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Abstract
Let P be a set of at most n points and let R be a set of at most n geometric ranges, such as disks
and rectangles, where each p ∈ P has an associated supply sp > 0, and each r ∈ R has an associated
demand dr > 0. A (many-to-many) matching is a set A of ordered triples (p, r, apr) ∈ P × R × R>0

such that p ∈ r and the apr’s satisfy the constraints given by the supplies and demands. We show
how to compute a maximum matching, that is, a matching maximizing

∑
(p,r,apr)∈A apr.

Using our techniques, we can also solve minimum bottleneck problems, such as computing a
perfect matching between a set of n red points P and a set of n blue points Q that minimizes
the length of the longest edge. For the L∞-metric, we can do this in time O(n1+ε) in any fixed
dimension, for the L2-metric in the plane in time O(n4/3+ε), for any ε > 0.
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1 Introduction

The classic assignment problem is to assign n items (such as jobs) to n other items (such
as machines). It asks for a bijection between the two sets that maximizes some quality or
minimizes some cost function. Computing a perfect matching in a bipartite graph is one
special case of the assignment problem. The assignment problem stood at the cradle of the
field of combinatorial optimization in the 1950’s, and influenced the development of integer
and linear programming and the theory of network flows. The book by Burkard et al. [5]
presents the history of the problem and results for different cost functions.

A natural generalization is to relax the one-to-one requirement. Problems of this nature
arise commonly in practice, for instance when assigning mobile clients to base stations,
patients to hospitals, dinner guests to restaurants, etc. Such problems are commonly solved
using maximum-flow, see for instance Exercises 7, 8, 9, 16, 19, 26 in Chapter 7 of Kleinberg
and Tardos’ book [23].

© Sergio Cabello, Siu-Wing Cheng, Otfried Cheong, and Christian Knauer;
licensed under Creative Commons License CC-BY 4.0

40th International Symposium on Computational Geometry (SoCG 2024).
Editors: Wolfgang Mulzer and Jeff M. Phillips; Article No. 31; pp. 31:1–31:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sergio.cabello@fmf.uni-lj.si
https://orcid.org/0000-0002-3183-4126
mailto:scheng@cse.ust.hk
https://orcid.org/0000-0002-3557-9935
mailto:otfried@scalgo.com
https://orcid.org/0000-0003-4467-7075
mailto:christian.knauer@uni-bayreuth.de
https://doi.org/10.4230/LIPIcs.SoCG.2024.31
https://arxiv.org/abs/2310.02637
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


31:2 Geometric Matching and Bottleneck Problems

p1

p2

p4p3

p5

p6

D1

D2

D3

D4

D1

D2

D3

D4

p1

p2

p4

p3

p5

p6

Figure 1 A set of six points and a set of four congruent disks in the plane (left) and their incidence
graph (right).

Geometric matching problems. In several settings one encounters assignment or matching
problems between geometric objects. Let us define these geometric matching problems more
precisely. Let P be a set of points and let R be a set of geometric ranges, such as disks or
rectangles. We use n to denote |P | + |R|. Their incidence graph, denoted by I(P, R), is the
bipartite graph (see Figure 1 for an example)

I(P, R) =
(
P ⊔ R, {pr | p ∈ P, r ∈ R, p ∈ r}

)
.

Each point p ∈ P has an associated supply sp > 0 and each range r ∈ R has an associated
demand dr > 0. We consider the elements of P as providers and the elements of R as
consumers of a common commodity that is infinitely divisible. The commodity can be sent
only along the edges of I(P, R), and the goal is to maximize the amount of commodity that
is sent while respecting the supplies and the demands. The target value of the instance is

µ = min
{ ∑

p∈P

sp,
∑
r∈R

dr

}
,

which is an obvious upper bound on the amount of the commodity that can be sent.
Formally, a (many-to-many) matching is a set A of ordered triples (p, r, apr) ∈ P ×R×R>0

such that
for every (p, r, apr) ∈ A, pr is an edge of I(P, R);
for every (p, r) ∈ P × R, there is at most one triple (p, r, ·) in A;
for every point p ∈ P ,

∑
r∈R: (p,r,apr)∈A apr ⩽ sp;

for every range r ∈ R,
∑

p∈P : (p,r,apr)∈A apr ⩽ dr.
The value of the matching A is η = η(A) =

∑
(p,r,apr)∈A apr, and the objective is to maximize

this value. A matching is satisfying when its value is the target value, that is, when η = µ.
The size of a matching is |A|, that is, the number of edges of I(P, R) that carry part of the
commodity.

A geometric matching problem can be solved using a standard transformation to a
maximum-flow instance built around I(P, R) (with directed edges). However, any approach
that explicitly constructs I(P, R) is going to spend time at least proportional to its size,
which may be Θ(n2). Thus, even when using the recent breakthrough near-linear time
algorithm of Chen et al. [9] for maximum-flow, we will spend quadratic time.

A key question is whether one can use the geometry of the input to solve the matching
problem without explicitly constructing I(P, R). Our contribution is to note that a compact
representation of the incidences of geometric objects can indeed be used to solve the geometric
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matching problem without constructing I(P, R). More precisely, we use a union of complete
bipartite graphs as a compact representation of I(P, R). We denote by σ the size of this
compact representation, which will be defined in Section 2. We provide two algorithms for
the maximum matching problem depending on what we want to assume about the supplies
and the demands.

Integral supplies and demands. Our first algorithm uses the recent algorithm of Chen et
al. [9] to solve maximum-flow instances in near-linear time and assumes that the supplies and
the demands are integers. Recall that µ = min

{∑
p∈P sp,

∑
r∈R dr

}
. The running time is

O(σ1+ε log µ) with high probability (more specifically, the probability is at least 1 − σ−O(1)),
for any constant ε > 0. Retrospectively, this result is a simple combination of the recent
breakthrough in computing maximum flow and compact representations of incidences in
geometric settings, a common tool in computational geometry.

This first algorithm has interesting consequences for several fundamental problems
concerning one-to-one matchings in geometric settings. However, not every solution to the
matching problem with unit supplies and demands is a one-to-one matching, because the
solution may use fractional flow values on some edges. For example, on a regular bipartite
graph solving the matching problem with unit supplies and demands is trivial using fractional
flows, but it is still a challenge to determine an integral maximum flow. We solve this problem
using the approach in [15, 26].

Here is a list of consequences of our new algorithm; in all cases, n is the number of points
and ranges, the results hold with high probability, and ε is an arbitrary positive constant
that affects the constants hidden in the O-notation:

When R is a set of axis parallel rectangles in the plane, we can compute a maximum
one-to-one matching in I(P, R) in O(n1+ε) time.
When R is a set of congruent disks in the plane, we can compute a maximum one-to-one
matching in I(P, R) in O(n4/3+ε) time.
For two given point sets P and Q in the plane, and a real value λ ⩾ 0, we can compute
a maximum one-to-one matching in the bipartite graph on P ⊔ Q that connects points
at distance at most λ. In the L∞-metric, the running time is O(n1+ε), while in the
L2-metric the running time is O(n4/3+ε).
We can decide in O(n1+ε) time if the bottleneck distance of two persistence diagrams
with n points outside the diagonal is smaller or equal to a given value λ ⩾ 0.

For all problems, the previous best algorithm had a running time of roughly O(n3/2) and
was due to Efrat, Itai and Katz [14]. That result was an efficient version of the maximum-
matching algorithm by Hopcroft and Karp [17], where one makes O(n1/2) rounds, and in
each round one finds several augmenting paths of the same length. Using range searching
data structures, each round is implemented in near-linear time.

If one is willing to use as a parameter the so-called density ρ of the geometric objects, then
Bonnet, Cabello, and Mulzer [4] provided an algorithm to compute a maximum (one-to-one)
matching of I(P, R) in O(ρ3ω/2nω/2) time with high probability, where ω > 2 is a constant
such that any two n × n matrices can be multiplied in time O(nω). With the current bounds
on ω, the running time is O(ρ3.56n1.19). Note that in the worst case ρ = Θ(n) and then
the algorithm takes Ω(n4) time, even for ω arbitrarily close to 2. For congruent disks and
the current value of ω, our new bound is better when ρ = Ω(n0.041); if ω can be made
arbitrarily close to 2, our new bound for congruent disks is still better when ρ = Ω(n1/9+ε)
for some ε > 0. For axis-parallel rectangles and the current value of ω, our new bound is

SoCG 2024



31:4 Geometric Matching and Bottleneck Problems

better for any density ρ; if ω can be made arbitrarily close to 2, our new bound for rectangles
is better as soon as ρ = Ω(nε) for some ε > 0. They give other results that are independent
of the density ρ, but those do not apply to the bipartite setting that we consider here.

Har-Peled and Yang [16] considered obtaining (1 + ε)-approximations to the maximum
matching in near-linear time.

Arbitrary supplies and demands. In our second algorithm we do not make any assumption
about the supplies and the demands. In computational geometry it is common to allow
arbitrary real numbers in the input, because the input may be coming from a previous
computation and may be, say, a Euclidean distance or the area of a disk.

Our algorithm is a variant of Dinitz’ algorithm for maximum-flow as implemented by
Sleator and Tarjan [32]. We prune the current matching after each phase of Dinitz’ algorithm,
ensuring that the current flow is non-zero on a linear number of edges only. We also store
the edges from providers to consumers in each residual graph implicitly using a clique cover
of the graph. Assuming a compact representation of the incidence graph I(P, R) of size σ we
compute a maximum matching in O(nσ log σ) time.

Our time bound is better than using the usual transformation into a maximum flow
and then using the fastest known combinatorial algorithms for maximum flow that work
for arbitrary edge capacities: For maximum-flow instances on graphs with |V | vertices and
|E| edges, the best known running time is O(|V ||E|) [22, 29, 30]. In our setting, this leads
to a worst-case running time of O(n3) (for the decision problem), because I(P, R) could be
dense.

Our time bound is also better than using the construction used for the integral case; see
Figure 3. In this construction, we have a graph with O(σ) edges and vertices, which means
that a maximum flow can be computed in O(σ2) time. This time bound is strictly better
than O(nσ log σ) only when n = ω(σ/ log σ), but this never happens for any of the geometric
scenarios we consider. Even for points and intervals on the line we have σ = Θ(n log n).

Our algorithm has the following consequences for the geometric matching problem with
arbitrary supplies and demands:

When R is a set of axis parallel rectangles in the plane, we can compute a maximum
matching in I(P, R) in O(n2 log3 n) time.
When R is a set of congruent disks in the plane, we can compute a maximum matching
in I(P, R) in O(n7/3 log2 n) time.
For two given point sets P and Q in the plane, and a real value λ ⩾ 0, we can compute a
maximum many-to-many matching in the bipartite graph on P ⊔ Q that connects points
at distance at most λ. In the L∞-metric, the running time is O(n2 log3 n), while in the
L2-metric the running time is O(n7/3 log2 n).

Bottleneck instances. Consider the scenario where we have two sets of n points each in the
plane and we want to compute a perfect matching between them that minimizes the length
of the longest edge. That is called a bottleneck matching, and its computation has been
considered before by Efrat, Itai and Katz [14]. A precise definition is given in Section 3.2.

A similar concept of using a perfect matching to define a bottleneck distance has been
introduced in the context of persistence diagrams; see [10, 12, 13, 21] or the definition in
Section 3.3. This concept is closely related to the L∞-metric in the plane.

Similarly, for non-unit demands and supplies we can consider a matching problem between
two sets of points where we want to compute a satisfying matching that minimizes the length of
the longest edge being used. This is the bottleneck value for the geometric matching problem.
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Long and Wong [24] introduced this spatial matching problem, which they denoted spm-mm.
Closely related problems have been considered in the field of spatial databases, for example
when assigning mobile clients to base stations with limited capacity [25, 33]. In this context,
one uses the L2-metric.

In all these problems, we can solve the decision problem using the algorithms described
above: For a given λ, is there a perfect matching or a satisfying matching where all edges have
length at most λ? We can then perform a binary search in a set of (so-called critical) values
that is known to contain the optimal value, without substantially increasing the running
time. We obtain the following results, where, as before, the running times hold with high
probability and ε is an arbitrarily small positive constant:

The bottleneck matching for two sets of n points in the plane under the L2-metric can be
computed in in O(n4/3+ε) time. The previous time bound was O(n3/2 log n) [14].
The bottleneck matching for two sets of n points in the plane under the L1- or L∞-metric
can be computed in O(n1+ε) time. The previous bound was O(n3/2 log n) [14].
The bottleneck distance of two persistence diagrams with n points outside the diagonal
can be computed in O(n1+ε) time. The previous bound was O(n3/2 log n).
The bottleneck value for a geometric matching problem can be computed in
O(n4/3+ε) time, if the supplies and the demands are small integers, and in O(n7/3 log3 n)
time for arbitrary supplies and demands.

Note that the recent result of Katz and Sharir [20] is for the bottleneck matching problem
in the non-bipartite case; the techniques do not apply to the bipartite case we consider here.

It is perhaps surprising that a minimum bottleneck matching is not necessarily planar.
Finding a minimum planar bottleneck matching is hard [7, 18].

Due to space constraints, missing proofs and details can be found in the full version [6].

2 Compact representation of incidences

For any two disjoint sets U and V , let K(U, V ) denote the complete bipartite graph with
vertex set U ⊔ V and edge set {uv | u ∈ U, v ∈ V }.

Let G = (U, V, E) be a bipartite graph with vertex set U ⊔ V . Let I be some index set.
A compact representation of G is a collection {(Ui, Vi) | i ∈ I} such that

for each i ∈ I, Ui ⊆ U and Vi ⊆ V , and
G is the union of the complete bipartite graphs K(Ui, Vi) over i ∈ I.

The compact representation is edge-disjoint if the graphs K(Ui, Vi), i ∈ I, are pairwise
edge-disjoint. The size of the compact representation is defined as

∑
i∈I(|Ui| + |Vi|). The

size represents the length of the description of the representation, assuming that vertices can
be represented in constant space (the bit complexity would be slightly larger). See Figure 2
for an example.

Each bipartite graph G = (U, V, E) has a trivial compact representation of size Θ(|U | +
|V | + |E|), namely {({u}, {v}) | uv ∈ E}. However, some bipartite graphs have compact
representations of size o(|E|). We next describe a few such cases arising in geometry.

▶ Theorem 1 (Implicit in [2, Section 3] or [11, Chapter 5]). Let P be a set of at most n points
and let R be a set of at most n axis-parallel boxes in Rd, for constant d. We can compute
an edge-disjoint compact representation of the incidence graph I(P, R) of size O(n logd n) in
time O(n logd n).

SoCG 2024
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Figure 2 An example of a bipartite graph (left) represented as the union of three complete bipartite
graphs (right). In this example, the compact representation has size (3 + 2) + (2 + 2) + (3 + 2) = 14.
Note that this compact representation is not edge-disjoint because of the edge p4r5.

▶ Theorem 2 ([19]). Let P be a set of at most n points and let D be a set of at most n

congruent disks in the plane. We can compute an edge-disjoint compact representation of the
incidence graph I(P, D) of size O(n4/3 log n) in time O(n4/3 log n).

▶ Theorem 3 (Implicit in [27]; see also [2, Section 4.3]). Let P be a set of at most n points and
let H be a set of at most n halfspaces in Rd, for constant d. We can compute an edge-disjoint
compact representation of the incidence graph I(P, H) of size O(n

2d
d+1 polylog n) in time

O(n
2d

d+1 polylog n).

▶ Remark. Points and balls of different sizes in Rd can be treated as points and halfspaces
in Rd+1 using standard techniques. However, for d = 2 one can get stronger results for any
semi-algebraic regions, and in particular for disks; see [3] for a recent development.

3 Geometric matching problems with integral supplies and demands

Consider a geometric matching problem for a set P of points and a set R of geometric ranges,
with n objects in total. Each point p ∈ P has a supply sp > 0 and each range r ∈ R has a
demand dr > 0.

Assume that we have a compact representation {(Pi, Ri) | i ∈ I} of size σ for the incidence
graph I(P, R). We are going to reduce the problem of deciding whether there is a satisfying
matching to a max-flow problem in a graph whose size is roughly the size of the compact
representation.

The max-flow instance is constructed as follows (see Figure 3 for an example): Initially
we have the vertices P ⊔ R and no edges. We then add the following:

We add a new vertex s and, for each p ∈ P , we add the directed edge (s, p) with
capacity sp.
We add a new vertex t and, for each range r ∈ R, we add the directed edge (r, t) with
capacity dr.
For each i ∈ I, we add a new vertex vi, directed edges (p, vi) for all p ∈ Pi, and directed
edges (vi, r) for all r ∈ Ri. These edges have capacity µ = min

{∑
p∈P sp,

∑
r∈R dr

}
. We

refer to the set of edges added in this step as Ei.
This finishes the description of the s-t max-flow instance, which we denote by G. This
instance depends on P , R, the demands, the supplies, and the compact representation
of I(P, R) being used.

The instance we constructed has 2 + |P | + |R| + |I| = 2 + n + |I| = O(σ) vertices and
|P | + |R| +

∑
i∈I(|Pi| + |Ri|) = O(σ) edges. The time to construct the instance is also O(σ),

assuming that the compact representation is already available. The maximum capacity in
the instance is µ.
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Figure 3 The max-flow instance G for the compact representation of Figure 2.

▶ Lemma 4. There is an s-t flow of value η in G if and only if there exists a matching of
value η. Moreover, from a flow of value η we can recover a matching of value η and size O(σ)
in O(σ) time.

▶ Theorem 5. Consider a geometric matching problem for a set P of at most n points and
a set R of at most n ranges such that the demands and the supplies are integral. Let µ be the
target value of the instance. Assume that we have a compact representation of the incidence
graph I(P, R) of size σ. Then we can compute a maximum (many-to-many) matching of size
O(σ) in O(σ1+ε log µ) time with high probability, for any constant ε > 0.

Proof. We build the max-flow instance associated with the compact representation in O(σ)
time. Note that the resulting instance has O(σ) vertices, O(σ) edges, and maximum
capacity µ. We solve the s-t max-flow problem in O(σ1+o(1) log µ) time with high probability
using the algorithm of Chen et al. [9, Corollary 1.3]. This running time can be upper bounded
by O(σ1+ε log µ) for any constant ε > 0. ◀

3.1 Maximum and perfect matchings in intersection graphs

We next turn our attention to the setting where we want to compute a maximum one-to-one
matching in a bipartite graph that has a compact representation. A particular case of this is
deciding whether the graph has a perfect matching (and constructing one).

This is essentially a matching problem with unit supplies and demands. Standard
integrality results imply that the value of the matching is the size of the maximum one-to-one
matching. However, we have to be careful because the algorithm in Theorem 5 could return a
non-integral matching. A maximum matching can be converted into a maximum one-to-one
matching using an adaptation of the method by Mądry [26, Section 8 of the full version].
We only state the main result here.

▶ Theorem 6. Let P be a set of at most n points and let R be a set of at most n ranges.
Assume that we have a compact representation of the incidence graph I(P, R) of size σ.
We can compute a maximum one-to-one matching in I(P, R) in O(σ1+ε) time with high
probability, for any constant ε > 0.

3.2 Bottleneck distances

Let P and Q be two sets of n points in the plane and consider the bipartite graph obtained
by connecting points whose L∞-distance is at most λ:

G∞(P, Q, λ) =
(
P ⊔ Q, {pq | max{|x(p) − x(q)|, |y(p) − y(q)|} ⩽ λ}

)
.

SoCG 2024
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We are interested in computing the L∞-bottleneck distance between P and Q, defined as

λ∗
∞(P, Q) = min{λ | G∞(P, Q, λ) has a perfect matching}.

The same concepts can be defined for the L1- and L2-distances

G1(P, Q, λ) =
(
P ⊔ Q, {pq | |x(p) − x(q)| + |y(p) − y(q)| ⩽ λ}

)
,

λ∗
1(P, Q) = min{λ | G1(P, Q, λ) has a perfect matching},

G2(P, Q, λ) =
(
P ⊔ Q, {pq | (x(p) − x(q))2 + (y(p) − y(q))2 ⩽ λ2}

)
,

λ∗
2(P, Q) = min{λ | G2(P, Q, λ) has a perfect matching}.

As noted by Efrat, Itai and Katz [14, Section 6.2.2] we can use an algorithm for the decision
problem (where λ is given) to perform a binary search to find λ∗

· (P, Q).

3.3 Bottleneck distance of persistence diagrams
Our techniques can be applied to compute the bottleneck distance of persistence diagrams,
one of the most important concepts in computational topology; see for example the book by
Edelsbrunner and Harer [13, Part C] or the book by Dey and Wang [12, Chapter 3].

▶ Corollary 7. For persistence diagrams X and Y , each with at most n points outside the
diagonal, we can compute their bottleneck distance W∞(X, Y ) in O(n1+ε) time with high
probability, for any ε > 0

4 Geometric matching problems with arbitrary supplies and demands

In the previous section we made use of a fast algorithm for max-flow that works for integer
capacities. In this section we consider the scenario where supplies and demands are arbitrary
real numbers, and we insist on an algorithm that solves the problem exactly on the real
RAM, as is customary in computational geometry.

Clearly, we can restate Theorem 5 by making use of a combinatorial max-flow algorithm.
The fastest combinatorial algorithm that works for arbitrary capacities runs in time O(nm),
where n is the number of vertices, m the number of edges of the network. Applying this to
the graph of Figure 3 results in a running time of O(σ2), where σ is the size of the compact
representation of the incidence graph I(P, R).

We now show how this can be improved when σ > n. Instead of explicitly computing the
five-layer graph of Figure 3, we run Dinitz’ algorithm on the classic four-layer graph based
on I(P, R), but we represent that graph and all intermediate graphs implicitly, making use
of compact representations.

4.1 Dinitz’ algorithm with pruning
Given a set of at most n points P with supplies sp, a set of at most n ranges R with
demands dr, and an incidence graph I(P, R) given through a compact representation of
size σ, we consider the flow network consisting of a source s, the vertices P , the vertices R,
and a sink t: For each p ∈ P , we have the edge (s, p) with capacity sp, for each r ∈ R, we
have the edge (r, t) with capacity dr, and for each (p, r) ∈ I(P, R) we have the edge (p, r) with
infinite capacity. Let G denote this flow network. Since G can have quadratic complexity,
we will not actually construct it explicitly.
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Let f be a flow in G. Naturally, f induces a matching, so we call f a flow or matching
interchangeably. Let H(f) be the undirected graph obtained from G by removing s and t,
and keeping the undirected edges {p, r} if and only if f(p, r) > 0.

▶ Lemma 8. For every flow f in G, there exists a flow f0 in G with the same value such
that H(f0) is a forest and a subgraph of H(f).

Proof. Suppose that H(f) contains a cycle. This cycle zig-zags back and forth between P

and R. We color the edges of the cycle alternatingly red and blue. Both red and blue edges
carry positive flows out of their endpoints in P . We can add a value ∆ to the flow on all
red edges and subtract ∆ from the flow on all blue edges without changing the outgoing
and incoming flow at any node. Let e be the blue edge that has the minimum flow value
among the blue edges. By choosing ∆ to be the flow value on e, we can reduce the flow
value on e to zero. This gives a new flow f ′ in G such that H(f ′) is the subgraph of H(f)
with e (and possibly more edges) deleted. We repeat this procedure until there is no cycle
left in H(f0). ◀

We will use Dinitz’s algorithm to compute a maximum flow in G. Dinitz’ algorithm starts
with the zero flow, and augments the flow in phases. In each phase, it computes the level
graph L(f) of the residual graph G(f) of G with respect to the current flow f . The level
graph L(f) is defined as follows: For each node v of G(f), we define the level ℓ(v) of v as
the length of the shortest path (in terms of the number of edges) from s to v in G(f). The
level graph contains exactly those edges (u, v) of G(f) where ℓ(v) = ℓ(u) + 1. In other words,
all edges of the level graph are on a shortest path starting in s.

Clearly, s is the only node at level zero in L(f). In our application, every odd level
consists of elements of P , every even level other than zero consists of elements of R. The
sink t resides in an odd level. We ignore all other nodes on level ℓ(t) and above.

Next, Dinitz’ algorithm computes a blocking flow g in L(f), and augments f to f + g

before proceeding to the next phase. A flow g is blocking iff for every path γ from s to t in
L(f), there is an edge e of γ that is saturated by g, that is, the flow sent by g on e is equal
to the capacity on e. Dinitz’ algorithm terminates when there is no longer a path from s to t

in the level graph.
Our algorithm differs from Dinitz’ algorithm in only one detail: After augmenting the

current flow, we apply Lemma 8 to prune the current matching. It follows that at the end of
each phase, the graph H(f) has at most 2n − 1 edges (since it is a forest).

The following lemma shows that at most n phases of this algorithm suffice to obtain a
maximum flow in G. This is essentially Theorem 8.4 in [32], but some extra effort is needed
due to the pruning step (by Lemma 8) at the end of each phase.

We first establish some notation. In the residual graph G(f) and the level graph L(f),
we call the edges from s to P the feeder edges, the edges from elements of P to elements of R

the forward edges, the edges from R to t the draining edges, and all other edges backward
edges. Note that backward edges do not exist in G, rather they are the reverse of an edge
with positive flow in G. In the residual graph, backward edges can be directed from R to P ,
from P to s, or from t to R. Only backward edges from R to P will appear in the level
graph, as ℓ(s) = 0 and since we ignore levels after ℓ(t).

By the definition of the residual graph, the capacity of every feeder edge (s, p) is the
unused supply left at p, that is sp −

∑
r∈R f(p, r). The capacities of forward edges are ∞. The

capacity of every drain edge (r, t) is equal to the demand at r that has not been satisfied yet,
that is dr −

∑
p∈P f(p, r). Finally, the capacity of a backward edge (u, v) is equal to f(v, u).
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▶ Lemma 9. Starting with the zero flow, at most n successive augmentations by blocking
flows in the corresponding level graphs will yield a maximum flow in G.

Proof. We will show that the level of t in the level graph increases after each augmentation.
Since the level of t is always odd, starts with 3, and can be at most 2n + 1, there can be at
most n augmentations.

Let f be the current flow in G. Let Z = G(f) denote the residual graph of G with respect
to f . Let g be a blocking flow in L(f). We use ℓ(v) to denote the level of the node v in L(f),
which is also the distance of v from s in Z. Define h = f + g. Let f ′ be obtained from h by
Lemma 8. Let Z ′ = G(f ′) be the residual graph of G with respect to f ′.

▷ Claim 10. If (v, w) is a feeder, forward, or draining edge of Z ′, then (v, w) is an edge of Z.

Proof of Claim 10. If (v, w) is a forward edge in Z ′, then (v, w) is an edge of G. Since the
capacity of (v, w) is infinite, it is also an edge of Z.

The feeder and draining edges are never involved in a cycle in the proof of Lemma 8. So
the flows on them are the same with respect to f and f ′, which means that their residual
capacities in Z and Z ′ are the same. Therefore, if (v, w) is in Z ′, it is also in Z. ◁

▷ Claim 11. For every edge (v, w) in Z ′, we have ℓ(w) ⩽ ℓ(v) + 1.

Proof of Claim 11. We first observe that if (v, w) is an edge of Z, then ℓ(w) ⩽ ℓ(v) + 1 follows
from the definition of ℓ(w). For feeder, forward, and draining edges the claim therefore
follows immediately from Claim 10.

If (v, w) is a backward edge, then f ′(w, v) > 0. By Lemma 8, H(f ′) is a subgraph of
H(h) and so h(w, v) > 0. If f(w, v) > 0 as well, then the edge (v, w) appeared in Z, so
ℓ(w) ⩽ ℓ(v) + 1.

If f(w, v) = 0, then g(w, v) = h(w, v) > 0. The positive value of the blocking flow g(w, v)
means that (w, v) was an edge in L(f), which by definition of L(f) means that ℓ(v) = ℓ(w)+1
and therefore ℓ(w) = ℓ(v) − 1 < ℓ(v) + 1. ◁

Let now ℓ′(v) be the level of a node v in Z ′, that is, the level of v in L(f ′). We claim
that ℓ′(v) ⩾ ℓ(v). Indeed, consider any path from s to v in Z ′. By Claim 11, ℓ(·) increases
by at most one along each edge of this path, so ℓ(v) is at most the length of this path.

In particular, we have ℓ′(t) ⩾ ℓ(t). We show that in fact ℓ′(t) > ℓ(t). For the sake of
contradiction, assume that ℓ′(t) = ℓ(t). This means that for any shortest path from s to t

in Z ′, ℓ(·) increases by exactly one on each edge of this path. This means that for each edge
(v, w) on this path, v and w are on consecutive levels of L(f). We claim that any shortest
path of length ℓ(t) from s to t in L(f ′) is also a path in L(f). The reason is as follows. By
Claim 10, if (v, w) is a feeder, forward, or draining edge, then (v, w) is an edge of Z and
therefore also an edge of L(f). In the remaining case, v ∈ R, w ∈ P , and ℓ(w) = ℓ(v) + 1.
If (v, w) is an edge in L(f), we are done. If (v, w) is not an edge of L(f), then f(w, v) = 0.
Since (v, w) is an edge of Z ′, we have f ′(w, v) > 0, and by Lemma 8 h(w, v) = g(w, v) > 0.
This implies again that (w, v) must have been a forward edge in L(f), and so ℓ(v) = ℓ(w) + 1,
a contradiction. This establishes our claim.

It follows that the entire shortest path of length ℓ(t) from s to t was already a path
in L(f). But by definition of a blocking flow, that means that g must have saturated some
edge along this path. If this was a feeder or draining edge, those edges are no longer in Z ′, a
contradiction. A forward edge cannot be saturated (it has infinite capacity), so it must be a
backward edge, say (r, p). Saturating a backward edge (r, p) means that g(r, p) = f(p, r). It
follows that h(p, r) = 0, which implies f ′(p, r) = 0 by Lemma 8. Therefore, (r, p) is not an
edge of Z ′, again a contradiction. ◀
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We cannot afford to store the residual graph G(f) or the level graph L(f) explicitly, as
they may have a quadratic number of edges. We will therefore store these graphs implicitly,
using the given compact representation for I(P, R). Inbetween phases of the algorithm, we
only need to store the current flow f . Since it is non-zero on O(n) edges only, we store this
flow explicitly. In the following sections we describe how to implement a phase of Dinitz’
algorithm efficiently.

4.2 Constructing the level graph
Given the current flow f , we will represent the level graph L(f) by explicitly constructing
the elements of each level of L(f), all feeder edges, all draining edges, and all backward edges.
There are O(n) such edges, so we can indeed afford to store them explicitly. The forward
edges are represented using compact representations.

Recall that we are given a compact representation {(Ui, Vi) | i ∈ I} of I(P, R) for some
index set I. We start by building an index for this representation, which, for every p ∈ P ,
gives us a list of all i ∈ I where p ∈ Ui. We also set P̃ := P , R̃ := R, and Ĩ := I.

There are at most |P | ⩽ n feeder edges from s to P in L(f). We construct these edges
and their capacities by brute-force in O(n) time. This also yields the set P1 ⊆ P of elements
of level 1 of L(f).

We now query our index to retrieve the set of indices I1 ⊆ Ĩ such that Ui ∩ P1 ̸= ∅
for i ∈ I1. We set R2 =

⋃
i∈I1

Vi to be the set of vertices on level 2, and build the following
compact representation for the forward edges from level 1 to level 2:

{(Ui ∩ P1, Vi) | i ∈ I1},

We update P̃ := P̃ \ P1, R̃ := R̃ \ R2, and Ĩ := I \ I1.
If there is any r ∈ R2 that has an unmet demand, then we place t in level 3 and produce

the draining edges (r, t) with capacity equal to the unmet demand of each r ∈ R2. The level
graph is then complete.

If there is no r ∈ R2 with unmet demand, we proceed to construct level 3. For each r ∈ R2,
we determine all p ∈ P̃ with flow into r, that is, with f(p, r) > 0. The set P3 of all these
vertices p constitutes level 3. We record the edges (r, p) as backward edges from level 2 to
level 3.

We now again use our index to find the set of indices I3 ⊆ Ĩ such that Ui ∩ P3 ≠ ∅
for i ∈ I3. We set R4 =

⋃
i∈I3

Vi ∩ R̃ to be the set of vertices on level 4, and build the
following compact representation of the forward edges from level 3 to level 4:

{(Ui ∩ P3, Vi ∩ R̃) | i ∈ I3},

Again we update P̃ := P̃ \ P3, R̃ := R̃ \ R4, and Ĩ := Ĩ \ I3, and repeat this process until
either we place the sink t or an even level becomes empty. In the latter case there is no path
from s to t in the level graph, and the current flow is a maximum flow.

▶ Lemma 12. The elements of each level of L(f), the feeder edges, the backward edges, the
draining edges, and compact representations of all forward edges of L(f) can be constructed
in O(n + σ) time.

Proof. Constructing the feeder and draining edges explicitly takes O(n) time. Finding the
backward edges takes O(n) total time as H(f) has O(n) edges. Each pair (Ui, Vi) of the
compact representation of I(P, R), is handled only once, and this takes time O(|Ui| + |Vi|)
using our index and suitable datastructures for P̃ , R̃, and Ĩ. ◀
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4.3 Constructing a blocking flow
We use Sleator and Tarjan’s algorithm [31] for finding a blocking flow in the level graph, see
for instance the presentation in Section 8.2 of Tarjan’s book [32]. The algorithm computes a
blocking flow on a level graph with n vertices and m edges in time O((n + m) log(n + m)).
To run the algorithm, we construct a concrete level graph L′ from our implicitly represented
level graph L(f). We start by setting L′ to contain all the vertices, feeder, backwards, and
draining edges of L(f). For each pair of layers Pj and Rj+1, for j = 1, 3, 5, . . . , we then
proceed as in Section 3. Namely, we insert an intermediate layer Cj as follows: Recall that
we have a compact representation {(Ui, Vi) | i ∈ Ij} of the forward edges from Pj to Rj+1.
For each i ∈ Ij , we add a new vertex vj

i , directed edges (p, vj
i ) for all p ∈ Ui, and directed

edges (vj
i , r) for all r ∈ Vi. These edges have infinite capacity.

The graph L′ has O(σ) vertices and edges. It is easy to see that L′ is the level graph of a
flow network (namely the flow network L′ itself), so Sleator and Tarjan’s algorithm computes
a blocking flow g′ for L′ in time O(σ log σ).

We convert the flow g′ on L′ into a flow g on the graph L(f) as we have done in Lemma 4.
It remains to argue that g is indeed a blocking flow on L(f). To this end, we observe that
the flows g and g′ are identical on all feeder, backwards, and draining edges. The forward
edges, on the other hand, have infinite capacity, so they cannot be saturated by any flow.
For any node v ∈ L(f) and any path from s to v in L(f), there is also a path from s to v

in L′ that uses the same finite-capacity edges. Since g′ saturates an edge on this path, g also
saturates an edge on the path from s to v in L(f).

4.4 Pruning the matching
After computing a blocking flow, we augment the previous flow. Since the previous flow is
non-zero on O(n) edges and the blocking flow is non-zero on O(σ) edges, this can be done in
time O(n+σ) = O(σ). It remains to describe how to prune this new flow f efficiently, that is,
how to compute the flow f0 guaranteed by Lemma 8. It is important to start each iteration
with a flow that uses O(n) edges. This turns out to be surprisingly hard. We show in the
full version [6] that the flow f can be pruned in O(σ log n) time using a red-blue link-cut
tree, which is a variant of link-cut trees.

4.5 Putting everything together
▶ Theorem 13. Consider a geometric matching problem for a set P of at most n points and
a set R of at most n ranges. Assume that we have a compact representation of the incidence
graph I(P, R) of size σ. Then we can compute a maximum matching in O(nσ log σ) time.

We can combine this with the compact representations presented in Theorems 1, 2 and 3
to obtain the following:

The geometric matching problem for a set P of at most n points and a set R of at most
n axis-parallel boxes in Rd, for constant d, can be solved in O(n2 logd+1 n) time.
The geometric matching problem for a set P of at most n points and a set D of at most
n congruent disks in the plane can be solved in O(n7/3 log2 n) time.
The geometric matching problem for a set P of at most n points and a set H of at most
n halfspaces in Rd, for constant d, can be solved in O(n

3d+1
d+1 polylog n) time.

For the bottleneck versions in the plane, we can solve the decision problem for the
L∞-metric using the first item, while the second item can be used for the L2-metric. One
can then perform a binary search using the techniques described in Section 3.2, which only
add an extra logarithmic factor to the running time needed to solve the decision problem.
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5 Conclusions

Using Theorems 1 and 6 and a binary search scheme noted by Efrat, Itai and Katz [14],
one can compute the L∞- and L1-bottleneck distance in O(n1+ε) time with high probability
for any ε > 0. Using Theorem 2 and 6 and distance selection algorithms [19, 34], we can
compute the L2-bottleneck distance in O(n4/3+ε) time with high probability for any ε > 0.
We conjecture that computing the L2-bottleneck distance has a lower bound of Ω(n4/3−ε)
for any ε > 0.

Our discussion has centered on incidence graphs of points and ranges. However, the same
approach can be exploited for any bipartite graph that has a compact representation. For
example, let B be a set of blue pairwise disjoint segments in the plane and let R be a set of
red pairwise disjoint segments in the plane. Consider the red-blue intersection graph

X(R, B) = (R ⊔ B, {rb | r ∈ R, b ∈ B, segments r and b intersect}).

It follows from the results of Chazelle et al. [8] that X(R, B) has a compact representation
of size O(n log2 n) that can be obtained in O(n log2 n) time; see for example [28, Section 4]
for an explicit formulation. It follows that we can solve a maximum matching in X(R, B)
in O(n1+ε) time with high probability, for any ε > 0.

As another example, consider a simple polygon, and split it with a diagonal d. Let P be
the set of vertices on one side of d, Q the set of vertices on the other side of Q. A maximum
matching between P and Q such that p ∈ P and q ∈ Q can be matched only if they are
mutually visible inside the polygon can be computed in O(n1+ε) time, since the visibility
edges admit a near-linear-size compact representation [1].
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