path from the lowest common
ancestor to the root, we can write down the worst-case recurrence as

T (k) = T (2k/3) + O(τ
√

k)

for a graph on k vertices, since the balanced separator we use subdivides the graph into two
subgraphs on at most 2k/3 vertices. For the entire graph, this resolves to O(τ

√
n). This term

dominates the query time.
For the construction, we need O(τk) expected time to find a separator in a graph of size k.

In each node, for each of O(τk
√

k) transit pairs, we compute the distance in O(n log n) time.
Assuming we build the tree until the leaves are of constant size, we get the recurrence

T (k) = T (2k/3) + T (k/3) + O(τk + τk
√

k · n log n)
= T (2k/3) + T (k/3) + O(τk

√
k · n log n) ,

which resolves to O(τn
5/2 log n) expected time overall.

Space. We store a table of pointers of size O(n) and the main data structure. For a graph
on k vertices, we store constant-size data for each transit pair; and there are O(τk

√
k) transit

pairs. Overall, the space used resolves to O(τn
√

n), as follows from the recurrence

T (k) = T (2k/3) + T (k/3) + O(τk
√

k) .

Correctness. It remains to show that the described query procedure gives us an appropriate
distance. First, assume that we do consider an optimal transit vertex; we show that we
indeed compute a 3-approximation. The following proof is essentially given by Gudmundsson
et al. [13, Theorem 4.1], and relies on a semi-separated pair decomposition [10, Lemma 5.5]
rather than separators. We include the proof for the sake of completeness and ease of reading.

▶ Lemma 7. Suppose that opt = minπ′ dF(π′, uv) for query uv and π′ : u ⇝ v, and that
π = arg minπ′ dF(π′, uv) passes through a transit vertex s, so π : u ⇝ s ⇝ v. Let s′ be the
transit vertex that minimises D = max(Dus′ , Ds′v) + D′

s′ . If s is considered when finding D,
then opt ≤ D ≤ 3 · opt.

Proof. Let t be the point on uv closest to s′. Let πus′ = arg minπ′ dF(π′, us′) over π′ : u⇝ s′,
and define πs′v similarly. Note that the composition of these paths πus′ ◦ πs′v does not have
to be the same as π. Then

opt = dF(π, uv) ≤ dF(πus′ ◦ πs′v, uv) ≤ max
(
dF(πus′ , ut), dF(πs′v, tv)

)
≤ max

(
dF(πus′ , us′) + ∥s′ − t∥, dF(πs′v, s′v) + ∥s′ − t∥

)
= ∥s′ − t∥ + max

(
dF(πus′ , us′), dF(πs′v, s′v)

)
= D′

s′ + max(Dus′ , Ds′v) = D .

On the other hand, note that D ≤ max(Dus, Dsv) + D′
s, as s′ minimises that expression.

We also have D′
s ≤ dF(π, uv). Let π(u, s) be the subpath of π from u to s. Let r be the

point in uv that is aligned to s in the Fréchet alignment between π and uv. Then

Dus = dF(πus, us) ≤ dF(π(u, s), us) ≤ dF(π(u, s), ur) + dF(ur, us)
= dF(π(u, s), ur) + ∥r − s∥
≤ dF(π, uv) + dF(π, uv) = 2dF(π, uv) .

K. Buchin, M. Buchin, J. Gudmundsson, A. Popov, and S. Wong 27:7

1

2 3

4 5 6 7

10 11

1

1 3

36

7
2

44

5

10

11

Figure 2 A representation of the hierarchy (left) for the graph (right). A query segment is shown
in purple, a possible path in blue. We check nodes 5, 2, and 1. If we pick the transit vertex in 5,
then the path may be 10 → 2 → 5, so we may need to go up the tree to find the next transit pair.

Using the same argument for Dsv, we conclude

D ≤ D′
s + max(Dus, Dsv) ≤ dF(π, uv) + 2dF(π, uv) = 3dF(π, uv) ,

and so opt ≤ D ≤ 3 · opt and the value is a 3-approximation. ◀

Now we show that we consider all the relevant transit vertices. See Figure 2.

▶ Lemma 8. For the query uv, the procedure considers a transit vertex s such that s lies on
an optimal path π = arg minπ′ dF(π′, uv), where π′ : u⇝ v.

Proof. We consider two cases based on where the lowest common ancestor is found. First,
suppose that the lowest common ancestor a contains u, v, or both u and v in the separator.
In other words, u ∈ Sa or v ∈ Sa, and so s = u or s = v. Then π passes through s, and we
consider s as a transit vertex.

Now assume that the lowest common ancestor a does not contain u or v in the separator;
then u and v are separated by Sa. Without loss of generality, let u ∈ Aa and v ∈ Ba. If the
path π stays within the subgraph Pa, then it goes through some s ∈ Sa, which we consider.
Otherwise, it goes through some separator between Pa and the rest of the graph; we check
exactly all the vertices in these separators, as they fall on the path from a to the root. ◀

Bringing the above considerations together, we get the main result of this section.

▶ Theorem 9. Given a τ -lanky graph of complexity n, we can construct a data structure
giving a 3-approximation for Problem 6 in expected time O(τn

5/2 log n), using O(τn
√

n) space,
that supports distance queries in time O(τ

√
n).

4 Map-Matching Segment Queries

In this section, we generalise the construction we just presented to compute a (1 + ε)-
approximation and to handle reporting, as well as to support arbitrary query line segments.

▶ Problem 10. Given a geometric graph P = (V, E), construct a data structure that can
answer the following queries: for a line segment pq in the plane,
1. compute minπ dF(π, pq) and
2. report arg minπ dF(π, pq),
where π ranges over all paths between two vertices in P .

For distance queries, we closely follow the work of Gudmundsson et al. [13], which in turn
follows the approach of Driemel and Har-Peled [10]. The latter appears at first to be devoted
to a rather different problem, but turns out to be very helpful in the map-matching setting.

SoCG 2024

27:8 Map-Matching Queries Under Fréchet Distance on Low-Density Spanners

Data structure for distance queries with fixed path endpoints. We can immediately use
the approach of Section 3 on arbitrary segments. Suppose the query is a pair of vertices
u, v ∈ V and a segment pq ⊂ R2. Then we can find a 3-approximation to minπ dF(π, pq),
where π : u⇝ v. To achieve that, we just need to define D′

s′ = dF(us′ ◦ s′v, pq) and let t be
the point on pq aligned with s′ under this matching.

We can directly use the following statement [13, Lemma 5.2], which closely mimics the
approach of Driemel and Har-Peled [10, Lemma 5.8]:

▶ Lemma 11. Let u, v ∈ V be a fixed pair of vertices. Let ε > 0 and χ = 1/ε2 log 1/ε. In
O(χ2n log n) time and using O(χ2) space, one can construct a data structure that, given a
query segment pq in the plane, returns in O(1) time a (1+ε)-approximation to minπ dF(π, pq),
where π : u⇝ v.

The idea behind this lemma is to construct an exponential grid around both fixed vertices so
that the grid is denser close to the vertices. There is an upper bound and a lower bound on
how far the grid goes, which is based on ε and minπ dF(π, uv). If the segment pq is closer to
uv than the smallest grid cell, then taking minπ dF(π, uv) gives us a good approximation; if
the segment is very far, then dF(pq, uv) dominates. Otherwise, we are guaranteed that there
are grid points p′ and q′ that match p and q closely with respect to u and v. We can simply
precompute minπ dF(π, p′q′) for all pairs of points p′ and q′ and return an appropriate value
in constant time when given a query. See Figure 3.

In order to improve the approximation ratio to 1 + ε, we use Lemma 5.3 by Gudmundsson
et al. [13], substituting our data structure of Theorem 9 for their data structure of Lemma 5.1.
The argument is the same: we can construct a grid around each graph vertex and precompute
the distances for all pairs of grid vertices for each transit pair; and we can store that in
the data structure of Theorem 9. At query time, when testing each transit vertex s, we
subsample the relevant part of segment pq with O(1/ε) points to find an optimal spot that
should align with s. We use the data structure of Theorem 9 to make sure we do not need to
sample too many points. With our time and space bounds, we get the following lemma.

▶ Lemma 12. Let ε > 0 and χ = 1/ε2 log 1/ε. In expected time O(τχ2n
5/2 log n) and using

O(τχ2n
√

n) space, we can construct a data structure that, given a query segment pq in the
plane and a pair of vertices u, v ∈ V , returns in O(τ/ε

√
n) time a (1 + ε)-approximation to

minπ dF(π, pq), where π : u⇝ v.

Reporting a path. Next we discuss the modifications needed to report a curve that realises
the (1 + ε)-approximate distance. We can perform an approximate distance query first. Once
we have the distance, we can find the transit pairs that realise it; with these pairs, we can
store the next vertex on the optimal path. We can then repeat these queries with the new
pairs. It remains to show how to perform this sequence of queries consistently, i.e. so that an
approximate route for a subpath also approximates the complete path.

Recall that when computing the (1 + ε)-approximation, we consider a ball of a certain
radius around a transit vertex, and we take O(1/ε) sample points on the query segment pq

inside the ball, to test the Fréchet alignment with the transit vertex. The first modification
is that we impose fixed coordinates for the sample points. For some fixed point on the line pq

and for some constant c, every sample point is O(c/ε) distance away from the fixed point.
Next, we describe the necessary modifications to the data structure of Lemma 12. With

each transit pair and for each pair of grid points, in addition to the Fréchet distance, we also
store the first vertex on the optimal path, so u′ ∈ V such that for π′ = arg minπ dF(π, pr),
we have π′ : u → u′ ⇝ s. (Here r is the point on pq that maps to s.)

K. Buchin, M. Buchin, J. Gudmundsson, A. Popov, and S. Wong 27:9

v

s

u′

u

p

q

r

Figure 3 A query trajectory pq is shown in purple, and the reported path in the graph is shown
in blue. We sample points on pq at regular distance and snap them to the exponential grid around
the graph vertices. Once we find r on pq that aligns with the transit vertex s, we can query the pair
(u, s) with the (snapped) segment pr to find the next vertex u′.

The query proceeds as follows. First, we perform the distance query for pq and record
the optimal transit vertex s. Find the point r among the O(1/ε) samples on pq that aligns
with s. Query the pairs (u, s) and (s, v) with pr and rq, respectively, and retrieve the stored
adjacent vertices u′ and v′. Again, find the optimal alignment points on pr and rq; find pairs
(u′′, s) and (s, v′′); repeat until the complete path is reported. In the special case when s = v

or s = u, only one sequence of queries has to be performed. If u and v are both in a leaf, we
can proceed as if s = v. See Figure 3.

Suppose the transit vertex s is stored in some Si. If the optimal path leaves Pi, then it is
possible that u′ is not in Pi, and so the pair (u′, s) is not stored in node i. However, then u′

must be in some separator separating Pi from a different subgraph Pj . Furthermore, note
that the separator in question must be on the path from i to the root. Thus, we can go up
until we find u′ ∈ Sj for some j < i. We can continue the procedure, now for the transit pair
(s, u′), finding some s′ so that the path is of the shape s → s′ ⇝ u′. See Figures 2 and 3.

We briefly analyse the time and space bounds. We find the next vertex on the path from
the free-space diagram when computing the Fréchet distance. As we store constant extra
information, the preprocessing and space bounds are unchanged. For the query time, in
addition to the distance query, we report a path of length ℓ. To find each next vertex, we find
the correct transit pair in constant time, then test O(1/ε) alignment options. We may have to
go up the tree; however, as we never go down the tree, that traversal happens only once per
query. Therefore, the extra time needed to report the path with ℓ vertices is O(log n + ℓ/ε).
It remains to show that the reported path indeed corresponds to a (1 + ε)-approximation.

▶ Lemma 13. For query pq, if π = arg minπ∗ dF(π∗, pq) has the shape π : u → u′ ⇝ s, and
u′ is aligned to some p′ ∈ pq under the Fréchet alignment, then π′ = arg minπ∗ dF(π∗, p′q) of
the shape π′ : u′ ⇝ s is a subpath of π.

Proof. Without loss of generality, we can assume that s is a transit vertex. If the distances
were computed exactly, the statement would clearly hold. We need to show that the sampling
and the grid do not introduce inconsistencies.

Recall that the sample points are placed on the line segment independently of context.
Therefore, the location of sample points is the same on pq and p′q. Furthermore, we always
snap these original sample points to the grid, and the grid does not depend on the path.
Therefore, we can view pq as a sequence of grid points that all possible sample points
would snap to; and p′q then snaps to a subsequence of those grid points. For the pairs

SoCG 2024

27:10 Map-Matching Queries Under Fréchet Distance on Low-Density Spanners

of grid points, the distances are computed directly. Therefore, we do not introduce any
additional error, compared to a distance query, and so the reported path corresponds to a
(1 + ε)-approximation. ◀

Data structure for finding the path endpoints. So far, we only required that P is τ -lanky.
For the next data structure, we also need P to be a t-spanner. Recall that dP (u, v) denotes
the shortest path distance in the graph between the vertices u and v. If P = (V, E) is a
t-spanner, then for any u, v ∈ V , we have dP (u, v) ≤ t · ∥u − v∥. To solve Problem 10, we
need one more data structure. Lemma 12 still requires us to pick vertices u and v to check
the paths π : u⇝ v. We need to be able to select a subset of candidate vertices so that we
can obtain a (1 + ε)-approximation, but the subset is still small enough. To that aim, we
perform the same procedure as Gudmundsson et al. [13], but get different bounds.

In particular, we run Gonzalez’s k-centre clustering algorithm [12] for k = n on the
vertices of the graph P = (V, E) using the distance dP . In short, the algorithm selects
cluster centres from V iteratively, starting with a random one; and each following one is the
furthest away from any other centre. Let c1 be the first (random) centre. Define the radius
of a clustering to be the maximum distance from any vertex to its closest centre. Denote
Ci = {c1, . . . , ci}. Then for all 2 ≤ i ≤ n, we compute

ci = arg max
v∈V

min
c∈Ci−1

dP (v, c) , ri = max
v∈V

min
c∈Ci

dP (v, c) .

We obtain a sequence ⟨(C1, r1), . . . , (Cn, rn)⟩, where rn = 0, since all vertices are centres.
Using this sequence, we can show the following lemma.

▶ Lemma 14. Let P = (V, E) be a t-spanner and let S be a square in the plane with side
length 2r. Then there exists a set of vertices T ⊆ V satisfying two properties:
1. |T | = O((t/ε)2), and
2. for all v ∈ V ∩ S, there is z ∈ T such that dP (v, z) ≤ εr.

Proof. If r1 < εr, pick T = {c1}; then the first property holds immediately, and the second
property holds by definition of r1. Otherwise, note that rn = 0, so now let i be the index
so that ri ≥ εr and ri+1 < εr. Take S′ to be the square concentric with S, but with the
side length of 4r, and let T = Ci+1 ∩ S′. The second property is immediately satisfied, since
any vertex, including those in S, is closer than εr to some centre; and choosing S′ this way
ensures that we cannot exclude any relevant centres, since ε < 1.

To see that the first property is true, consider Ci. Due to the sequence of picking centres,
we know that any two vertices cj and cℓ with j < ℓ in T are far apart, i.e. dP (cj , cℓ) ≥ εr.
If this were not true, then cℓ would not have been chosen as a centre, since there still are
vertices in V that are further than εr away from any centre. But then we know

εr ≤ dP (cj , cℓ) ≤ t · ∥cj − cℓ∥ ,

so any two points are at least ε/t · r apart in the plane. In a square with side length 4r, we
can only pack O((t/ε)2) of these vertices. Ci+1 has only one more vertex, so the first property
holds for T , as well. ◀

Gudmundsson et al. [13] show how to construct a data structure based on their version
of Lemma 14. The proof is the same; only the bounds change.

▶ Lemma 15. Let P = (V, E) be a t-spanner, and let 0 ≤ ε ≤ 1. In O(n2 log n) time
and using O(n log n) space, we can construct a data structure that, given a query square S

in the plane with side length 2r, returns a set of vertices T satisfying Lemma 14 in time
O(log n + (t/ε)2)).

K. Buchin, M. Buchin, J. Gudmundsson, A. Popov, and S. Wong 27:11

The main theorem of this section follows using our data structures.

▶ Theorem 16. Given a τ -lanky t-spanner of complexity n, we can construct the data structure
for Problem 10 in expected time O(τε−4 log2(1/ε)n5/2 log n) and using O(τε−4 log2(1/ε)n

√
n)

space, so the distance queries can be answered in time O(τt8ε−9√
n log n(log n + τ/ε)); and

the reporting queries for a path of length ℓ can be answered in O(ℓ/ε) additional time.

Proof. The changes we made for reporting do not affect Lemma 15, so the proof of Gud-
mundsson et al. [13] applies. We only discuss the time bounds. Preprocessing simply consists
of building the data structures for Lemmas 12 and 15. For the query time, consider first the
decision version of the algorithm. We query the data structure of Lemma 15 twice; and then
for every pair of possible matching vertices, we query the data structure of Lemma 12. The
second step dominates, taking O(τt4ε−5√

n) time.
For the optimisation version, we use parametric search with NP =

√
n parallel processors.

The sequential version runs in the same time as the decision version, so TS = O(τt4ε−5√
n).

In the parallel version, querying the distance data structure can be done with
√

n processors,
each performing O(τ/ε) amount of work, then combining the values to find the minimum in
O(log n) time. Thus, TP = O((t/ε)4 · (τ/ε + log n)). The time for the optimisation version is
now O(NP TP + TP TS log NP). This amounts to O(τt8ε−9√

n log n(log n + τ/ε)).
For the reporting query, perform the distance query and record the optimal path endpoints;

then, as we discussed, it costs extra O(ℓ/ε) time to report a path of length ℓ. ◀

5 General Map-Matching Queries

In this section, we generalise the problem again to handle a polygonal curve rather than a
line segment as a query. The procedure is very similar; however, we want to make sure that
the Fréchet alignment between a query curve and a path can align vertices of the query to
points on graph edges, and not just to graph vertices. To that effect, we need to extend
Lemma 14 so we can sample a small number of points on graph edges.

Gudmundsson et al. [13] use c-packedness again; however, in our setting, the t-spanner
property is not sufficient, as it does not give us guarantees about the graph distance between
points on the edges. Here we require the graph to also be λ-low density.

▶ Lemma 17. Let P = (V, E) be a λ-low-density t-spanner, let F = {f ∈ R2 | f ∈ e, e ∈ E},
and let S be a square in the plane with side length 2r. Then there exists a set of points T ⊆ F

satisfying two properties:
1. |T | = O(t2/ε2 + λ/ε3), and
2. for all p ∈ F ∩ S, there is z ∈ T such that dP (p, z) ≤ εr.

Proof. We can use Lemma 14 with ε′ = ε/2 to obtain the set T1 of size O((t/ε′)2) so that
for all v ∈ V ∩ S, dP (p, z) ≤ ε′r for some z ∈ T1. Define Er ⊆ E to contain the edges of
length at least εr. Let S′ be a square concentric with S but with the side length 4r. For
each e ∈ Er, choose O(1/ε) evenly spaced points on e ∩ S′ with the distance between them of
at most εr. Let T2 be the set of all such points, and assign T = T1 ∪ T2.

We first show that the first property holds. For T2, we need to bound the size of Er ∩ S′.
As P is λ-low density, we know that there are at most λ edges of length at least εr intersecting
any disk of diameter εr, and every edge has O(1/ε) sample points. We can cover S′ with
O((1/ε)2) such disks, so |T2| = O(λ(1/ε)3). Therefore, |T | = O(t2/ε2 + λ/ε3).

SoCG 2024

27:12 Map-Matching Queries Under Fréchet Distance on Low-Density Spanners

Figure 4 The surface of a trough: at fixed z, we include all points no further than 4z from e.

Now consider the second property. Note that V ⊂ F . For any v ∈ V ∩ S, we immediately
conclude that the property holds by Lemma 14. For any p ∈ e ∩ S, e ∈ E with |e| ≤ εr, note
that both endpoints of e lie in S′. So there is a vertex v ∈ V ∩ S′ so that dP (p, v) ≤ ε′r, and
by Lemma 14, dP (v, z) ≤ ε′r for some z ∈ T1. Therefore, dP (p, z) ≤ 2ε′r = εr. Finally, for
any p ∈ e ∩ S, e ∈ Er, it is clear that there is a point not further than εr in T2. ◀

We will build a data structure similar to Gudmundsson et al.’s [13]. We start by stating
a definition of λ-low density in R3.

▶ Definition 18. A set of objects in R3 is k-low density if, for every axis-parallel cube Hr

with side length r, there are at most k objects of size at least r that intersect Hr. The size of
an object is the side length of its smallest axis-parallel enclosing cube.

▶ Definition 19. Given a segment e ⊂ R2 and 0 < ε < 1, define

trough(e, ε) = {(x, y, z) ∈ R3 | d((x, y), e) ≤ 4z ≤ 8|e|/ε} ,

where d((x, y), e) is the distance from (x, y) to the closest point on e. See Figure 4.

A trough is a three-dimensional object consisting of a triangular prism and two half-cones.
Any z-slice can be seen as a z-neighbourhood of e. We show the following lemma.

▶ Lemma 20. Let P = (V, E) be λ-low density, and let 0 < ε < 1. The set {trough(e, ε) |
e ∈ E} is k-low density for k = O(λ/ε2).

Proof. We first bound the size of trough(e, ε). Let (x, y, z) ∈ trough(e, ε). Note that
0 ≤ z ≤ 2|e|/ε. Furthermore, d((x, y), e) ≤ 8|e|/ε, so (x, y) must lie inside a disk centred at
the midpoint of e with radius 9|e|/ε. Thus (x, y, z) lies inside a cube with side length 18|e|/ε,
which bounds the size of trough(e, ε).

Let Hr be an axis-parallel cube with side length r, and let its smallest z-coordinate be
zmin ≥ 0. Suppose trough(e, ε) of size at least r intersects Hr, and let (x, y, z) be a point in
the intersection. Let h be the projection of the centre of Hr onto the plane z = 0. Then

d(h, e) ≤ d(h, (x, y)) + d((x, y), e) ≤ r + 4z ≤ 5r + 4zmin ,

where the first step follows by the triangle inequality, the second by (x, y, z) lying in the
intersection, and the third by z ≤ zmin + r. Furthermore, the size of trough(e, ε) is at least r

and at most 18|e|/ε, so r ≤ 18|e|/ε; and zmin ≤ 2|e|/ε. Therefore, 5r + 4zmin ≤ 98|e|/ε.

K. Buchin, M. Buchin, J. Gudmundsson, A. Popov, and S. Wong 27:13

So we know |e| ≥ (5r + 4zmin) · ε/98. By λ-low-density property, any ball with diameter
(5r + 4zmin) · ε/98 is intersected by at most λ such edges. Consider a disk in z = 0 with
diameter 2 · (5r + 4zmin) centred at h. It can be covered by c/ε2 smaller disks for a constant c,
so there may be at most k = cλ/ε2 edges close enough to h for Hr to intersect their troughs;
and so the set of troughs is k-low density. ◀

Using the range searching data structure for low-density sets by Schwarzkopf and Vleu-
gels [21] on the set of troughs of all edges, we obtain the following result.

▶ Lemma 21. Let P = (V, E) be a λ-low-density t-spanner, let 0 ≤ ε ≤ 1, and let
F = {f ∈ R2 | f ∈ e, e ∈ E}. In O(n2 log n+λ/ε2 ·n log n) time and using O(n log2 n+n·λ/ε2)
space, we can construct a data structure that, given a query square S in the plane with side
length 2r, returns a set of vertices T satisfying Lemma 17 in time O(log2 n + t2/ε2 + λ/ε3).

Finally, we obtain the main result of the paper. The proof of Gudmundsson et al. [13,
Theorem 6.1] applies here directly, but we use the data structures in Lemmas 12 and 21.

▶ Theorem 3. Suppose we are given a λ-low-density t-spanner of complexity n and a fixed
0 < ε < 1. Let χ = 1/ε2 log 1/ε and let φ = (λ/ε3 + t2/ε2)2. In expected time O(λχ2n

5/2 log n)
and using O(λχ2n

3/2) space, we can construct a data structure (1+ε)-approximating Problem 2
that performs distance queries in time O(φ · λ/ε · m

√
n log mn · (log2 n + φ log n + φ · λ/ε)),

and answers the reporting queries for a path of length ℓ in O(ℓ/ε) additional time.

Proof. See the proof by Gudmundsson et al. [13, Theorem 6.1], but we use Lemmas 12
and 21 instead. We analyse the space and time requirements. For preprocessing and space,
we construct the two data structures. For distance queries, first analyse the decision version.

We query the data structure of Lemma 21 m times to obtain the candidate points. Then
we construct a directed graph with O(m · (λ/ε3 + t2/ε2)2) edges. For each edge, we do a
constant number of queries to the data structure of Lemma 12, each taking O(

√
n · λ/ε) time.

Finally, we decide if there is a suitable directed path in the graph. Overall, the decision
version takes O(m

√
n · λ/ε · (λ/ε3 + t2/ε2)2) time.

For the optimisation version, we apply parametric search using NP = m
√

n parallel
processors. The sequential version runs in the same time as the decision version, so TS =
O(m

√
n · λ/ε · (λ/ε3 + t2/ε2)2). In the parallel version, the steps for each of m points can be

executed in parallel; and finding the weight of an edge by querying the distance data structure
can be done with

√
n processors, each performing O(λ/ε) amount of work, then combining the

values to find the minimum in O(log n) time. Thus, TP = O(log2 n+(λ/ε+log n)·(λ/ε3+t2/ε2)2).
The time for the optimisation version is now O(NP TP +TP TS log NP). Let φ = (λ/ε3 + t2/ε2)2;
then the query time is

O
(
φ · λ/ε · m

√
n log mn · (log2 n + φ log n + φ · λ/ε)

)
.

Treating t and λ as constant, we get O(ε−7 · m
√

n log mn · (log2 n + ε−6 log n + ε−7)); and
treating also ε as a constant, the query time becomes O(m

√
n log mn · log2 n).

Finally, for the reporting query, we first run the distance query and record the path in the
graph, as well as the edges aligned with the query curve vertices, and record the optimal order
of endpoints of these edges. Now we can simply perform the individual segment reporting
queries, as before, costing us extra O(ℓ/ε) time for a path of length ℓ. ◀

SoCG 2024

27:14 Map-Matching Queries Under Fréchet Distance on Low-Density Spanners

References
1 Mohamed Ali, John Krumm, Travis Rautman, and Ankur Teredesai. ACM SIGSPATIAL

GIS cup 2012. In Isabel Cruz, Craig Knoblock, Peer Kröger, Egemen Tanin, and Peter
Widmayer, editors, Proceedings of the 20th International Conference on Advances in Geographic
Information Systems (SIGSPATIAL 2012), pages 597–600, New York, NY, USA, 2012. ACM.
doi:10.1145/2424321.2424426.

2 Helmut Alt, Alon Efrat, Günter Rote, and Carola Wenk. Matching planar maps. Journal of
Algorithms, 49(2):262–283, 2003. doi:10.1016/S0196-6774(03)00085-3.

3 Helmut Alt and Michael Godau. Computing the Fréchet distance between two polygonal
curves. International Journal of Computational Geometry & Applications, 5(1):75–91, 1995.
doi:10.1142/S0218195995000064.

4 Boris Aronov, Kevin Buchin, Maike Buchin, Bart Jansen, Tom de Jong, Marc van Kreveld,
Maarten Löffler, Jun Luo, Rodrigo I. Silveira, and Bettina Speckmann. Connect the dot:
Computing feed-links for network extension. Journal of Spatial Information Science, 3:3–31,
2011. doi:10.5311/JOSIS.2011.3.47.

5 Sotiris Brakatsoulas, Dieter Pfoser, Randall Salas, and Carola Wenk. On map-matching
vehicle tracking data. In Kjell Bratbergsengen, editor, Proceedings of the 31st International
Conference on Very Large Data Bases (VLDB 2005), pages 853–864, Los Angeles, CA, USA,
2005. VLDB Endowment. URL: https://dl.acm.org/doi/10.5555/1083592.1083691.

6 Erin Chambers, Brittany Terese Fasy, Yusu Wang, and Carola Wenk. Map-matching using
shortest paths. ACM Transactions on Spatial Algorithms and Systems, 6(1):6:1–6:17, 2020.
doi:10.1145/3368617.

7 Pingfu Chao, Yehong Xu, Wen Hua, and Xiaofang Zhou. A survey on map-matching algorithms.
In Renata Borovica-Gajic, Jianzhong Qi, and Weiqing Wang, editors, Databases Theory
and Applications: 31st Australasian Database Conference (ADC 2020), volume 12008 of
Lecture Notes in Computer Science, pages 121–133, Berlin, Germany, 2020. Springer. doi:
10.1007/978-3-030-39469-1_10.

8 Daniel Chen, Anne Driemel, Leonidas J. Guibas, Andy Nguyen, and Carola Wenk. Approximate
map matching with respect to the Fréchet distance. In Matthias Müller-Hannemann and
Renato Werneck, editors, Proceedings of the 2011 Workshop on Algorithm Engineering and
Experiments (ALENEX), pages 75–83, Philadelphia, PA, USA, 2011. SIAM. doi:10.1137/1.
9781611972917.8.

9 Daniel Chen, Christian Sommer, and Daniel Wolleb. Fast map matching with vertex-monotone
Fréchet distance. In Matthias Müller-Hannemann and Federico Perea, editors, 21st Symposium
on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2021), volume 96 of Open Access Series in Informatics (OASIcs), pages 10:1–10:20, Dagstuhl,
Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/OASIcs.
ATMOS.2021.10.

10 Anne Driemel and Sariel Har-Peled. Jaywalking your dog: Computing the Fréchet distance
with shortcuts. SIAM Journal on Computing, 42(5):1830–1866, 2013. doi:10.1137/120865112.

11 Michael Godau. A natural metric for curves: Computing the distance for polygonal chains and
approximation algorithms. In Christian Choffrut and Matthias Jantzen, editors, Proceedings
of the 8th Annual Symposium on Theoretical Aspects of Computer Science (STACS 1991),
volume 480 of Lecture Notes in Computer Science, pages 127–136, Berlin, Germany, 1991.
Springer. doi:10.1007/BFb0020793.

12 Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical
Computer Science, 38:293–306, 1985. doi:10.1016/0304-3975(85)90224-5.

13 Joachim Gudmundsson, Martin P. Seybold, and Sampson Wong. Map matching queries
on realistic input graphs under the Fréchet distance. In Nikhil Bansal and Viswanath
Nagarajan, editors, Proceedings of the 2023 Annual ACM–SIAM Symposium on Discrete
Algorithms (SODA), pages 1464–1492, Philadelphia, PA, USA, 2023. SIAM. doi:10.1137/1.
9781611977554.ch53.

https://doi.org/10.1145/2424321.2424426
https://doi.org/10.1016/S0196-6774(03)00085-3
https://doi.org/10.1142/S0218195995000064
https://doi.org/10.5311/JOSIS.2011.3.47
https://dl.acm.org/doi/10.5555/1083592.1083691
https://doi.org/10.1145/3368617
https://doi.org/10.1007/978-3-030-39469-1_10
https://doi.org/10.1007/978-3-030-39469-1_10
https://doi.org/10.1137/1.9781611972917.8
https://doi.org/10.1137/1.9781611972917.8
https://doi.org/10.4230/OASIcs.ATMOS.2021.10
https://doi.org/10.4230/OASIcs.ATMOS.2021.10
https://doi.org/10.1137/120865112
https://doi.org/10.1007/BFb0020793
https://doi.org/10.1016/0304-3975(85)90224-5
https://doi.org/10.1137/1.9781611977554.ch53
https://doi.org/10.1137/1.9781611977554.ch53

K. Buchin, M. Buchin, J. Gudmundsson, A. Popov, and S. Wong 27:15

14 Joachim Gudmundsson and Michiel Smid. Fast algorithms for approximate Fréchet matching
queries in geometric trees. Computational Geometry: Theory & Applications, 48(6):479–494,
2015. doi:10.1016/j.comgeo.2015.02.003.

15 Mahdi Hashemi and Hassan A. Karimi. A critical review of real-time map-matching algorithms:
Current issues and future directions. Computers, Environment and Urban Systems, 48:153–165,
2014. doi:10.1016/j.compenvurbsys.2014.07.009.

16 Matej Kubicka, Arben Cela, Hugues Mounier, and Silviu-Iulian Niculescu. Comparative study
and application-oriented classification of vehicular map-matching methods. IEEE Intelligent
Transportation Systems Magazine, 10(2):150–166, 2018. doi:10.1109/MITS.2018.2806630.

17 Hung Le and Cuong Than. Greedy spanners in Euclidean spaces admit sublinear separators.
In Joseph Naor and Niv Buchbinder, editors, Proceedings of the 2022 Annual ACM–SIAM
Symposium on Discrete Algorithms (SODA), pages 3287–3310, Philadelphia, PA, USA, 2022.
SIAM. doi:10.1137/1.9781611977073.130.

18 Richard J. Lipton and Robert Endre Tarjan. A separator theorem for planar graphs. SIAM
Journal on Applied Mathematics, 36(2):177–189, 1979. doi:10.1137/0136016.

19 Stig Nordbeck. Computing distances in road networks. Papers in Regional Science, 12(1):207–
220, 1964. doi:10.1111/j.1435-5597.1964.tb01266.x.

20 OpenStreetMap. Map data, 2023. URL: https://openstreetmap.org.
21 Otfried Schwarzkopf and Jules Vleugels. Range searching in low-density environments. In-

formation Processing Letters, 60(3):121–127, 1996. doi:10.1016/S0020-0190(96)00154-8.
22 Martin P. Seybold. Robust map matching for heterogeneous data via dominance decompositions.

In Nitesh Chawla and Wei Wang, editors, Proceedings of the 2017 SIAM International
Conference on Data Mining (SDM), pages 813–821, Philadelphia, PA, USA, 2017. SIAM.
doi:10.1137/1.9781611974973.91.

23 A. Frank van der Stappen. Motion Planning Amidst Fat Obstacles. PhD thesis, Uni-
versiteit Utrecht, 1994. URL: https://webspace.science.uu.nl/~stapp101/PhDThesis_
AFvanderStappen.pdf.

24 Hong Wei, Yin Wang, George Forman, and Yanmin Zhu. Map matching: Comparison of
approaches using sparse and noisy data. In Craig Knoblock, Peer Kröger, John Krumm, Markus
Schneider, and Peter Widmayer, editors, Proceedings of the 21st International Conference on
Advances in Geographic Information Systems (SIGSPATIAL 2013), pages 444–447, New York,
NY, USA, 2013. ACM. doi:10.1145/2525314.2525456.

25 Yu Zheng and Xiaofang Zhou, editors. Computing with Spatial Trajectories. Springer, Berlin,
Germany, 2011. doi:10.1007/978-1-4614-1629-6.

SoCG 2024

https://doi.org/10.1016/j.comgeo.2015.02.003
https://doi.org/10.1016/j.compenvurbsys.2014.07.009
https://doi.org/10.1109/MITS.2018.2806630
https://doi.org/10.1137/1.9781611977073.130
https://doi.org/10.1137/0136016
https://doi.org/10.1111/j.1435-5597.1964.tb01266.x
https://openstreetmap.org
https://doi.org/10.1016/S0020-0190(96)00154-8
https://doi.org/10.1137/1.9781611974973.91
https://webspace.science.uu.nl/~stapp101/PhDThesis_AFvanderStappen.pdf
https://webspace.science.uu.nl/~stapp101/PhDThesis_AFvanderStappen.pdf
https://doi.org/10.1145/2525314.2525456
https://doi.org/10.1007/978-1-4614-1629-6

	1 Introduction
	2 Preliminaries
	3 Straight Path Queries
	4 Map-Matching Segment Queries
	5 General Map-Matching Queries

