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Abstract
A long-standing open conjecture of Branko Grünbaum from 1972 states that any arrangement of
n pairwise intersecting pseudocircles in the plane can have at most 2n − 2 digons. Agarwal et
al. proved this conjecture for arrangements in which there is a common point surrounded by all
pseudocircles. Recently, Felsner, Roch and Scheucher showed that Grünbaum’s conjecture is true for
arrangements of pseudocircles in which there are three pseudocircles every pair of which creates a
digon. In this paper we prove this over 50-year-old conjecture of Grünbaum for any arrangement of
pairwise intersecting circles in the plane.

2012 ACM Subject Classification Mathematics of computing → Combinatorics

Keywords and phrases Arrangement of pseudocircles, Counting touchings, Counting digons, Grün-
baum’s conjecture

Digital Object Identifier 10.4230/LIPIcs.SoCG.2024.3

Funding Gábor Damásdi: Research partially supported by ERC grant No. 882971, “GeoScape”.
Balázs Keszegh: Research supported by the János Bolyai Research Scholarship of the Hungarian
Academy of Sciences, by the National Research, Development and Innovation Office – NKFIH under
the grant K 132696 and FK 132060, by the ÚNKP-23-5 New National Excellence Program of the
Ministry for Innovation and Technology from the source of the National Research, Development and
Innovation Fund and by the ERC Advanced Grant “ERMiD”. This research has been implemented
with the support provided by the Ministry of Innovation and Technology of Hungary from the
National Research, Development and Innovation Fund, financed under the ELTE TKP 2021-NKTA-
62 funding scheme.
Rom Pinchasi: Supported by ISF grant (grant No. 1091/21).

1 Introduction

A family of pseudocircles is a set of closed Jordan curves such that every two of them are
either disjoint, intersect at exactly one point in which they touch or intersect at exactly two
points in which they properly cross each other. The bounded regions whose boundaries are
the pseudocircles are called pseudodiscs. An arrangement of pseudocircles is the cell complex
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into which the plane is decomposed by the pseudocircles and consists of vertices, edges and
faces. If there are two points that lie on every pseudocircle, then the arrangement is trivial.
If there is no point that lies on three pseudocircles, then the arrangement is simple.

A digon is a face whose boundary consists of two edges. It is easy to see that there are
2n digons in a trivial arrangement of n pseudocircles, for n > 1. More than 50 years ago
Grünbaum conjectured that non-trivial arrangements of pairwise intersecting pseudocircles
have fewer digons.

▶ Conjecture 1 (Grünbaum’s digon conjecture [8, Conjecture 3.6]). Every non-trivial arrange-
ment of n pairwise intersecting pseudocircles has at most 2n − 2 digons.

Grünbaum’s conjecture is still open, however, some special cases were settled. Agarwal
et al. [1] proved the conjecture for cylindrical arrangements, that is, for arrangements in
which there is a region which is contained in each pseudocircle. Recently, Felsner, Roch and
Scheucher [7] showed that the conjecture also holds for simple arrangements in which there
are three pseudocircles such that every two of them form a digon. Here we prove that the
conjecture holds for simple arrangements of circles.

▶ Theorem 2. Every non-trivial simple arrangement of n pairwise intersecting circles has
at most 2n − 2 digons.

The bound in Theorem 2 is tight, as can be seen from the construction in Figure 1 (taken
from [8]). For better readability this construction is presented using pseudocircles, however,
it can be easily implemented using circles.

1.1 Lenses and lunes
Consider an arrangement of n > 2 pseudocircles. If a pseudocircle C contains an edge which
is part of the boundary of a digon, then we say that C (resp., the pseudodisc that is bounded
by C) supports that digon. Thus, every digon is supported by two pseudocircles (resp.,
pseudodiscs). By taking a suitable inversion of the plane that is centered in a non-digon face
of the arrangement, we might assume that the unbounded face of the arrangement is not a
digon. Note that an inversion maps digons to digons, hence the number of digons did not
change.

Therefore each digon is contained in at least one circle. We distinguish two different
types of digons. A lens is a digon that is equal to the intersection of the two pseudodiscs
supporting it, whereas a lune is a digon that is equal to the difference of the two pseudodiscs
supporting it. See Figure 2 for an example where the blue digons are lunes and the red
digons are lenses.

1.2 Digons and touching points
It is easy to see that in a simple arrangement of pseudocircles one can turn every digon
into a touching point between the two pseudocircles that support this digon and vice versa.
Note that this does not hold for non-simple arrangements. Indeed, one can easily construct
n (pseudo)circles that are all pairwise touching at a single common point, whereas the
number of digons is always sub-quadratic (see below). Still, we believe that the following
strengthening of Grünbaum’s conjecture holds.

▶ Conjecture 3. Every arrangement of n pairwise intersecting pseudocircles contains at
most 2n − 2 touching points.
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Figure 1 An arrangement of n (pseudo)circles which has 2n − 2 digons.

Note that for simple arrangements the number of touching points and the number of
touching pairs are the same. As for arrangements of circles, one has to be a little more
careful. Suppose that A is a simple arrangement of circles that contains some touching pairs
of circles. Let C be the smallest circle in A that touches some other circle. Thus, C cannot
encircle any of the circles that it touches. Therefore, by slightly “inflating” C, every touching
point between C and another circle becomes a digon, no other touching points are destroyed,
no new touching points are introduced and the arrangement remains simple. Continuing
in this manner, we obtain a simple arrangement A′ without touching points such that the
number of touching points in A is at most the number of digons in A′. Hence, by Theorem 2
we have:

▶ Corollary 4. Every simple arrangement of n pairwise intersecting circles has at most 2n−2
touching pairs of circles.

1.3 Related work
Alon et al. [2] proved that every arrangement of n pairwise intersecting circles contains O(n)
digons. Specifically, they showed that such an arrangement contains at most 2n − 2 lunes
and at most 18n lenses. Hence, Theorem 2 improves their 20n − 2 upper bound. A worse
yet still linear upper bound was proved in [1] for pairwise intersecting pseudocircles. For
arrangements of pairwise intersecting unit circles, Pinchasi [14] proved that there are at most
n lenses and at most 3 lunes, hence at most n + 3 digons.

Concerning arrangements of (pseudo)circles that are not necessarily pairwise intersecting,
it is well known that one can construct such arrangements of n circles with Ω(n4/3) digons
based on a famous construction of Erdős of n lines and n points admitting that many
point-line incidences, by replacing points with small circles and lines with very large circles
(see [11]). The best known upper bound for pseudocircles is O(n3/2 log n) by Marcus and
Tardos [10]. A slightly better upper bound of O(n3/2) for the number of touching points
among n circles follows from a result of Ellenberg, Solymosi and Zahl [5]. For unit circles
counting the number of tangencies is equivalent to the famous unit distance problem of
Erdős, as among the center points of the unit circles exactly those are at distance 2 whose
corresponding circles touch. For this problem the best known lower and upper bounds are
Ω(n1+c/ log log n) [6] and O(n4/3) [13, 16, 17], respectively.
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2 More Terminology and Tools

We prove Theorem 2 by constructing a graph G whose vertices and edges correspond to
circles and pairs of circles forming digons, respectively, and then bounding the number of
edges in G. After establishing several properties of G, we may conclude the proof in two
different ways. The first and shorter way is by showing that G has a parity embedding in
the real projective plane, therefore it can be drawn as a generalized thrackle which implies
the required upper bound on its size. The second way uses a more basic tool, namely, the
Hanani-Tutte theorem. This way is somewhat longer, however, yields a more general result
that might be of independent interest (see Theorem 9 below). Next we present the definitions
and results that will be used later for proving Theorem 2.

A topological graph is a graph drawn in the plane such that its vertices are drawn as
distinct points and its edges as Jordan arcs connecting the corresponding points. Apart from
its endpoints an edge of a topological graph may not contain any drawn vertex. Furthermore,
every two edges in a topological graph intersect at a finite number of points, each of which is
either a common endpoint or a crossing point.

The rotation of a vertex v in a topological graph is the clockwise cyclic order of the edges
incident with v. The rotation system of a topological graph is the set of rotations of all its
vertices.

▶ Theorem 5 (Strong Hanani-Tutte theorem [18]). A graph is planar if and only if it can be
drawn as a topological graph in which every two non-adjacent edges cross an even number of
times.

▶ Theorem 6 (Weak Hanani-Tutte theorem [3, Lemma 3]). A topological graph in which every
two edges cross an even number of times can be embedded (that is, drawn crossing-free) in
the plane keeping the same rotation system at its vertices.

A topological graph is a generalized thrackle if every pair of its edges intersects an odd
number of times. We use the following result of Cairns and Nikolayevsky [3] and also adapt
its proof for our purposes.

▶ Theorem 7 ([3]). A generalized thrackle with n vertices has at most 2n − 2 edges.

Following [4], we say that a closed curve on a surface is two-sided (resp., one-sided) if
the local orientation of the surface is preserved (resp., reversed) when we complete a circuit
of the curve. A parity embedding of a graph into a surface maps simple cycles of even
length to two-sided curves and simple cycles of odd length to one-sided curves. Cairns and
Nikolayevsky [4] proved the following.

▶ Theorem 8 ([4]). A graph can be drawn in the plane as a generalized thrackle if and only
if it has a parity embedding on the real projective plane.

As the Hanani-Tutte theorem concerns topological graphs in which every pair of edges
crosses an even number of times and in generalized thrackles every pair of edges intersects
an odd number of times, it is no surprise that the two are closely related. In fact, Theorem 6
was used in the proof Theorem 7. En-route of proving Theorem 2 we prove the following
result about topological graphs in which some pairs of edges cross evenly and some cross
oddly.

▶ Theorem 9. Let H be an n-vertex topological graph such that its vertex set can be partitioned
into two subsets X and Y and its edge set can be partitioned into two subsets of red edges
and blue edges such that the following properties hold:



E. Ackerman, G. Damásdi, B. Keszegh, R. Pinchasi, and R. Raffay 3:5

(1) Every blue edge connects a vertex in X and a vertex in Y ;
(2) every red edge connects two vertices in Y ;
(3) each blue edge crosses every other edge an even number of times; and
(4) every two red edges cross an odd number of times.
Then H has at most 2n − 2 edges. If H is bipartite, then it has at most 2n − 4 edges.

Note that if H has no blue edges, then it is a generalized thrackle and has at most 2n − 2
edges by Theorem 7. If, on the other hand, H has no red edges, then it is a bipartite planar
graph by Theorem 5 and therefore has at most 2n − 4 edges. Conversely, every generalized
thrackle and bipartite planar graph has the properties required by Theorem 9. Since both of
these bounds are tight, so are the bounds in Theorem 9.

3 Proof of Theorem 2

For n ⩽ 2 the statement is trivial. Let C be a family of n > 2 pairwise intersecting circles
such that there is no point that lies on three of them. Without loss of generality we assume
that every circle in C supports some digon. Since n > 2 there is a non-digon face of the
arrangement. By applying a generic inversion centered in a non-digon face we might assume
and that the unbounded face of the arrangement is not a digon and furthermore that no
three of the circles have collinear centers. Consider the geometric graph G whose vertices
are the centers of the circles in C. We connect two centers by a straight line segment if the
corresponding two circles create a digon. We will assume without loss of generality that G is
a connected graph.

Figure 2 An arrangement of circles and the corresponding geometric graph. Red edges correspond
to lenses whereas blue edges correspond to lunes.

We say that a circle in C is exterior and we call the corresponding vertex in G an exterior
vertex, if it supports a digon (necessarily a lune) that it does not surround. We say that
a circle in C is interior, and we call the corresponding vertex in G an interior vertex, if it
supports a digon that it surrounds.

We notice the following two simple observations.

▷ Claim 10. Every circle in C is either interior or exterior.

SoCG 2024
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Proof. Suppose that there is a circle C that supports one digon which it does not surround
and another digon which it surrounds. Let C ′ be the other circle that supports the former
digon and let C ′′ be the other circle that supports the latter digon. Then it is easy to see
that C ′ and C ′′ do not intersect. ◁

We color blue the edges in G that correspond to lunes, and we color red the edges in G

that correspond to lenses. Note that each blue edge connects an interior vertex to an exterior
vertex, and the red edges run between interior vertices.

▷ Claim 11. Every odd cycle in G must contain an odd number of red edges.

Proof. Consider an odd cycle C in G. Because the set of blue edges in G forms a bipartite
graph, C must contain a red edge. Consider a maximal path of blue edges in C. The path
alternates between interior and exterior vertices and the two extreme vertices must be interior
vertices since they are endpoints of red edges. This implies that the number of blue edges in
every maximal blue path is even. Consequently, the number of blue edges in C is even and
the number of red edges in C must be odd. ◁

We will rely on the following two results about the red and blue edges in G. The first
result is from a paper by Alon, Last, Sharir, and Pinchasi [2]. The second result appears in
a recent paper by Pinchasi [15].

▶ Lemma 12 ([2, Lemma 3.3, Theorem 3.1]). No two blue edges cross each other. Consequently,
G has at most 2n − 4 blue edges as they form a planar bipartite graph.

Two edges in a geometric graph are called avoiding if they are two opposite edges of a
convex quadrilateral. Or in other words, if no line containing one edge crosses the other edge.

▶ Lemma 13 ([15]). No two red edges in G are avoiding.

We notice that as a consequence of Lemma 13, G has at most 2n − 2 red edges, by a
result of Katchalsky, Last, and Valtr [9, 19].

We will also need the following lemma whose proof is postponed to Section 5.

▶ Lemma 14. There cannot be a red edge and a blue edge in G that are disjoint such that
the line containing the red edge crosses the blue edge.

Figure 3 shows the local restrictions implied by Lemmas 12, 13 and 14.

Figure 3 The configurations with gray background are forbidden in G.

We may now conclude the theorem in two different ways. First, suppose that G is drawn
in the real projective plane and replace every red edge with its complement. That is, if {u, v}
is a red edge which is drawn as the straight line segment uv and ℓ is the line containing uv,
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then we replace uv with ℓ \ uv. Denote by G′ the new drawing and note that it follows from
Lemmas 12, 13 and 14 that G′ is an embedding of G, that is, it contains no crossing edges
(consult Figure 3). Moreover, it follows from Claim 11 that G′ is a parity embedding of G

and therefore G can be drawn as a generalized thrackle by Theorem 8. Thus, G has at most
2n − 2 edges by Theorem 7. This completes the proof of Theorem 2.

For an alternative way of finishing the proof of Theorem 2, we use a projection of the
plane on a sphere S touching the plane in a point not part of the drawing of G, through
the center of S. We get a drawing of G on the lower hemisphere of S in which every edge
is represented by a great arc. Those arcs inherit the color of the original edges in G. We
now replace every red arc on S by its complement on the great circle in S containing it.
Finally, we project the resulting drawing on the plane through the north pole of S (note that
it cannot be part of any arcs due to our choice of the sphere).

The resulting topological graph that we denote by H has the following properties:
(1) Every blue edge connects an interior vertex and an exterior vertex; (2) every red edge
connects two interior vertices; (3) no two blue edges cross; (4) a red edge cannot cross a blue
edge (because of Lemma 14); and (5) every two red edges, including two red edges with a
common vertex, cross precisely once (because of Lemma 13). Theorem 2 now follows from
Theorem 9 since H satisfies the properties mentioned in the statement of the latter.

4 Proof of Theorem 9

Let H be an n-vertex topological graph whose edges are colored by red and blue and whose
vertices are partitioned into two subsets X and Y such that the properties in the statement
of the theorem hold. That is, every blue edge connects a vertex in X and a vertex in Y ;
every red edge connects two vertices in Y ; each blue edge crosses every other edge an even
number of times; and every pair of red edges crosses an odd number of times.

We consider first the case that H is bipartite and show that H is planar and therefore
has at most 2n − 4 edges. Let A ∪ B be the partitioning of the vertices of H, as a bipartite
graph. Let AY = A ∩ Y , AX = A ∩ X, BY = B ∩ Y and BX = B ∩ X. Since red edges
connect vertices in Y and each blue edge connects a vertex in Y and a vertex in X, the
structure of the graph H is as follows: all the red edges are between vertices in AY and BY

whereas the blue edges are between AY and BX or between AX and BY .
Next, we use a standard redrawing procedure for turning odd crossings into even crossings

(see, e.g., [12]). Namely, we distort H in the plane without creating or removing crossings in
such a way that in the resulting drawing of H the x-axis separates AX ∪ BY and AY ∪ BX .
Note that every red edge crosses the x-axis an odd number of times whereas every blue edge
crosses the x-axis an even number of times. Then we further change the drawing of H by
flipping horizontally (about the y-axis) the half-plane bounded below the x-axis without
cutting the edges in H that cross the x-axis. We claim that in the resulting distortion
of H every two edges cross an even number of times, therefore, by the strong Hanani-Tutte
theorem (Theorem 5) H is a planar graph.

Indeed, let e1 and e2 be two edges and let ki denote the number of times the edge ei

crosses the x-axis. If we ignore the other edges, then the flipping introduces
(

k1+k2
2

)
new

crossings from which
(

k1
2

)
are self-crossings of e1 and

(
k2
2

)
are self-crossings of e2.1 Therefore,

1 We usually do not allow self-crossing edges in a topological graph, however, such crossings can be easily
eliminated by redrawing the edges near every self-crossing point.

SoCG 2024
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there are
(

k1+k2
2

)
−

(
k1
2

)
−

(
k2
2

)
= k1k2 new crossings between e1 and e2. If both e1 and e2 are

red, then before the flipping they cross an odd number of times and the flipping introduces
an odd number of new crossings, since k1 and k2 are odd. Hence e1 and e2 cross an even
number of times after the flipping. If at least one of e1 and e2 is blue, then before the flipping
they cross an even number of times and the flipping introduces an even number of new
crossings, since at least one of k1 and k2 is even. Therefore, e1 and e2 cross an even number
of times after the flipping in this case as well. This completes the proof of the second part of
Theorem 9.

Suppose now that H is non-bipartite. As in the proof of Claim 11, we can conclude:

▶ Observation 15. Every odd cycle in H must contain an odd number of red edges.

Furthermore, we have:

▷ Claim 16. Every two odd cycles in H must have a common vertex.

Proof. Let C1 and C2 be two odd cycles in H with no common vertex. Then they must
properly cross an even number of times, as every two closed curves do. Recall that only
pairs of red edges cross an odd number of times. Since by Observation 15 each of C1 and C2
contains an odd number of red edges, C1 and C2 cross an odd number of times, which is
impossible. ◁

Since H is non-bipartite it contains at least one odd cycle. Fix a shortest odd cycle C

and denote by V (C) its vertices. Observe that it follows from Claim 16 that H \ C is a
bipartite graph. In the rest of the proof we apply on C the doubling technique of Cairns and
Nikolayevski [3] adapted to our case.

The curve that corresponds to the cycle C in H divides the plane into two parts one
of which is Jordan-surrounded by C and the other is not. (These parts are not necessarily
connected.) A point x is called Jordan-surrounded by C if any curve starting at x and going
to infinity crosses C an odd number of times. Let I (resp., O) denote the region that is
(resp., not) Jordan-surrounded by C.

Denote by IY the vertices in Y \ V (C) that are Jordan-surrounded by C. Let OY be the
set of vertices in Y \ V (C) that are not Jordan-surrounded by C. Similarly, IX and OX

denote the subsets of vertices in X \ V (C) that are Jordan-surrounded by C and are not
Jordan-surrounded by C, respectively.

Notice that there cannot be a blue edge between a vertex in IY and a vertex in OX ,
nor between a vertex in IX and a vertex in OY . This is because every blue edge not in C

crosses every edge in C and hence also C an even number of times. Therefore, each blue edge
connects either a vertex in IY and a vertex in IX , or a vertex in OY and a vertex in OX .
Additionally, there can be blue edges connecting a vertex in C and a vertex not in C.

Similarly, we notice that there can be red edges in H \ C only between vertices in IY

and vertices in OY . This is because every red edge in H \ C crosses every red edge in C an
odd number of times and every blue edge in C an even number of times. Hence, every red
edge in H \ C crosses C an odd number of times, by Observation 15. Additionally, there can
be red edges with one endpoint in Y ∩ V (C) and one in Y \ V (C).

Doubling the cycle C

Let v be a vertex in V (C) and let Dv be a small enough disc centered at v such that it does
not intersect any edge which is not incident to v and does not contain any crossing point of H.
Denote by {v, u} and {v, w} the edges of C that are incident to v. Then the intersection of
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v

Dv

I

O

(a) before

vI

Dv

vO
O

I

(b) after

Figure 4 Doubling of C at the neighborhood of v. The gray region is Jordan-surrounded by C.

these edges with Dv partitions Dv into two regions, one which is Jordan-surrounded by C

and one which is not. The edges of H which are incident to v and different from {v, u} and
{v, w} are partitioned into ones whose intersection with Dv \ {v} is in I and ones whose
intersection with Dv \ {v} is in O. Denote by Ev,I the first set and by Ev,O the second set
and observe that the edges in each of these sets are consecutive around v. We replace v with
two new vertices vI and vO such that vI is very close to v in I and vO is very close to v

in O. The edges of Ev,I (resp., Ev,O) are redrawn in Dv such that vI (resp., vO) replaces v

and their endpoint, without introducing any new crossings (see Figure 4).
Next, we replace every edge of C by two new edges as follows. We slightly inflate every

such edge so we can refer to each such edge having two “sides”. Suppose that {x, y} is a blue
edge of C. Then we pick arbitrarily one of its endpoints, say x, and redraw {x, y} starting
from xI and following the side of {x, y} which is inside I within Dx. We keep following
this side of {x, y} until reaching Dy. Along the way the edge may switch between I and O,
however, since {x, y} crosses every other edge an even number of times, the side of {x, y}
that we follow lies in I when reaching Dy. We keep following this side of {x, y} within Dy

and end up at yI . In a similar and symmetric way we draw an edge connecting xO and yO
by following the other side of {x, y}. Note that if we add just these two edges to H, then
whenever a part of {xI , yI} lies in I then its counterpart at {xO, yO} lies in O and vice
versa. Therefore {xI , yI} and {xO, yO} do not intersect.

Suppose now that {x, y} is a red edge of C. Then, as in the case of a blue edge, we pick
arbitrarily one of its endpoints, say x, and redraw {x, y} starting from xI and following the
side of {x, y} which is inside I within Dx. However, midway within Dx we switch to the
other side of {x, y} that lies in O within Dx and keep following this side until reaching Dy.
Recall that {x, y} crosses every blue edge an even number of times and every red edge an
odd number of times. Furthermore, there is an even number of red edges in C different from
{x, y}, since the number of red edges in C is odd. Therefore, {x, y} crosses the other edges
of C an even number of times. This implies that the side of {x, y} that we follow lies in O
within Dy. We keep following this side of {x, y} within Dy and end up at yO. In a similar
and symmetric way we draw an edge connecting xO and yI and observe that it can be done
such that {xI , yO} and {xO, yI} intersect at exactly one point in which they cross in Dx.
See Figure 4 for an illustration of the doubling of C at the neighborhood of a vertex.

We denote by H ′ the topological graph which we get after doubling C as above and
observe that the edges in H ′ inherit their colors from their corresponding edges in H. Next,
we establish several properties of H ′.

SoCG 2024
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▷ Claim 17. Let e′ and f ′ be two distinct edges in H ′ and let e and f be their corresponding
edges in H, respectively. If e ̸= f then e′ and f ′ cross if and only if e and f cross. If e = f

then e′ and f ′ cross if and only if e is a red edge.

Proof. We have observed above that if e = f is a red edge, then e′ and f ′ cross once and
that if e = f is a blue edge then e′ and f ′ do not cross. For the case e ̸= f observe that
the claim follows from the drawing procedure by which we follow the original edges without
introducing new crossings. ◁

The following is implied by Claim 17, the properties of H and the doubling procedure.

▶ Observation 18. Every blue edge in H ′ crosses every other edge in H ′ an even number
of times and both of its endpoints are in I or both of them are in O. Every red edge in H ′

crosses every other red edge in H ′ an odd number of times and has one endpoint in I and
the other in O.

▶ Lemma 19. H ′ is bipartite.

Proof. We have already seen that H \ C is a bipartite graph and the only edges in this
subgraph are between a vertex from IY ∪ OX and a vertex from IX ∪ OY .

To see that H ′ is indeed a bipartite graph we consider the following partition of the
vertices of the doubling of C: CY,I = {vI | v ∈ V (C) ∩ Y }, CY,O = {vO | v ∈ V (C) ∩ Y },
CX,I = {vI | v ∈ V (C) ∩ X} and CX,O = {vO | v ∈ V (C) ∩ X}. We will show that H ′ is
bipartite with the bipartition (IY ∪ OX ∪ CY,I ∪ CX,O, IX ∪ OY ∪ CY,O ∪ CX,I).

▷ Claim 20. A vertex in CY,I ∪ CX,O cannot be connected by an edge e′ in H ′ to a vertex
in IY ∪ OX ∪ CY,I ∪ CX,O.

Proof. Suppose that such an edge e′ exists and let e be the edge in H that corresponds to e′.
We consider the possible cases.

Case 1: e connects two vertices in C. In this case e must be an edge of C because of
our assumption that C is the shortest odd cycle in H. If e is a red edge, then both of its
vertices must be in Y . Then under the contrary assumption, the only possibility is that e′ is
an edge between a vertex from CY,I and another vertex of CY,I . But this is impossible by
Observation 18.

If, on the other hand, e is a blue edge, then it must connect a vertex in Y to a vertex in
X. Under the contrary assumption and keeping in mind that both vertices of e are in C,
it must be that e′ connects a vertex from CY,I to a vertex in CX,O. However, this is again
impossible by Observation 18.

Case 2: e′ is a red edge connecting a vertex in CY,I ∪ CX,O and a vertex in IY ∪ OX .
Since red edges connect vertices in Y , it follows that e′ connects a vertex in CY,I and a
vertex in IY . This is impossible by Observation 18.

Case 3: e′ is a blue edge connecting a vertex in CY,I ∪ CX,O and a vertex in IY ∪ OX .
It follows from Observation 18 that e′ cannot connect a vertex in CY,I to a vertex in OX

nor can it connect a vertex in CX,O to a vertex in IY . This completes the proof of Claim 20.
◁

The following claim is similar to Claim 20 and its proof goes almost verbatim and is
symmetric to the proof of Claim 20. Therefore, we skip the proof and leave it to the reader.
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▷ Claim 21. A vertex in CY,O ∪ CX,I cannot be connected by an edge in H ′ to a vertex in
IX ∪ OY ∪ CY,O ∪ CX,I .

Claims 20 and 21 along with the fact that the only edges in H \ C are between a
vertex in IX ∪ OY and vertex in IY ∪ OX imply that H ′ is bipartite with the bipartition
(IY ∪OX ∪CY,I ∪CX,O, IX ∪OY ∪CY,O ∪CX,I). This concludes the proof of Lemma 19. ◀

The graph H ′ satisfies the same properties satisfied by H with X replaced by (X \
V (C)) ∪ CX,I ∪ CX,O and Y replaced by (Y \ V (C)) ∪ CY,I ∪ CY,O. Therefore, it follows
from the proof of the second part of the theorem (which appears above) that H ′ is planar.

Denoting by m the number of edges in H, we may conclude from the fact that H ′ is
planar and bipartite with n + |C| vertices such that m + |C| ⩽ 2(n + |C|) − 4. This gives the
upper bound m ⩽ 2n − 4 + |C| which is almost tight when |C| is small but is far off 2n − 2 if
|C| is larger. We can improve on this bound and get rid of the dependency in |C| by arguing
that H ′ can be embedded in the plane such that one of its faces has size 2|C|. In fact we
will show that the doubling of C becomes a face of size 2|C| in a planar embedding of H ′.
This will imply an upper bound of 2(n + |C|) − 4 − (|C| − 2) = 2n − 2 + |C| on the number
of edges in H ′, that is, on m + |C|. Thus, we will conclude that m ⩽ 2n − 2 as desired.

▶ Lemma 22. H ′ can be embedded in the plane such that the doubling of C is the boundary
of a face.

Proof. We will use Theorem 6 by which a topological graph in which every two edges cross
an even number of times can be embedded in the plane keeping the cyclic order at which the
edges sharing a common vertex are drawn in a small neighborhood of that vertex.

We redraw H ′ in the plane, without adding or removing crossing, by “pushing” above
the x-axis all the vertices that are in I, that is, IY ∪ IX ∪ CY,I ∪ CX,I . Similarly, we “push”
below the x-axis all the vertices that are in O, that is, OY ∪ OX ∪ CY,O ∪ CX,O. Note that
it follows from Observation 18 that every blue edge has both of its endpoints in the same
half-plane bounded by the x-axis, while every red edge in H ′ has its two endpoints separated
by the x-axis.

As in the proof of the second part of Theorem 9, we now flip horizontally (that is, about
the y-axis) the half-plane below the x-axis without breaking the arcs crossing it to obtain a
topological graph in which every pair of edges crosses an even number of times. Therefore,
by Theorem 6, we can embed this graph, and hence H ′, keeping the same rotation system at
its vertices. Let H ′′ be such an embedding.

We now concentrate on the doubling of the cycle C in H ′′ and show that it becomes the
boundary of a face of size 2|C|. This will complete the proof of Theorem 2.

We first notice that the doubling of C results indeed in a cycle of length 2|C| and not in
two cycles of length |C|. The reason is that if we had two cycles of length |C|, each having
an odd number of red edges, then they would have crossed each other an odd number of
times which is impossible. We denote this cycle of length 2|C| by C ′.

Note that in a planar drawing a cycle forms a face if and only if we can traverse the cycle
such that each time we arrive through an edge e to a vertex v, then we leave through the
edge that comes clockwise next after e among the edges incident to v.

Recall that for every vertex v ∈ V (C) the following holds. All the edges that are incident
to vI are consecutive around vI and “start” in I . Similarly all the edges that are incident
to vO are consecutive around vO and “start” in O.

This implies that before the flipping the half-plane below the x-axis we can traverse C ′

along the drawing in some appropriate direction such that at each vertex v ∈ I we arrive via
an edge and leave through the clockwise next edge incident at v, and for each vertex v ∈ O
we leave through the counterclockwise next edge incident at v, see Figure 4b.
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After flipping the half-plane below the x-axis, the cyclic order of edges at each vertex in
CY,O ∪ CX,O is reversed. Hence we can traverse C ′ along the drawing in some appropriate
direction after flipping H ′ such that at each vertex v we leave through the clockwise next
edge incident to v. Since we have the same rotation system in H ′′ as in the drawing of the
flipped H ′ it follows that C ′ bounds a face. ◀

5 Proof of Lemma 14

Proof of Lemma 14. We start with a simple observation that we will apply multiple times.

▶ Observation 23. Suppose two circles K1 and K2 with centers e1 and e2 intersect. Then
the e1e2 ray intersects K1 either on K2 or inside K2.

Let U1 and U2 be two circles forming a lune edge and let E1 and E2 be two circles forming
a lens edge. We may assume that U1 supports the inner arc of the lune. Let u1, u2, e1, e2 be
the centers of these circles. We rotate the circles such that u1 and u2 share x-coordinates
and u1 lies above u2. Suppose on the contrary that the e2e1 ray intersects the u1u2 segment.

We can assume without loss of generality that e1 and e2 has a larger x-coordinate than
u1 and u2, and that if we look around at u2 starting from u1, going in a clockwise direction,
then we see e1 sooner than e2. See Figure 5.

U1

U2

u1

u2

e1

p1

p2
p3

e2

p4

q2

p5 ∈ U1 ∩ E2

E1 q1

Figure 5 Region A is indicated by blue.

Since the e2e1 ray hits the u1u2 segment and e1 comes before e2 in a clockwise order
when we look around at u2 starting from u1, e2 must lie in the cone that has apex e1 and is
bounded by the ray u1e1 minus the segment u1e1 and the ray u2e1 minus the segment u2e1.
This means that if we look around at u1 starting from u2 in counterclockwise direction, then
we see e1 sooner than e2.

Let p1 be the intersection point of U1 and U2 to the right of u2u1.
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Let p2 be the intersection point of E1 and U2 to the right of u2e1. Since U1 and U2 form
a lune, p2 must lie within U1.

Let p3 and p4 be the intersections of E1 and U1 so that p3 is to the right of u1e1. (see
Figure 5). Since U1 and U2 form a lune, p3 appears counterclockwise later than p1 when we
look around at u1 starting from u2. All these together imply that p1, p2, p3 are corners of a
region bounded by three circular arcs, let us call this region A.

Let q1 be the intersection of the u1e2 ray and U1. By Observation 23 q1 is inside the
disk of E2. Since E1 and E2 form a lens, q1 cannot be in the disk of E1. This implies that
there is some p5 ∈ U1 ∩ E2 that is counterclockwise later than p4 when we look around at u1
starting from u2 and p5 is not inside E1.

We will show that E2 intersects the p1p2 arc of U2 twice. To see this, it suffices to show
that there is a point of the p1p2 arc inside E2 and that p1 and p2 are not in E2. Let q2 be
the intersection of the u2e2 ray and U2. By Observation 23 q2 is also in the disk of E2. We
claim that q2 is on the arc p1p2. Indeed, it is to the right of the ray u2e1 yet it cannot be on
the arc of U2 which is part of the empty lune of U2 and U1 and it also cannot be in the disk
of E1 (as it would then be in the empty lens defined by E1 and E2). Since E1 and E2 form
an empty lens, p2 cannot be inside E2. Since p1 is part of the lune of U1 and U2 it cannot
be in E2. Hence the endpoints of the arc p1p2 are not in the disk of E2 but a point q2 on it
is in the disk of E2, therefore E2 intersects the p1p2 arc of U2 twice.

Consider the part of E2 which lies outside U2. It is an arc which starts and ends on the
p1p2 arc of U2. It must also contain p5 which is outside A. This implies that there must
be at least two other points x1, x2 where it leaves the region A. Since E2 intersects the U1
circle at p5 which is counterclockwise later than p3 when we look around at u1 starting from
u2, there can be at most one of x1, x2 on the p1p3 arc of A. Hence, E2 intersects the p2p3
arc of A. But p2 and p3 cannot be part of the lens of E1 and E2, so E2 must intersect the
p2p3 arc of A twice. Hence, E2 intersects the p1p3 arc of A zero or two times. As we have
seen, it cannot be two times, so there is no intersection. Therefore the part of E2 that lies
outside U2 lies entirely in the union of A and the disk of E1 and therefore it cannot contain
p5, a contradiction. ◀
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