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Abstract
The Heegaard genus is a fundamental invariant of 3-manifolds. However, computing the Heegaard
genus of a triangulated 3-manifold is NP-hard, and while algorithms exist, little work has been done
in making such an algorithm efficient and practical for implementation. Current algorithms use
almost normal surfaces, which are an extension of the algorithm-friendly normal surface theory but
which add considerable complexity for both running time and implementation.

Here we take a different approach: instead of working with almost normal surfaces, we give a
general method of modifying the input triangulation that allows us to avoid almost normal surfaces
entirely. The cost is just four new tetrahedra, and the benefit is that important surfaces that were
once almost normal can be moved to the simpler setting of normal surfaces in the new triangulation.
We apply this technique to the computation of Heegaard genus, where we develop algorithms and
heuristics that prove successful in practice when applied to a data set of 3,000 closed hyperbolic
3-manifolds; we precisely determine the genus for at least 2,705 of these.
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1 Introduction

In topology, invariants are used to distinguish between different manifolds. Powerful invariants
are often hard to utilise computationally, and sometimes only partial information can be
calculated for them. One such example is the fundamental group, which uniquely determines
hyperbolic 3-manifolds [18], but it is non-trivial to determine if two such groups are isomorphic,
given their group presentations [23].

We focus on an invariant known as the Heegaard genus of a 3-manifold, which is the
minimal genus of a surface (a Heegaard surface) that splits a given manifold into two
handlebodies of equal genus. For example, the 3-sphere has Heegaard genus 0, and all lens
spaces have Heegaard genus 1. The Heegaard genus can be used to calculate the tunnel
number of a knot, which is a useful invariant in knot theory ([9], [17]).
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However, computing Heegaard genus is NP-hard [1]. Algorithms of Rubinstein, Lackenby,
Li, and Johannson ([20], [13], [14], [12]) provide theoretical methods, but primarily argue
the existence of an algorithm; these algorithms are extremely complex to describe and
theoretically extremely slow to run. Furthermore, no implementations currently exist.

These three algorithms all make use of surfaces embedded in triangulations of 3-manifolds.
In particular, they use normal and almost normal surfaces, which are commonly used
to certify topological properties of a manifold. Normal surfaces are described by vectors
in Z7n

≥0 for triangulations with n tetrahedra, and can be efficiently generated using high-
dimensional polytope vertex enumeration methods. However, almost normal surfaces are
more complicated, requiring vectors in Z35n

≥0 , which can significantly affect the running time
of any algorithm using them, due to an exponential dependence on the dimension of the
vector space.

Our strategy in this paper is to avoid the costs of almost normal surfaces by modifying
the triangulation. Since we are solving topological problems, not combinatorial problems, we
aim to retriangulate our manifolds so that important almost normal surfaces in the original
triangulation (such as a surface that realises a Heegaard splitting) become normal in the new
triangulation. This then allows us to attack the problem using well-studied normal surface
techniques, such as the highly optimised algorithms in the software package Regina [6].

Our main tool is a new gadget, which replaces a single tetrahedron and serves to eliminate
the almost normal portion of the surface. Importantly, we show that this gadget preserves
the zero-efficiency of the triangulation, a property that plays a major role in making normal
surface algorithms both implementable and fast ([4], [11]). We identify a class of exceptional
surfaces with which this gadget cannot be used, but these exceptions are of a very specific
form and are simple to analyse. For computing Heegaard genus, we show how to work around
these exceptions with an alternate method for locating Heegaard splittings of this form.

Using our techniques, we are able to successfully compute the Heegaard genus of 2,705
closed, hyperbolic 3-manifolds drawn from the hyperbolic census of Hodgson and Weeks [10].

2 Preliminaries

2.1 Triangulations
To study topological objects computationally, we represent n-manifolds using triangulations.
These are a pairwise gluing of n-dimensional simplicies along their (n − 1)-dimensional facets.
Specifically, a 3-manifold triangulation consists of a finite number of tetrahedra that are
identified (or “glued”) along pairs of triangular faces. Every compact 3-manifold can be
represented by a triangulation [16].

Let T be some arbitrary triangulation (not necessarily a simplicial complex), and consider
some tetrahedron τ in T . In the triangulation, edges, triangles (faces) and vertices of τ are
not necessarily distinct. We use a canonical numbering of the vertices, as in Figure 1.

Figure 1 Canonical numbering of the vertices of a tetrahedron.
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Let τ∆
ijk denote the triangular face constrained by vertices (i, j, k) of tetrahedron τ . If

a given τ∆
ijk is not a boundary facet, then this triangle is shared between (not necessarily

distinct) tetrahedra τ and τ̄ , and we may write τ∆
ijk = τ̄∆

pqr.

2.2 (Almost) Normal Surfaces
If a surface S is properly embedded in a triangulation T , we call it a normal surface if it
meets each tetrahedron τ of T in a collection of triangular or quadrilateral normal discs
(Figure 2). In each tetrahedron, triangular discs separate one vertex from the remaining
three, while quadrilateral discs separate pairs of vertices. In each tetrahedron, there can be
at most one of any quadrilateral type.

Figure 2 The four triangle pieces, and one of the three quadrilateral pieces.

One such surface is a vertex linking sphere, consisting only of triangle pieces which
together form a sphere (in a closed manifold) that surrounds a particular vertex in the
triangulation.

Normal surfaces are represented by normal coordinates, which are vectors v ∈ Z7|T |
≥0 ,

v = (v1, v2, · · · , v7, · · · , v7|T |), where vi represent the number of each type in each tetrahedron,
and |T | is the number of tetrahedra in the triangulation T .

We call two surfaces locally compatible if they are able to avoid intersection in any
given tetrahedron. That is, in each tetrahedron, together they use at most one type of
quadrilateral piece. Locally compatible surfaces can be added using the Haken sum. If U

and V are normal surfaces with normal coordinates U, V, then U +V has normal coordinates
U + V. U + V is formed by a geometric surgery (called “regular exchange”), where sections
of each surface are cut and glued around curves in U ∩ V (as in Figure 3), such that resulting
pieces are normal discs (as in Figure 4).

Figure 3 Around each intersection γ, the boundary of a neighbourhood (green) of γ is partitioned
between the two sheets (red, blue) in one of two ways.

We call a normal surface S fundamental if S = A + B implies A = 0 or B = 0.
By standard Hilbert basis arguments, any normal surface can be expressed as a sum of
fundamental surfaces (which is possibly not unique).

SoCG 2024
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Figure 4 A regular exchange is performed on two intersecting pieces in two different ways.

An almost normal surface is similar to a normal surface, but with the addition that it
must intersect one tetrahedron in a collection of triangles and quadrilaterals, and exactly one
unknotted annulus or octagon piece (see Figure 5). We shall refer to annulus pieces between
quadrilaterals or triangles of the same type as parallel, and all others as non-parallel.

Figure 5 Annuli between parallel triangles, non-parallel triangles, a triangle and a quadrilateral,
and parallel quadrilaterals; an octagon piece.

Of these almost normal pieces, there are three octagons, three parallel quadrilateral annuli,
four parallel triangle annuli, six non-parallel triangle annuli and twelve triangle-quadrilateral
annuli. With the four triangle and three quadrilateral normal pieces, this means that normal
coordinates for almost normal surfaces are vectors in Z35|T |

≥0 .
We call a triangulation of a closed 3-manifold zero-efficient if its only normal 2-spheres

are vertex linking. Indeed, all closed, orientable, irreducible 3-manifolds (excluding S3, L(3, 1)
and RP 2) can be modified to a zero-efficient triangulation, with only one vertex. A celebrated
result of Jaco and Rubinstein states that if a zero-efficient triangulation of a 3-manifold M

has an almost normal 2-sphere, then M = S3 [11].

2.3 Additional Notation

For a normal or almost normal surface S in a triangulation T , let SU represent the part of S

restricted to some connected sub-triangulation U ⊂ T .
For a normal surface S in a triangulation T , we use Sτ = (t0, t1, t2, t3, q01/23, q02/13, q03/12)

to refer to the normal coordinates of S restricted to some tetrahedron τ .
When referring to specific normal or almost normal pieces, we shall use the following.
tri_a: the link of the vertex a

quad_ab/cd: the quadrilateral separating vertices a, b from c, d

oct_ab/cd: the octagon separating vertices a, b from c, d

tri_a:tri_b: the annulus connecting tri_a to tri_b, allowing a = b.
tri_e:quad_ab/cd: the annulus connecting tri_e and quad_ab/cd, where e ∈ {a, b, c, d}.
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2.4 Implementations of Normal and Almost Normal Surfaces
Regina [6] efficiently implements data structures and algorithms for normal surfaces. However,
they are still inherently exponential methods. Indeed, we have found an experimental bound
on the running time of fundamental normal surface enumeration for closed hyperbolic 3-
manifolds, T (n) ∈ O(1.934n) for a triangulation with n tetrahedra. See [5] for more rigorous
experimental results. The number of fundamental normal surfaces for a triangulation with
n tetrahedra is C(n) ∈ O(ϕn) where ϕ = 1+

√
5

2 [3]. On the same set of closed hyperbolic
3-manifolds, we have experimentally found C(n) ∈ O(1.503n). See Appendix A of the full
version for details [8]. We use these experimental recordings in place of more theoretical
bounds, as theoretical bounds generally represent the worst-case running times.

Almost normal surfaces have historically been motivated by 3-sphere recognition [21],
which by a result of Thompson only requires use of the octagon piece [24]. In this special
setting, there are techniques to normalise an almost normal surface with an octagon piece –
for instance, Regina features a simple algorithm to remove octagons from an almost normal
surface by modifying the triangulation using a 3-tetrahedron gadget. This technique is used
in the algorithm for cutting along almost normal surfaces [19].

The more general setting that allows octagon or annulus pieces is significantly more
complex to work with (with normal coordinates in Z35|T |), and there are no implementations
known to the authors.

2.5 Heegaard Genus
Any closed, orientable 3-manifold M can be represented as M = H1 ∪ H2 where H1 and H2
are handlebodies (solid genus n tori) with ∂H1 = ∂H2 = H1 ∩ H2. This decomposition is
called a Heegaard splitting of M , and ∂H1 is the Heegaard surface. The Heegaard
genus of M is the minimal genus of all Heegaard splittings of M .

All 3-manifolds with Heegaard genus 1 are classified as being either S1 × S2 or a Lens
space. Similarly, S3 is the only 3-manifold with Heegaard genus 0 [22]. Manifolds with
genus ≥ 2 are not fully classified, and only some classes of examples are known. In general,
computing the Heegaard genus of a 3-manifold is an NP-hard problem [1].

We choose to follow the techniques of Rubinstein for determining Heegaard genus [20].
For a zero-efficient triangulation T of a closed, orientable 3-manifold, a Heegaard splitting
will be of the form S = San + St where San is an almost normal surface with negative Euler
characteristic, and St is a normal surface with zero Euler characteristic [20].

To determine if a triangulation has a genus g Heegaard splitting, we generate candidate
almost normal surfaces and test all combinations for S with Euler characteristic χ(San) =
2−2g < 0. That is, we cut along each candidate surface, and test whether the resulting piece/s
are two handlebodies of genus g, using an efficient algorithm for handlebody recognition [7].
We use algebraic properties of a given manifold M to form a lower bound on genus [15]. In
particular, we have rank(H1(M)) ≤ rank(π1(M)) ≤ g where rank(H1(M)) and rank(π1(M))
are the number of generators of the first homology group and fundamental group of M ,
respectively. Hence, we use max(2, rank(H1(M))) ≤ g as a lower bound.

3 A Gadget for Normalising Almost Normal Surfaces

Given an orientable triangulation T and an almost normal surface S in T , we seek a way to
modify T into another triangulation T ′ of the same 3-manifold, so that S can be expressed
in T ′ using normal surfaces only, similar to the octagon gadget (see Section 2.4). As almost

SoCG 2024
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normal pieces only appear within a single tetrahedron, we desire a small triangulation that
we may substitute for a tetrahedron. That is, we desire an orientable triangulation G that is
homeomorphic to the 3-ball (B3), with four vertices and four boundary faces. We shall call
such a triangulation the gadget.

3.1 A General Gadget Construction
Suppose that G is a triangulation such that G ≃ B3, with four vertices and four boundary
faces, arranged to form the boundary of a tetrahedron. We define ∂G∆

ijk to represent the
boundary facet that is constrained by vertices (i, j, k) of the gadget G. Then, the boundary
of G is isomorphic to the boundary of a single tetrahedron, and so we can effectively “replace”
a tetrahedron τ in T with G as follows.

We define T
abcd(G)
τ to be the resulting triangulation formed by removing τ from T ,

and gluing G in its place according to the permutation mapping vertices of τ to G by
(0, 1, 2, 3) 7→ (a, b, c, d). This operation is simply un-gluing each face of τ from T , then gluing
the corresponding boundary face of G in its place (as indicated in Figure 6) where

τ∆
012 ↷ ∂G∆

abc, τ∆
013 ↷ ∂G∆

abd, τ∆
023 ↷ ∂G∆

acd, τ∆
123 ↷ ∂G∆

bcd.

Figure 6 Some tetrahedron τ in T ; T with τ removed; an abstract depiction of G in T ′ = T
abcd(G)
τ .

If any pair of faces of τ are glued to each other, for example τ∆
012 = τ∆

312, then we glue the
boundary faces of the gadget accordingly, such as ∂G∆

abd ↷ ∂G∆
dab.

3.2 Gadget Requirements
Here, we discuss motivations behind a choice for the gadget. As discussed, we assume that
G has isomorphic boundary to the boundary of a tetrahedron, and is itself homeomorphic to
B3. Now, consider some gluing of the gadget into a triangulation to form T ′ = T

abcd(G)
τ . As

∂G ∼= ∂τ and G ∼= τ , G does not modify topological properties of the triangulation, T , in
which it is placed. In addition, we desire the following.

If T is zero-efficient, then T ′ = T
abcd(G)
τ is also zero-efficient, aside from simple exceptions.

There must be a well-defined choice of normal surfaces in G that each correspond to one of
the four triangular or three quadrilateral pieces of a normal surface in τ . Similarly, there
must be a well-defined choice of an octagon piece, and some annulus pieces (discussed in
Lemma 3.6), such that local compatibility of these surfaces matches the local compatibility
of (almost) normal pieces. For example, we require that the triangle pieces in G are
compatible with all other pieces.
This means that if S is a normal surface in T , then there must exist some normal surface S′

in T ′ with identical normal coordinates ST\τ = S′
T′\G outside of τ/G, where additionally
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S is isotopic to S′. Similarly, the normal surfaces of G chosen to represent (almost)
normal pieces should be sufficient to construct any almost normal surface of T , aside
from some manageable exceptions. That is, if a surface S has an almost normal piece
in τ , then for some (possibly distinct) tetrahedron τ ′ and some permutation (a, b, c, d),
there must exist a normal surface S′ in T

abcd(G)
τ ′ where S is isotopic to S′.

3.3 Choice of the Gadget

A search of a census of 3-manifolds, targeting the requirements detailed in Section 3.2,
yields a candidate for our gadget G. We now denote the 5-tetrahedron triangulation with
isomorphism signature (a compact code used to uniquely generate triangulations in Regina)
“fHLMabddeaaaa” by G, or the gadget. See Figure 7 for construction details.

Tetrahedron 0 Tetrahedra
0 and 1

Tetrahedra
0, 1 and 3

Tetrahedra
0, 1 and 3

Tetrahedra
0, 1, 3 and 2

Tetrahedra
0, 1, 3, 2 and 4

0 1
2

3

0
1

2

3

Figure 7 Geometric construction of G; an additional tetrahedron is glued in each step.

The fundamental normal surfaces of G are detailed below, along with their index when
generated by Regina. See Appendix B of the full version for further details [8]. Boundary
types are determined by observing the polygonal boundary of each surface in the gadget,
and determining its shape (e.g. triangular boundaries have three sides).

We refer to the surface with index i by sf_i. Note that rows where multiple indexes are
listed simply represent instances of different orientations of the same surface.

Next, we explore the surfaces in G that correspond to normal and almost normal pieces
in a single tetrahedron τ .

Triangles

The four triangular disc surfaces (sf_7, sf_8, sf_10, sf_13) are vertex links in G, and are
hence composed of triangle pieces only. These are isotopic to the four triangular pieces we
consider for a normal surface. Due to this, we introduce the following more insightful names,

Gt0 = sf_13, Gt1 = sf_10, Gt2 = sf_8, Gt3 = sf_7.

SoCG 2024
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Table 1 Fundamental normal surfaces of G, detailed by number of boundaries (# bdry), Euler
characteristic, topological description, boundary types and their index.

# bdry Euler char. Shape Boundary types Index

1

-1 One-punctured torus Quad 0, 3

1
Octagon Oct 17, 18
Triangle Tri 7, 8, 10, 13
Quadrilateral Quad 2, 5, 6, 11, 12

2 0
Annulus (non-parallel triangles) Two tri 1, 4, 16, 19
Annulus (quadrilateral, triangle) Quad, tri 9, 27
Annulus Oct, tri 15, 26

3
-1

Three-punctured sphere Three tri 14, 25
Three-punctured sphere Quad, two tri 23, 24, 28
Three-punctured sphere Oct, two tri 22

-3 Three-punctured torus Quad, two tri 20
4 -2 Four-punctured sphere Four tri 21

Quadrilaterals

The three quadrilateral pieces in τ are each isotopic to at least one of the quadrilateral
surfaces in the gadget (sf_2, sf_5, sf_6, sf_11, sf_12).

Surfaces sf_2 and sf_12 both represent quad_03/12. However, surface sf_12 is not
locally compatible with the annulus tri_3:quad_03/12 (that is, sf_9) – this is undesired,
so we choose surface sf_2 to represent this quadrilateral.

Similarly, surfaces sf_5 and sf_11 both represent quad_02/13. Without loss of generality,
we arbitrarily choose surface sf_5 to represent this quadrilateral. So, we introduce the
following names,

Gq01/23 = sf_6, Gq02/13 = sf_2, Gq03/12 = sf_5.

▶ Corollary 3.1. With this construction, for a normal surface S in a triangulation T , we can
choose a normal surface S′ in T ′ = T

abcd(G)
τ where in G ⊂ T ′, S′

G has normal coordinates

S′
G = t0Gta + t1Gtb + t2Gtc + t3Gtd + q01/23Gqab/cd + q02/13Gqac/bd + q03/12Gqad/bc ,

where Sτ = (t0, t1, t2, t3, q01/23, q02/13, q03/12) are the normal coordinates of S in τ . Hence,
S is isotopic to S′.

Annuli and Octagons

Among the normal surfaces in the gadget, we also have candidates for almost normal pieces.
Namely, sf_17 and sf_18 are both discs with octagonal boundary, and we declare that

GO02/13 = sf_18, GO03/12 = sf_17.

Finally, with the presence of four different annulus pieces between non-parallel triangles, and
two of triangle-quadrilateral type, we choose

Gt2
t0

= sf_19, Gt3
t0

= sf_16, Gt2
t1

= sf_1, Gt3
t1

= sf_4, G
q03/12
t0

= sf_27, G
q03/12
t3

= sf_9.

Note that parallel annuli are missing from G, this will be discussed later.
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3.4 Verifying Requirements
With the normal and almost normal pieces of the gadget identified, we now show that our
choice of G satisfies the properties discussed in Section 3.2.

▶ Observation 3.2. The sum of any two fundamental normal surfaces in G can be expressed
as the sum of pairwise disjoint fundamental surfaces. This can be verified in Regina.

Note that this is not true for all triangulations, as in general the connected components
of a normal surface A + B may include non-fundamental surfaces.

▶ Lemma 3.3. Any normal surface in the gadget can be expressed as a sum of pairwise
disjoint fundamental normal surfaces.

The approach we take is to express any normal surface as the sum of connected fundamental
surfaces, by repeatedly using Observation 3.2 on pairs of intersecting surfaces, allowing us to
rewrite this surface in a way that has fewer intersections between its summands.

Proof. Let U =
∑k

i=1 Ui be a normal surface in the gadget, where each Ui is a fundamental
normal surface (not necessarily distinct) and consider the set Ω = {Ui : i = 1, · · · , k}. Let
I represent the total number of intersection curves between these surfaces, noting that
surfaces intersect transversely. In particular, we may “push” components of U so that no
two intersection curves meet within G.

Now, take two surfaces A, B ∈ Ω that are not disjoint. By Observation 3.2, in the Haken
sum of A and B, we find A + B =

∑
Si where Si are pairwise disjoint fundamental normal

surfaces. Consider some curve γ in A ∩ B. Within a small open regular neighbourhood of γ,
N(γ), a regular exchange is performed as in Figure 3, such that all intersections resolve to
normal discs, as in Figure 4. This decreases the number of intersections I by 1 for each γ.

We have verified that resolving the intersections of A + B does not increase I. Now, we
must check that any intersections with any additional surfaces are not created.

Take some surface C ∈ Ω that intersects A and/or B. Each curve in A ∩ C or B ∩ C

is outside of the regions
⋃

γi∈A∩B N(γi), so evaluating A + B does not create any new
intersections between C and any component Si. In fact, the sets of intersection curves
(A ∩ C) ∪ (B ∩ C) =

⋃
Si∈A+B(Si ∩ C) are equal. So, I is strictly decreasing.

We may continue this process again for some new pair of intersecting, fundamental
surfaces, until I = 0 and we have a collection of disjoint, fundamental surfaces. ◀

▶ Theorem 3.4. Let T be a zero-efficient triangulation of a 3-manifold which is not S3,
RP 3 or L(3, 1). Remove some tetrahedron τ from T and replace it with G according to some
permutation (a, b, c, d). Then the resulting triangulation T ′ := T

abcd(G)
τ is also zero-efficient.

Proof. According to Proposition 5.1 of [11], because T is zero-efficient and not S3, RP 3 or
L(3, 1), it is a one-vertex triangulation. As τ and G have the same number of vertices, T ′

is a one-vertex triangulation. So, we suppose that T is zero-efficient, but T ′ is not. That
is, suppose that T ′ has some non-vertex-linking normal 2-sphere S. By Lemma 3.3, the
connected components of SG are all fundamental normal surfaces as described in Table 1
– excluding sf_0, sf_3, sf_20, which have genus 1. Now, consider embedding S into T to
form the surface S′, so that in tetrahedron τ we have that S′

τ is isotopic to SG. This is not
necessarily a normal surface, so we attempt to normalise it. As S′ is a sphere, any tubed
piece within τ may be cut and “capped” (see [8]), cutting S′ into two spheres. In particular,
we find an innermost tube in S′

τ , and cut and cap it as in Figure 8.

SoCG 2024
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Figure 8 Cutting and then capping an innermost tube.

As we repeat this process, we form S̄′, a collection of spheres, with ∂S̄′
τ = ∂SG. The

components of S̄′
τ are triangles, plus possibly either octagons or quadrilaterals (but not

both, as they are not locally compatible).
If S̄′ has one or more octagon piece, then we normalise all but one octagon by pushing

them towards adjacent tetrahedra (see [8] for details). Now, since exactly one octagon
remains, S̄′ has a component that is an almost normal sphere in T . From Proposition 5.12
of [11], this means T must be S3 – but this contradicts our assumptions about T .

Now, if S̄′ has quadrilaterals but no octagons, then it has a component that is a normal
2-sphere in T which is not vertex linking. This contradicts T being zero-efficient.

Finally, consider the case where S̄′ has only triangular pieces. As we assumed that S is
not vertex linking, then SG must have had at least one copy of an annulus between triangles.
But, as T ′ is a one-vertex triangulation, this means that S had genus > 1, as each tube
essentially adds a handle to a vertex linking sphere formed from the remaining triangles.
But, then S is not a sphere, so we again find a contradiction.

In each case, we have reached a contradiction to the assumption that T ′ is not zero-efficient.
Hence, we can conclude that the gadget preserves zero-efficiency. ◀

Now, we address the parallel annulus types that are not captured by the gadget, and show
why this exceptional case is harmless for algorithms such as computing Heegaard genus.

▶ Observation 3.5. Suppose S is an almost normal surface in some closed triangulation T .
If the almost normal piece in S is an annulus in tetrahedron τ , then on any face of τ that
intersects the annulus twice, the annulus may be isotoped (“pushed across”) to the adjacent
tetrahedron.

For example, consider such a case in Figure 9.

Figure 9 An annulus piece between a triangle and quadrilateral is pushed into a neighbouring
tetrahedron, as an annulus between two non-parallel triangles.

The normal discs in the adjacent tetrahedron need not be the same type, as in Figure 9.
Whether pairs of boundary curves constrained to the shared face are parallel determines

what annulus piece may appear in this adjacent tetrahedron. Which face the tube is pushed
towards determines which annulus may appear in the adjacent tetrahedron.
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▶ Lemma 3.6. Let S be a connected, almost normal surface in a closed, orientable triangu-
lation T (which is not the 3-sphere). Suppose it has an annulus piece of parallel triangle or
quadrilateral type in some tetrahedron τ . Then, one of the following holds:
1. S is isotopic to an almost normal surface S′ with a non-parallel boundary type annulus

in some (possibly different) tetrahedron τ ′;
2. S does not represent a minimal Heegaard splitting;
3. S is the orientable double cover of some non-orientable surface Uno with a tube connecting

the two sheets that cover some local region of Uno.

Proof. Suppose we have a surface S with an annulus of either parallel-triangle or parallel-
quadrilateral type. We attempt to push the tube from tetrahedron to tetrahedron until
reaching a non-parallel annulus type. If successful, this proves Case 1.

If a non-parallel piece cannot be found, then our surface must either be two parallel
copies of an orientable surface Uo, or the orientable double cover of a non-orientable surface
Uno, in both cases with a tube connecting its two sheets. The non-orientable case is simply
Case 3, which will be discussed after the proof.

Suppose that S realises a Heegaard splitting of genus g and therefore S has Euler
characteristic χ(S) = 2 − 2g.

If S = Uo#Uo where Uo is orientable and separating, then Uo has Euler characteristic
χ(Uo) = 2−g and Uo splits the triangulation into 3-manifolds X and Y where ∂X = ∂Y = Uo.
Refer to Figure 10. Now, consider the 3-manifold Z bounded by S = Uo#Uo, wedged between
the two copies of Uo. As χ(Uo#Uo) = χ(S) = 2 − 2g for the Heegaard splitting S, Z has
genus g. To the other side of S is the 3-manifold X ≍ Y , which is X connected to Y by
a solid tube. As S is a Heegaard splitting, X ≍ Y must also be a handlebody of genus
g. But, then X and Y are both handlebodies of genus g

2 (because they are both bounded
individually by the genus g surface Uo), so Uo is a Heegaard splitting of genus g

2 . Hence, S

is not a minimal Heegaard splitting (unless g = 0, but T is not the 3-sphere).

Figure 10 An orientable surface Uo divides the 3-manifold into X and Y . Two copies of Uo,
tubed together, form S = Uo#Uo which divide the 3-manifold into Z and X ≍ Y .

Finally, if S = Uo#Uo but Uo is non-separating, then cutting T along S yields a 3-manifold
X with a properly embedded disc (slicing through the tube) that separates ∂X but not X.
Therefore X is not a handlebody and S is not a Heegaard splitting, giving us Case 2. ◀

Consider Case 3 of the previous lemma. We abuse notation and let S = Uno ≍ Uno represent
the orientable double cover of Uno with a tube connecting its two sheets. Cutting the
triangulation T along Uno yields the 3-manifold X with ∂X = S. Since S cuts T into
two handlebodies of genus g, it follows that X is just one of these handlebodies with one
of its handles cut. That is, X is a handlebody with genus g − 1. Such a case can be
detected by searching for surfaces with Euler characteristic χ(Uno) = 1

2 χ(S) + 1 which cut
the triangulation into one genus g − 1 handlebody.
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▶ Corollary 3.7. For an almost normal surface S that realises a minimal Heegaard splitting
of a triangulation T , one of the following holds:
1. There exists a gluing of the gadget into T to form T ′ = T

abcd(G)
τ for some permutation

(a, b, c, d) and some tetrahedron τ , and there exists a normal surface S′ in T ′ that is
isotopic to S;

2. S is of the type of Case 3 in Lemma 3.6.

Proof. Suppose that S is an almost normal surface in a triangulation T , with its almost
normal piece in tetrahedron τ .

There are twelve rotational symmetries of a tetrahedron (twelve even permutations of its
vertices), and hence twelve possible triangulations that may be formed for each tetrahedron.

We may transform the coordinates of the normal pieces as in Corollary 3.1.
If the almost normal piece of S is an annulus between parallel triangles or quadrilaterals,

then we attempt to push this tube across the tetrahedra until reaching a non-parallel annulus
piece, and apply the gadget accordingly. If this is unsuccessful, then S must be the orientable
double cover of some non-orientable normal surface Uno with a tube connecting its two
sheets, as in Case 3 of Lemma 3.6. Then, to determine if S is a genus g Heegaard splitting,
simply cut along Uno and check, via the algorithm for handlebody recognition [7], whether
the resulting manifold is a genus g − 1 handlebody.

Now, if the almost normal piece of S is an octagon or a non-parallel annulus piece, then
we seek to construct a surface in T

abcd(G)
τ for some permutation of the vertices of τ into G,

(0, 1, 2, 3) 7→ (a, b, c, d).
As the gadget has two distinct triangle-quadrilateral annulus pieces of a total possible

twelve, each permutation of the gadget can represent two distinct annuli of this type. Hence,
we only need to try six possible permutations. We choose the following,

(0, 1, 2, 3), (0, 3, 1, 2), (1, 0, 3, 2), (1, 2, 0, 3), (2, 0, 1, 3), (3, 1, 0, 2).

This choice of permutation allows us to “rotate” the required octagon or annulus piece of
G into the same position as the one in τ . Refer to Appendix C of the full version for the
specific choices of individual almost normal pieces [8]. ◀

3.5 Implementations
In practice, as there is no current implementation of annulus pieces in Regina, we cannot
directly normalise an almost normal surface using the gadget. Instead, we need to consider
all normal surfaces from all possible triangulations resulting from gluing the gadget into any
tetrahedron.

With the gadget, Heegaard splittings can now always be represented by normal surfaces.
However, these surfaces are not necessarily fundamental. Therefore we use the gadget to
generate a set of candidate surfaces for each potential value of genus; this set will be finite,
due to Euler characteristic being additive under Haken sum. We discuss this process further
in Section 4.

3.5.1 Method 1: Generating All Surfaces
For each tetrahedron τ in a triangulation T , form T

abcd(G)
τ for the six distinct permutations

(see the proof of Corollary 3.7), and then generate all fundamental normal surfaces in it. For
a triangulation with n tetrahedra, this means 6n sets of normal surfaces must be enumerated.
This represents almost normal surfaces that may be embedded in T , as well as many others
(which use surfaces of the gadget that are not tubes, octagons, triangles, or quadrilaterals).
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Denote the running time for generating normal surfaces for a triangulation with n

tetrahedra by T (n), and let C(n) represent the number of normal surfaces for such a
triangulation. From Section 2.4, T (n) ∈ O(1.934n) and C(n) ∈ O(1.503n). Suppose that the
running time of the algorithm to check if a surface is a Heegaard splitting has running time
f(n). Then, to generate and test each surface in the 6n triangulations, we find a running
time on the order of M1(n) = 6n(T (n + 4) + C(n + 4)f(n)) = 6n(1.934n+4 + 1.503n+4f(n)).

3.5.2 Method 2: Constructing Each Annulus

Alternatively, we have developed a method to form the necessary set of almost normal
surfaces using an existing set of fundamental normal surfaces for the base triangulation.

Let Ω be the set of fundamental normal surfaces for a triangulation T . For each surface
S ∈ Ω, we form a set of almost normal surfaces with an annulus piece between triangles
and/or quadrilaterals in S as follows. For each tetrahedron τ , if Sτ has at least two triangles
on different vertices, then we consider the surface with an annulus between two of these
triangles. Similarly, if Sτ has at least one triangle and at least one quadrilateral, we consider
the surface with an annulus between these. In either case, we determine which annulus
type from the gadget is necessary, and under which permutation, and construct the new
surface within T ′ = T

abcd(G)
τ . As we begin with a set of normal surfaces (that is, they are not

already “tubed”), when we form the equivalent surface in T ′, we must add the coordinates
for the annulus piece to the coordinates for each triangle or quadrilateral excluding those
corresponding to the boundaries of the annulus.

For example, in Figure 11, Sτ has coordinates (1, 0, 0, 2, 0, 0, 1) and supports several
annulus types, such as one connecting a triangle to its quadrilateral. Using the identity
permutation, we find that G

q03/12
t3

gives us the annulus between tri_3:quad_03/12. Then,
the remaining triangle pieces are represented using Gt0 and Gt3 .

+

Figure 11 A surface with coordinates (1, 0, 0, 2, 0, 0, 1) in a tetrahedron, and its “tubing”.

For a complete guide to our choice of permutations, see Appendix C of the full version [8].
Now, using the same results from Section 2.4, the running time for this method is on the

order of M2(n) = T (n) + C(n) ∗ 6n ∗ f(n) = 1.934n + 6n × 1.503nf(n), as there are at most
six annulus types that could exist in any given tetrahedron.

Performance Comparison

In our discussion of the two methods, we found M1(n) ∈ O(6n(1.934n+4 + 1.503n+4f(n)))
and M2(n) ∈ O(1.934n + 6n × 1.503nf(n)), where f(n) is the time to test if a given surface
is a Heegaard splitting.Asymptotically M2(n) ∼ 6n × 1.9344 × M1(n), and so we expect
method 2 to be significantly faster than method 1.
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Generating All Surfaces with Method 2

In Method 2 (Section 3.5.2), we described how a non-parallel annulus of an almost normal
surface can be converted into a normal surface using the gadget. Here, we justify that this
method produces all the candidate almost normal surfaces that may represent a minimal
Heegaard splitting. First, suppose that almost normal surfaces with octagon pieces have
been considered already (i.e. have been tested as Heegaard splittings). Now, any almost
normal surface with an annulus piece has such an annulus “tubing” together two triangles
and/or quadrilaterals.

Suppose S is an orientable fundamental almost normal surface with Euler characteristic
χ(S) < 0, with a non-parallel annulus in some tetrahedron τ . Let S̄ be the surface generated
by cutting and capping the annulus. Of course, χ(S̄) = χ(S) + 2 and S̄ is a normal surface,
but is not necessarily fundamental, so S̄ =

∑
i Ai for some fundamental normal surfaces Ai.

The annulus of S either connects two components in τ of a particular Ai, or connects two
components between Aj and Ak for j ̸= k. We can generate all tubings of Ai to itself by
constructing tubes as in Section 3.5.2. Similarly, we can generate tubings of Aj + Ak.

Now, if S has a parallel annulus piece, then either it is of the type of Case 3 in Lemma 3.6,
or S will not represent a minimal Heegaard splitting, or it is isotopic to some S′ with a
non-parallel annulus.

In practice, this results in the following method for detecting a splitting of genus g.
1. Generate the set ΩAN of all fundamental almost normal surfaces of a triangulation T

in Regina, test if those with genus g are Heegaard splittings. If not, generate the set of
fundamental normal surfaces, ΩN .

2. For each tetrahedron, for each orientable surface of genus g − 1 in ΩN , form all tubings.
3. For each tetrahedron, for each set of locally compatible surfaces in ΩN whose Euler

characteristics sum to 2 − 2(g − 1), form all tubings.
4. Test all tubed surfaces as Heegaard splittings.
Note that constructing a tube increases the Euler characteristic of a surface by 2, which is
equivalent to increasing the genus of a connected surface by 1.

4 Computing Heegaard Genus

As discussed in Section 2.5, a result of Rubinstein declares that Heegaard splittings are given
by S = San + St where San is almost normal, St is normal, χ(San) < 0 and χ(St) = 0 [20].
So, to determine if a triangulation has a genus g Heegaard splitting, all such surfaces
where χ(San) = 2 − 2g must be tested as splittings. Furthermore, we know that every
summand of San must have negative Euler characteristic, and every summand of St has zero
Euler characteristic. Hence, there are finitely many cases to consider of San as their Euler
characteristic must represent an integer partition of 2 − 2g. We can generate these using
normal and almost normal surfaces in Regina with octagon pieces, or by constructing tubed
surfaces as in Section 3.5.2.

For the torus piece St, as Euler characteristic is additive under Haken sum, this could
theoretically require an unbounded number of different sums of tori. However, from Lemma 5.1
of [2], we know that if S is a normal surface and A is an edge-linking torus, then S+A is either
disconnected or is isotopic to S, so need not be considered in summands of St. Tentatively
and naively, we therefore consider splittings as S = San only. If there are non-edge-linking
tori present, this means we may not see our splitting, and so in such settings we can only
form an upper bound on the genus. Experimentally, edge-linking tori do form the majority
of tori in the cases we have tested, and in those cases that remain, we can attempt to form a
lower bound using algebraic techniques as in Section 2.5.
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We have tested this approach on all orientable triangulations in the closed hyperbolic
census of Hodgson and Weeks (in [10]) – all of which are zero-efficient. We first search for a
genus 2 splitting, and if one does not exist, search for a genus 3 splitting (then 4, etc). Of
the 3,000 triangulations in this census, 44 had rank(H1(M)) = 3, and genus 3 splittings were
found. Then, 2,661 had rank(H1(M)) ≤ 2, and genus 2 splittings were found. For each of
the remaining 295, an exhaustive search of genus 2 surfaces (without tori) found no splittings,
but genus 3 splittings were found. In these 295 cases, we cannot guarantee they have genus
3, but merely provide an informed upper bound.
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