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Abstract
Dimension 4 is the first dimension in which exotic smooth manifold pairs appear – manifolds which
are topologically the same but for which there is no smooth deformation of one into the other. Whilst
smooth and triangulated 4-manifolds do coincide, comparatively little work has been done towards
gaining an understanding of smooth 4-manifolds from the discrete and algorithmic perspective. In
this paper we introduce new software tools to make this possible, including a software implementation
of an algorithm which enables us to build triangulations of 4-manifolds from Kirby diagrams, as
well as a new heuristic for simplifying 4-manifold triangulations. Using these tools, we present new
triangulations of several bounded exotic pairs, corks and plugs (objects responsible for “exoticity”),
as well as the smallest known triangulation of the fundamental K3 surface. The small size of these
triangulations benefit us by revealing fine structural features in 4-manifold triangulations.
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1 Introduction

In dimensions ≤ 3, every topological manifold admits a unique smooth structure. In
dimensions ≥ 4 however, this is no longer the case – there exist manifolds which are
homeomorphic (they represent the same topological manifold), but not diffeomorphic
(they represent distinct smooth manifolds). Such manifolds are called exotic.

One of the great remaining open problems of classical topology is the smooth 4-dimensional
Poincaré conjecture (SPC4), which asserts that all 4-manifolds homeomorphic to the 4-sphere
are diffeomorphic. In other words, SPC4 asks whether or not there exist exotic 4-spheres.

By the work of Cairns [14, 15] and Whitehead [44], every smooth manifold can be
uniquely triangulated (a smooth structure uniquely determines a piecewise-linear (PL)
structure). In dimensions ≤ 6, the converse also holds, so PL manifolds admit a unique
smooth structure [28, 36]. In particular then, results which hold for smooth 4-manifolds also
hold for PL 4-manifolds, and so we may move between the two settings at our discretion.

As such, one might hope to gain an insight into smooth 4-manifolds by studying their PL
structures, specifically in terms of triangulations, which are better suited to computational
techniques. Despite this, comparatively little work has been done from this perspective.
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One reason for this may stem from the fact that in contrast to dimension three, where
algorithms to solve many problems are known (though in many cases are intractable), in
dimension four many of the same problems become undecidable. For example, in dimension
three there exists an algorithm to decide whether two arbitrary triangulations represent the
same topological manifold (despite the best known algorithm having complexity bounded by
a tower of exponentials) [31, 32]. In dimension four however, any finitely presented group
can be the fundamental group of a 4-manifold, from which the problem of deciding whether
two arbitrary 4-manifolds are homeomorphic (let alone diffeomorphic) becomes equivalent to
solving the word problem on finitely presented groups, which is undecidable [34, 2, 41].

As a consequence, we can often only hope for heuristics which, for as many cases as
possible, give the correct answer, in as short a time as possible. The existence of such heuristics
illustrate the difference between what can be shown in theory versus what is possible in
practice, and which motivates the contents of this paper. There are of course theoretical
restrictions on the effectiveness of any heuristic however, e.g. there is no computable upper
bound on the number of local moves needed to simplify to a minimal triangulation.

Original Contributions. Regarding the proposed program of understanding smooth, and in
particular, exotic 4-manifolds from a computational perspective, and motivated by SPC4,
we should ask: what tools and techniques will be needed for such an undertaking? The most
obvious starting point would be to build up a catalogue of examples to analyse, consisting of
triangulations of different, simple, exotic pairs. In particular, if we are interested in eventually
attacking SPC4, we desire examples which are closed, orientable, simply-connected, and in
some sense “small” (either topologically, for example in terms of the Euler characteristic, or
in terms of the number of simplices in a triangulation, or indeed both).

Concerning a catalogue of examples, until now there has been just one readily available pair
of “exotic” triangulations, realising a pair due to Kreck [30] and triangulated by Benedetti and
Lutz [8]. The pair are formed from connect sums of standard 4-manifolds, are non-orientable
and not simply-connected. The triangulations are presented as simplicial complexes and so
are very large (having 460 and 518 4-simplices respectively), in principle making analysis of
their combinatorics difficult due to a lack of effective simplification techniques, until now.

Whilst one typically associates the term “triangulation” with “simplicial complex”, we
work here instead with generalised triangulations (specifically, unordered ∆-complexes).
These allow for far more efficient triangulations compared to simplicial complexes since, for
example, faces of the same simplex can be identified together.

We typically want as small a triangulation as possible in order, for example, to recognise
important structures within the triangulation. As such, we require an effective means of
simplifying triangulations. Existing simplification heuristics have been predominantly tailored
for either 3-manifolds, or triangulations presented as simplicial complexes (and which retain
the simplicial structure), whilst simplifying 4-manifold triangulations remains a challenge.

In this article, we address the above concerns, presenting:
In Section 3: Software which allows for the first time, the ability to produce triangulations
of 4-manifolds from a commonly used smooth description (Kirby diagrams).
In Section 4: A new and effective heuristic for simplifying 4-manifold triangulations.
In Section 5, using these software tools we obtain:

The first examples of small triangulations (ranging from 10 to 26 simplices) of several
bounded, simply-connected, orientable, exotic pairs.
Small triangulations of objects which are directly responsible for the “exoticity” in
certain exotic pairs (corks and plugs).
The current smallest known triangulation of the K3 surface (one of four “fundamental”
simply-connected 4-manifolds).
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Consequently, we are for the first time in a position to begin effectively analysing the
combinatorics of both standard and exotic 4-manifold triangulations, which we illustrate in
Section 5. Finally, in Section 5.4, we discuss work towards triangulating closed exotica.

2 Preliminaries

2.1 Links and 4-Manifolds
We assume here a basic familiarity with knot theory (writhes, etc.); for details see [1].
Henceforth, all manifolds are assumed to be orientable. In the smooth setting, we primarily
work with 4-manifolds via handle decompositions [6, 27].

▶ Definition 1. For 0 ≤ k ≤ 4, a 4-dimensional k-handle hk is a copy of Dk × D4−k,
attached to a smooth 4-manifold W via an embedding of the form φ : ∂Dk × D4−k → ∂W .

All handles are topologically just a ball, so what distinguishes a handle is how it is
attached. For example, attaching a 1-handle can be thought of as a “rod” with its ends
attached to the base W , whereas a 2-handle could be thought of as a “plate” with its circular
boundary attached to W (and one imagines “thickening” these rods and plates up to be
appropriately dimensioned so that we always get a manifold). This idea is shown in Figure 1.

W W

1-handle 2-handle

∂W∂W

Attaching region

Attaching sphere

Core

Figure 1 Cartoons illustrating adding a 1-handle versus adding a 2-handle.

We typically build a 4-manifold by starting with W = B4 (a 0-handle), and then
attaching 1- and 2-handles. By a theorem of Laudenbach and Poenaru, 3- and 4-handles
attach uniquely [33] up to diffeomorphism, and so it suffices to understand how the 1- and
2-handles attach.

Given a handle decomposition of M , we visualise M by placing ourselves in the boundary
of the 0-handle, S3 ∼= R3 ∪ {∞}, and draw the attaching regions of the 1- and 2-handles.

Let us first consider the case of a single 2-handle attached to the 0-handle. The attaching
map is of the form φ : S1 × D2 → S3. Such a map is determined up to isotopy by:
1. an embedding φ|S1×{0} : S1 × {0} → S3, i.e. a knot K, and
2. a framing of φ(S1), i.e. a choice of normal vector field on K.
Framings are in bijection with the integers [6, 27]. This integer is the number of times the
D2 factor “twists” around the knot. Diagrammatically this can be represented as a “ribbon”
formed from K with n twists in it (Figure 2(i)). More commonly however we will simply
draw K decorated with the integer n as shown in Figure 2(ii).

A 1-handle is represented diagrammatically by an unknot with a dot on it (cf. Figure 3).
Arcs of 2-handles passing through a dotted circle are understood to be running “over” the
attaching region of the 1-handle (cf. [6, 27]).

SoCG 2024
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Figure 2 A framed knot.

With the above in mind, we can visualise a smooth 4-manifold by a decorated, ℓ-component
link diagram L, comprised of (i) d dotted, mutually unlinked unknots, representing the
1-handles; and (ii) ℓ − d knots (possibly linking each other and/or the dotted components),
with an integer ci attached to each component Li (d + 1 ≤ i ≤ ℓ), representing the 2-handles
and their associated framings. One should also specify how many, if any, 3-handles there
are. This data is enough to reconstruct the 4-manifold up to diffeomorphism [6, 27]. Such a
diagram is called a Kirby diagram. Figure 3 is an example of a typical Kirby diagram.

0

−1

Figure 3 An example of a Kirby diagram.

2.2 Gems
In what follows the term graph is used to refer to a finite multigraph without loops.

▶ Definition 2. An (n + 1)-coloured graph is a pair (Γ, γ), where Γ = (V (Γ), E(Γ)) is
an (n + 1)-regular graph, and γ : E(Γ) → ∆n = {0, . . . , n} is a map which is surjective on
adjacent edges (a colouring of the edges so that no two adjacent edges have the same colour).

Let S ⊆ ∆n and let ΓS be the graph obtained from Γ by deleting all the edges that are
not coloured by elements of S. The connected components of ΓS are called S-residues of Γ.

An (n+1)-coloured graph (Γ, γ) can be used to construct an n-dimensional pseudo-complex
K(Γ) via the following procedure [23]:
1. For each v ∈ V , take an n-simplex σ(v), and label its vertices with the elements of ∆n.
2. If u, v share a c-coloured edge, identify the (n − 1)-faces of σ(u), σ(v) opposite their

respective c labelled vertex, so that equally labelled vertices of σ(u) and σ(v) are identified.
This construction is illustrated for the three-dimensional case in Figure 4.
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Figure 4 Constructing a triangulation from a coloured graph.

If K(Γ) triangulates a PL n-manifold M , then (Γ, γ) is called a gem (graph encoded
manifold) representing M . If ∂M ≠ ∅, then K(Γ) triangulates the associated singular
manifold M̂ obtained from M by coning each boundary component. For simplicity we will
make no distinction between these cases. By construction the graph Γ represents the dual
1-skeleton of the complex K(Γ).

▶ Theorem 3 ([18]). Every compact n-manifold admits an (n + 1)-coloured gem.

3 Diagrams to Graphs and Triangulations

In 2000, Casali described an algorithm to obtain a gem of a 4-manifold M whose Kirby
diagram consists only of 2-handles [16]. Recently, Casali and Cristofori extended the algorithm
to more general Kirby diagrams (ones which may contain 1-handles) [17]. However, until now
there has been no readily available software implementation of these algorithms.We introduce
here an implementation of both algorithms in a software utility called DGT (Diagrams to
Graphs & Triangulations), as a part of the Regina software package [12].

The user provides a combinatorial encoding of the underlying link of the Kirby diagram
in the form of a Planar Diagram Code (PD Code) (this is most easily generated by
drawing the link in the PLink Editor included as part of Snappy [20], (see Figure 5), and a
list specifying the integer framing on each component or the presence of a 1-handle. DGT
then builds a 5-coloured graph realising a gem of the associated 4-manifold, from which it in
turn also produces a Regina formatted triangulation.

3.1 Construction Details
In this section we summarise the algorithms of [17]. We note that our version of the algorithm
in the case involving 1-handles is slightly different from what is presented in [17], and is more
representative of our particular implementation.

To begin, we encode the framing of a 2-handle via the writhe of the knot (since the writhe
of a knot coincides with the so-called “blackboard framing” of that knot). If the specified
framing and the writhe do not coincide, we can add additional “curls” (Reidemeister 1 moves)
of the appropriate sign to the knot, which change the writhe by ±1, until the writhe equals
the specified framing. Figure 6 shows how the addition of these curls corresponds to a tubular
neighbourhood of the knot being twisted around the core, and hence encoding the framing
as desired. DGT automatically performs this “self-framing procedure”.

SoCG 2024



29:6 Practical Software for Triangulating and Simplifying 4-Manifolds

Figure 5 Snappy’s PLink Editor.

K ν(K)

Figure 6 Adding a curl adds a twist in the normal disk bundle (i.e. changes the framing by ±1).

To construct the 5-coloured gem Λ representing M from its Kirby diagram, the first step
is to construct a 4-coloured gem Γ representing ∂M1. Γ is constructed as follows.
1. For each crossing and curl in the diagram L, construct 4-coloured graphs as per Figure 7.
2. Identify the “hanging” edges of each subgraph together in the “natural” way according to

the link diagram (see [16] for the precise characterisation of “natural”).

By possibly introducing a pair of curls of opposite signs into each component Li, the
graph Γ is guaranteed to contain for each Li a copy of the subgraph shown in Figure 8, called
a quadricolour. Figure 9 shows that a quadricolour will appear whenever a curl is adjacent
to an undercrossing or another curl of the same sign.

For a 4-manifold M = M(L, c) with no 1-handles, the procedure to build a 5-coloured
graph Λ representing M can now be summarised as follows:
1. Construct the 4-coloured graph Γ representing ∂M .
2. Pick a quadricolour for each Li (1 ≤ i ≤ d) and add colour-4 edges according to Fig. 10.
3. Add colour-4 edges to the remaining vertices of Γ sharing a colour-1 edge.

1 In the case that M is closed, we remove a small ball and let ∂M be the resulting boundary 3-sphere.
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Figure 7 4-Coloured subgraphs corresponding to true crossings and (positive and negative) curls.

Figure 8 A quadricolour.

The operation of Figure 10 realises attachment of a 2-handle, whilst the doubling of
1-coloured edges realises a cone over the remaining boundary complex (see e.g. [16]).

In theory, to locate a quadricolour for each component, one could build the 1-residue of
Γ (the connected components of which correspond to the components of L), and for each
component, perform a search for a cyclic subgraph corresponding to a quadricolour. However
we can far more efficiently locate a quadricolour as follows.

Since a quadricolour is guaranteed to appear at either two adjacent curls of the same
sign, or at a curl and the under strand of a “true” crossing (a non-curl crossing), we can
determine where quadricolours will appear by identifying these structures directly from the
diagram. Then by implementing our graphs via adjacency lists, locating a quadricolour in
the graph can be made linear time using a single pass over the vertices of the graph.

Suppose we now have d > 0 dotted components. We first require the link diagram to
satisfy two conditions: (i) the 1-handles are drawn in a “standard position” – that is, as
unknots which visibly bound a disk – and (ii) any arcs of framed components passing through
a dotted component do so in a way such that one could “cut” the dotted component into
two halves, one half containing only over crossings of the 2-handles, and one containing only
undercrossings of the 2-handles (see Figure 11). Kirby diagrams can always be isotoped to
satisfy these conditions [27] (though in practice this is often easier said than done).

Let Li denote the ith dotted component for 1 ≤ i ≤ d < ℓ, and Lj denote the jth framed
component for d + 1 ≤ j ≤ ℓ. Let Qj be the chosen quadricolour in Γ, corresponding to
Lj . Since the location of Qj can be determined from a pair of crossings in L, let (Cj , Xj)
denote the curl and undercrossing pair in L which determines Qj . If Qj is a quadricolour
constructed from two curls, let Xj be the “other” curl in the pair. Record the following data:

SoCG 2024
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Figure 9 Guaranteed quadricolour location conditions.

Figure 10 The quadricolour substitution operation realising 2-handle attachment.

Let {Hi, H ′
i} be the two “outermost” undercrossings of Li, ∀i ∈ {1, . . . , d} (cf. Fig. 12).

For each j ∈ {d + 1, . . . , ℓ}:
Let Ij := Lj ∩

⋃d
i=1 Li be the set of crossings common to both Lj and Li for a fixed j.

From Cj , walk along Lj in the direction opposite to Xj and let Yj be the crossings
seen. Walk along Lj until Yj contains all crossings in Ij except possibly for Xj .

In essence, this data “finds” the disks which the dotted components would bound in the
absence of any 2-handles, thereby effectively locating the 1-handles in the diagram. This
procedure is shown in Figure 12, applied to the Kirby diagram depicted in Figure 3.

Once Γ has been constructed, and using the above, record the following data from Γ:
For each i ∈ {1, . . . , d} let Ri be region bounded by Li. For each i, let ei (respectively e′

i)
be the 1-coloured edges of Γ parallel to the part of the arc of Li containing Hi (resp. H ′

i)
on the side of the regions of L “merging” into Ri, and let vi (resp. v′

i) be its endpoint
belonging to the subgraph corresponding to an undercrossing of Li (see Figure 14).

See [17] for the graph-theoretic details of why this data is needed.
With the above data in place, the colour-4 edges realising 1- and 2-handle attachments

are added according to the following criteria:
For each quadricolour Qj , j ∈ {d + 1, . . . , ℓ}, add edges according to Figure 10.
For each i ∈ {1, . . . , d}, add an edge so as to join vi and v′

i.
For each crossing in Yj , if no colour-4 edges have already been added to the associated
subgraph in Γ, add edges according to Figure 13.
Add edges to the remaining vertices, joining those which belong to the same {1, 4}-residue.
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Figure 11 Requirements for the handle diagram.

Figure 12 Example illustrating the various link data in the 1-handle construction.

Figure 14 depicts the 5-coloured graph obtained via this procedure when applied to the
Kirby diagram of Figure 3. Note that all edges coloured according to the key are the same
colour-4, we have only used different colours to illustrate the separate steps of the procedure.

SoCG 2024
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Figure 13 Criteria for adding colour-4 edges associated to elements of Yj .

Figure 14 Example of a 5-coloured graph representing the 4-manifold of Figure 3.
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4 Up-Down Simplification

A drawback of the algorithm used by DGT is that the size of the resulting triangulations are
quite large. From Figure 7, we see for each true crossing x of the diagram, and each framing
curl c, the number of pentachora (4-simplices) in the resulting triangulation is 8x + 4c.

To illustrate this number is not optimal, consider the following simple example. The
complex projective plane CP 2, admits a handle decomposition consisting of a single 0-, 2-
and 4-handle, and can be realised by the Kirby diagram consisting of a single unknot with
+1 framing. Since DGT uses PD codes to encode link diagram, we have to place a single
trivial curl in the unknot to first obtain a diagram which can be encoded by a PD code.
We must then add an additional pair of curls to guarantee the existence of a quadricolour.
This results in a triangulation of CP 2 with 4 · 3 = 12 pentachora. However it is not difficult
to verify that a minimal triangulation of CP 2 consists of just four pentachora, e.g. either
by checking the 4-dimensional closed census [12] or by manually performing Pachner moves
(a.k.a bistellar flips, see Section 4.1) on the triangulation directly.

In some cases introducing a cancelling 1/2-handle pair (see [6, 27, 10]) into a diagram
can be used to reduce the complexity of the diagram, which in turn reduces the size of the
triangulation produced by DGT. For example, consider the diagram on the left in Figure 15.
By introducing a cancelling 1/2-pair, we can remove the four twists, as seen on the right.

−1 −1

−4

K2

Figure 15 Introducing a cancelling 1/2-handle pair to reduce the complexity of a diagram.

The left diagram had 14 true crossings, with writhe w(K2) = +8 (and so, needing nine
additional curls to encode the −1 framing). Consequently, the number of pentachora in the
triangulation built by DGT is 8 · 14 + 4 · 9 = 148. If we compare this to the diagram on
the right, we see that the cancelling pair has reduced the total number of true crossings in
the diagram by two, and in particular, has lowered the writhe of K2 to zero, meaning K2
now only needs one additional curl to encode the framing. Together with the four additional
curls to encode the framing of the cancelling unknot, this means that the total number of
additional curls needed has also been lowered, from the original nine, down to five. Hence the
total number of pentachora in the resulting triangulation is 116, a saving of 32 pentachora.

Of course, this 1/2 swapping “trick” cannot always be performed, and is not guaranteed
to lower the complexity when it can be done (for example, compare Figure 21 to Figure 22
in which the 1/2 swap increases the complexity of the left link). Moreover even when it does
lower the complexity of the link, the triangulations produced by DGT are still fundamentally
constrained by the 8x + 4c “barrier”. To this end, we have developed a new heuristic called
Up-Down Simplification (UDS) for reducing the size of 4-manifold triangulations.

SoCG 2024
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4.1 The Heuristic
Using the Dehn-Sommerville relations and the equation for the Euler characteristic, it can be
shown that the number of pentachora in a triangulation of a simply-connected 4-manifold is

p = 6(χ − v) + 2e, (1)

where χ is the Euler characteristic of M , v is the number of vertices, and e is the number of
edges. Since χ is a fixed constant, p is determined by v and e. As such, let us define the
“core” f -vector of a 4-manifold triangulation to be f̄ = (v, e | p) (recall the standard f -vector
is the vector whose ith entry is the number of i-dimensional simplices in a complex).

We modify our triangulations using local moves which change the triangulation but not
the underlying topology or PL type, for example Pachner moves (a.k.a bistellar flips) [38].
Informally, an i-j Pachner move can be thought of as taking i pentachora and replacing them
with j pentachora in a specified manner. An example of a 2-4 move is shown in Figure 16.

Figure 16 A 2-4 move divides two adjacent pentachora into four.

Moves of particular importance to us are (i) 3-3 and 4-4 moves which do not effect the f -
vector, and (ii) 2-0 edge/triangle moves, both of which change f̄ by (v, e | p) 7→ (v, e−1 | p−2).

In three-dimensions, a defining characteristic of minimal triangulations is having as few
vertices as possible (indeed in typical cases minimal 3-manifold triangulations will have just
a single vertex [29]). Consequently, existing heuristics for 3-manifolds try to minimise the
number of vertices. However, from Equation (1), smaller values of p are achieved not by v = 1,
but by having v and e of the same order of magnitude as χ. In other words, p is minimised
by having as many vertices as possible with as few edges as possible. Consequently, existing
3-manifold simplification heuristics are not optimal for use on 4-manifold triangulations.

Moreover, the simplification heuristic in Regina for 3-manifolds does not attempt to make
the triangulation any bigger than the initial input, this is because in three dimensions local
minima are never deep enough to require “well climbing” techniques [11]. However in the
case of 4-manifolds, by increasing the size of the triangulation in a controlled manner, new
simplifying moves are often opened up, and importantly, in sufficient number to escape local
minima, which in contrast to three dimensions, are often deep enough to get trapped in.
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With the above in mind, the three key ideas underpinning our heuristic are:
do not perform any moves which change the number of vertices, i.e. no 1-5/5-1, 2-0 Vertex,
or Collapse Edge moves (cf. Appendix C [10] or [11]),
only descend via 2-0 Edge, and 2-0 Triangle moves, and
use 2-4 moves to enlarge the triangulation but keep the number of vertices fixed.

Note we do not use 4-2 moves to descend since these simply reverse the 2-4 moves performed
and hence do not change our position in the space of triangulations. Whereas by using 2-0
moves, we are genuinely “going down a different path”.

Let upMax and sideMax be some maximum number of 2-4 and 3-3/4-4 moves to perform.
The core algorithm of the heuristic runs as follows.

1. For 1 ≤ i ≤ upMax perform i random, 2-4 moves.
2. If no 2-0 Edge or 2-0 Triangles moves are available, perform j random 3-3 moves, or if no

3-3 moves are available, perform j ≤ sideMax random 4-4 moves (and vice-versa).
3. Perform as many 2-0 Edge and 2-0 Triangle moves as possible.
4. Repeat from Step 1 as many times as desired.

We note that in practice, once UDS appears to hit a deep local minimum, performing
moves which do reduce the number of vertices (e.g. “collapse edge” or 2-0 vertex moves) and
then applying UDS to the “new”, vertex-reduced triangulation can typically be used to some
success in further simplifying the triangulation (i.e. UDS should be used in conjunction with
judicious application of other simplifying moves to get the smallest triangulation possible).
Despite the simple ideas behind UDS, it has proven to be more effective than any prior
heuristic for 4-manifold triangulations, as demonstrated in the next section.

5 Experimental Results

Data pertaining to this section is available at https://github.com/raburke/socg24.

5.1 The K3 Surface
The K3 surface is one of four “fundamental” simply-connected 4-manifolds, alongside CP 2

and S2 × S2 [27, 42]. In contrast to CP 2 and S2 × S2 however which have small Euler
characteristics (3 and 4 respectively), K3 is comparatively large with χ = 24.

Two triangulations of the K3 surface are due to Casella and Kühnel [19], and Spreer and
Kühnel [43]. Both triangulations are simplicial complexes, with core f̄ -vectors (16, 120 | 288)
and (17, 135 | 312) respectively (as such, the triangulations are commonly referred to as K316
and K317). Whilst K317 is known to have a standard PL type, the PL type of K316 is
unknown. It is conjectured that they are diffeomorphic, and in 2014, Burton and Spreer
attempted to show this (unsuccessfully) by adapting methods from three dimensions [13].

An obvious approach to proving the conjecture would be to simplify both triangulations
as far as possible, and then repeatedly perform random local modifications, which keep the
number of simplices fixed, until both triangulations are combinatorially isomorphic.

As mentioned in Section 4, minimal triangulations of 3-manifolds typically have a single
vertex, and so Burton and Spreer start by applying this mindset to the triangulations of K3,
obtaining 1-vertex 1-edge triangulations of K316 and K317 each having f̄ = (1, 1 | 140). This
in itself was a non-trivial task at the time, requiring a combination of techniques including
(i) classical techniques which reduce the triangulation as far as possible using local moves,
(ii) the “composite” moves described earlier, (iii) simulated annealing techniques, and (iv)
exhaustive retriangulation in the form of a breadth-first search exploring Pachner moves.
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From there, they attempt to connect the two triangulations via the method outlined
above, specifically by running a dual-source breadth-first search exploring Pachner moves.
However their algorithm was unsuccessful in connecting the two triangulations in question.

Using UDS we obtained triangulations of K316 and K317 with 66- and 60-pentachora
respectively. Whilst this is more promising, being considerably smaller triangulations than
both the original simplicial complex versions as well as the 1-vertex 1-edge triangulations (as
well as being the first triangulations of K316 and K317 with < 100 pentachora), we have
managed to obtain an even smaller triangulation of K3 as follows.

Using DGT, we obtained a 2048 pentachora triangulation of the (standard) K3 surface
from the Kirby diagram shown in Figure 12.17 of [6]. After applications of UDS, we arrived
at a triangulation with just 54 pentachora. This is the smallest known triangulation of K3
to date. The dual graph is shown in Figure 17.

The small size of the triangulation reveals prominent features, which appear to be
common to closed simply-connected triangulations. For example, there is a 1-pentachoron
triangulation of B4 formed by identifying two pairs of the pentachoron’s facets together,
which we call a twice snapped ball (TSB). As can be seen in Figure 17, this structure
appears throughout the triangulation of K3 (nodes highlighted in blue). We believe TSBs
play a key role in the handle structure of the manifold (informally, we tend to see one TSB
per handle). Similar observations can be made for triangulations of other simply-connected
manifolds (e.g. CP 2, S2 × S2, etc.). Moreover, as can be seen in Figure 17, these structures
appear to “coalesce” into larger groups (cf. the nodes highlighted in red). It transpires that
the 7-pentachora structures indicated all realise the same topological structure: a linear
plumbing of three (−2)-framed 2-spheres. Plumbings are an important construction in
4-manifold theory, formed by iteratively gluing together disk bundles over surfaces. Many
closed simply-connected 4-manifolds contain plumbed manifolds as constituent pieces.

These observations suggest it may be possible to construct triangulations of simply-
connected 4-manifolds in a manner which directly reflects the topological structure of the
manifold. In addition, plumbings also play a role in producing exotic structures (via a
procedure called rational blowdown, cf. [24, 40]), and so being able to recognise these
structures is also of interest in this respect.

Whilst this is the smallest triangulation of K3 obtained so far, we believe that an even
smaller triangulation is possible:

▶ Conjecture 4. Let M be a closed, simply-connected, smooth 4-manifold. If T (M) is a
triangulation of M , with p pentachora, then 2χ − 2 ≤ p.

Evidence for Conjecture 4 stems from observations of the closed census of up to six pentachora.
If Conjecture 4 is true in general, then our triangulation of K3 is only eight pentachora (or

four edge reductions) away from being minimal. Despite minimality seemingly within arm’s-
reach, we have not been successful in simplifying our triangulation any further, suggesting
that this triangulation sits within a very deep local minimum.

5.2 Exotic 4-Manifolds
Using DGT, we produce triangulations of the exotic 4-manifold pairs shown in Figures 18–21.
These are the first known triangulations of simply-connected orientable exotic 4-manifolds.
We note that whilst the 5-colour graphs representing the pair in Figure 20 were illustrated
in [17], the triangulations presented in this paper constitute the first readily machine-readable
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Figure 17 Dual graph of a 54-pentachora triangulation of the K3 surface.
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presentation of all the pairs in question. Through applications of UDS, we obtain particularly
small triangulations, whose f -vectors are shown in Table 1. The objects with “cork” and
“plug” labels are discussed in Section 5.3.

−1

−1

A2A1

Figure 18 An exotic pair, due to Akbulut [3].

Y1 Y2

−3 −3

−3

Figure 19 An exotic pair, due to Yasui [45].

Table 1 f -Vectors of various exotic pairs and related objects.

Manifold f -Vector Pair f -Vector Pair f -Vector
Akbulut Cork C1 (1, 2, 17, 25, 10) (A1, A2) (2, 2, 17, 25, 10) (W1, W2) (4, 5, 30, 40, 16)
Positron Cork C̄1 (1, 6, 34, 45, 18) (N(3), N(3)0) (3, 3, 22, 30, 12) (M1, M2) (2, 9, 46, 60, 24)

Plug P1,2 (3, 3, 12, 15, 6) (N(5), N(5)0) (3, 5, 30, 40, 16) (Y1, Y2) (2, 10, 50, 65, 26)

▶ Remark 5. The exotic pair of Figure 18 is the smallest and simplest known exotic pair.
Let us consider the pair shown Figure 21. By introducing a cancelling 1/2-pair we

get the diagrams shown in Figure 22. Observe that both manifolds now have the same
underlying link diagram with the only change being which unknot component receives the
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−8 0

W1 W2

Figure 20 An exotic pair, due to Naoe [37].

−n

0

−1

0

−n

N(n)0N(n)

Figure 21 An exotic pair, n ≥ 3 odd, due to Gompf [26].

−n framing. In principle then, it would be possible to automatically generate an infinite
family of (exotic) triangulations from this diagram. To the best of the author’s knowledge,
this likely constitutes the simplest such family in the sense that the underlying diagrams of
the pair are the same, as well as the links themselves being comparatively simple.

The small size of the triangulations has enabled us in some cases to combinatorially
identify a number of distinguishing topological features in some of the exotic pairs.

For example, both N(n)0 and W2 admit a splitting by a CP 2 connect summand. In the
Kirby diagrams of the respective manifolds, this is identified by the (−1)-framed unknot in
each diagram. In particular, this shows that N(n)0 and W2 are not diffeomorphic to N(n)
and W1 respectively, since neither of the latter manifolds admit such a splitting [26].

Using UDS, we obtain a 16 pentachora triangulation of N(3)0, whose dual graph is shown
in Figure 23(i). If one “cuts” the triangulation along the dashed red edge of Figure 23(i)
(joining pentachora 3 and 5) and fill in the respective S3 boundary components in each
resulting component, then we obtain two new triangulations, say X, and a triangulation of
CP 2 (coming from the subcomplex highlighted in red). In other words, we find the splitting
N(3)0 = X#CP 2. In X, if one considers the subcomplex derived from only the blue edges of
Figure 23(i), we get a triangulation of C(∂N(3)0) (i.e. a cone over the boundary of N(3)0). It
would seem then that the additional gluings, indicated by the purple edges, are responsible for
realising a cobordism between C(∂N(3)0) and S3. An analogous decomposition is possible for
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−1

N(n)0N(n)

Figure 22 A more symmetric view of the exotic pair from Figure 21.

both a 20-pentachora triangulation of N(5)0 (Figure 23(ii)) and a 22-pentachora triangulation
of W2 (Figure 23(iii)), wherein we find the exact same 5-pentachora subcomplex realising
the CP 2 summand of each manifold. These examples represent a first small step towards
being able to combinatorially distinguish smooth structures.

5.3 Corks and Plugs
Given an exotic pair a natural question to ask is: what causes the change in smooth structure?
In the smooth setting, the following definition and theorem shed some light on this question.

▶ Definition 6. A cork is a pair (C, f), where C is a compact contractible manifold, and
f : ∂C → ∂C is an involution, which extends to a self-homeomorphism of C, but does not
extend to a self-diffeomorphism of C. We say (C, f) is a cork of a manifold M if C ⊂ M

and removing C from M and regluing via f gives an exotic copy M ′ of M :

M = N ∪id C, M ′ = N ∪f C, N = M − int(C), (2)

▶ Theorem 7 ([21, 35]). Every exotic simply-connected, closed pair (M, M ′) satisfy (2).

Figure 24(i) shows the first and simplest known example of a cork, discovered by Akbu-
lut [4]. The map f : ∂C1 → ∂C1 has the effect of exchanging the loops α and β.

Many exotic pairs have been constructed from this cork by enlarging it (attaching
additional handles). For example, the (A1, A2) pair in Figure 18 is obtained by attaching
a (−1)-framed unknot along α or β. See, for example, Figure 11.14 of [27] for the relevant
calculus. Similarly, the (M1, M2) pair in Table 1 are obtained by attaching a 0-framed trefoil
along α (respectively β)) (see Figure 10.18 of [6]).

As another example, let E(1) = CP 2#9CP 2. The Dolgachev surface is an exotic copy of
E(1) [22], and Akbulut showed that the smooth structure can be changed by the so-called
“positron” cork C̄1 [5], shown in Figure 24(ii).

Once again, using DGT and UDS, we obtain triangulations of the corks C1 and C̄1. This
is the first time explicit triangulations of these objects have been obtained.

Plugs are similar to corks in that they can sometimes change the diffeomorphism type
of a manifold by removing and regluing via an involution on their boundary. Plugs can
naturally arise when performing the previously mentioned rational blowdown operation on
4-manifolds [7], and so also constitute important objects to have triangulations of, and to
study the combinatorics of. Similarly to corks, exotic pairs have been obtained by enlarging
plugs, for example the (W1, W2) pair of Figure 20, differ by a so-called P1,2 plug shown in
Figure 25 (see also Figure 13 of [37] for the relevant handle calculus for (W1, W2)).
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Figure 23 Dual graphs of triangulations of N(3)0 (left), N(5)0 (middle), and W2 (right).

Given that corks and plugs are objects that can be responsible for “exoticity”, having
triangulations of these objects will hopefully provide a basis for understanding how triangu-
lations of exotic pairs differ combinatorially. In addition, locating a cork within a 4-manifold
is often a highly non-trivial task, and so an algorithm which could identify a cork within a
triangulation combinatorially could be of enormous benefit.

5.4 Work Towards Closed Examples
Now that we have an effective means of triangulating 4-manifolds, one might hope we can
start obtaining triangulations of closed exotic 4-manifolds. Unfortunately, Kirby diagrams
of closed exotic manifolds are currently few in number, but worse still is that all of the
currently known diagrams of closed examples have their handles drawn in ways incompatible
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(ii) C̄1(i) C1

Figure 24 Left: The Akbulut cork C1. Right: The positron cork C̄1.
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Figure 25 The plug P1,2.

with the algorithm of DGT (recall Figure 11). In principle, it would be possible to isotope
these 1-handles into standard position, however attempts to do this have been unsuccessful
due to the high complexity of the diagrams (e.g. compare Figure 21 of [7] to Figure 11).

On the other hand, there is some hope we might construct examples “manually” by
decomposing 4-manifolds into pieces which are easier to triangulate, and then gluing them back
together appropriately. One possible example of this is the following procedure introduced
by Fintushel and Stern [25]. Let K ⊂ S3 be a knot and ν(K) its tubular neighbourhood.
Suppose X contains an embedded torus T 2 with trivial normal bundle (i.e. T 2 × D2 ⊂ X).
Note that S3 − ν(K) is topologically a solid torus S1 × B2, and so we have

∂(T 2 × D2) = T 2 × ∂B2 = T 2 × S1 = S1 × ∂B2 × S1 = ∂(S3 − ν(K) × S1).

Let XK = (X − T × D2) ∪φ ([S3 − ν(K)] × S1), where φ is any map which preserves the
homology class [{pt.} × ∂D2] of the torus. If X and X − T 2 × D2 are both simply-connected,
then XK is homeomorphic to X, but the diffeomorphism type is determined by φ({pt.}×S1).

Recall that E(1) ∼= CP 2#9CP 2. Take K to be the right-handed trefoil knot. It is known
that E(1)K is diffeomorphic to the Dolgachev surface mentioned in Section 5.3 (and hence,
not diffeomorphic to E(1)) [39]. Using a combination of DGT, UDS, and Regina, we obtained
a 40-pentachora triangulation of E(1) − ν(T 2) from Figure 26.
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all −1

Figure 26 E(1) − ν(T 2).

Using Regina, we then built a triangulation of (S3 − ν(K)) × S1 (since Regina already
has the capability to build knot complements and S1 bundles of arbitrary 3-manifolds, we
did not need to build (S3 − ν(K)) × S1 from a Kirby diagram). Again using a combination
of UDS and Regina we obtained a 16-pentachora triangulation of this piece. We used UDS
in conjunction with boundary specific moves to simplify the two triangulations as much as
possible, and to the point where the boundaries of both triangulations were the minimal
six-tetrahedra T 3. The final manifold is then obtained by gluing the boundaries together.
There is only a finite number of ways of identifying the boundary triangulations together,
and we can perform all such gluings to obtain our candidate exotica.

Whilst the condition on φ is not particularly restrictive, it remains to verify that a given
gluing of the boundaries satisfies the necessary conditions to ensure that the resulting space
is exotic; this would entail locating a representative curve for [{pt.} × S1] and “tracking its
journey” through the construction, which is feasible but requires considerable combinatorial
“bookkeeping” which has yet to be done. However, it seems reasonable that at least one of
these gluings should meet the condition. If true, such a triangulation would constitute one of
the first known examples of a closed, simply-connected, orientable, exotic triangulation.
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