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Abstract
We revisit a standard polygon containment problem: given a convex k-gon P and a convex n-gon Q

in the plane, find a placement of P inside Q under translation and rotation (if it exists), or more
generally, find the largest copy of P inside Q under translation, rotation, and scaling.

Previous algorithms by Chazelle (1983), Sharir and Toledo (1994), and Agarwal, Amenta, and
Sharir (1998) all required Ω(n2) time, even in the simplest k = 3 case. We present a significantly
faster new algorithm for k = 3 achieving O(n polylog n) running time. Moreover, we extend the
result for general k, achieving O(kO(1/ε)n1+ε) running time for any ε > 0.

Along the way, we also prove a new O(kO(1)n polylog n) bound on the number of similar copies
of P inside Q that have 4 vertices of P in contact with the boundary of Q (assuming general position
input), disproving a conjecture by Agarwal, Amenta, and Sharir (1998).
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1 Introduction

Polygon containment problems have been studied since the early years of computational
geometry [1, 2, 6, 9, 12, 13, 14, 16, 17, 20, 22, 24, 25, 26, 27, 30]. In this paper, we focus on
two of the most fundamental versions of the problem for convex polygons:

▶ Problem 1. Given a convex k-gon P and a convex n-gon Q in R2, (i) find a congruent
copy of P inside Q (if it exists); or more generally, (ii) find the largest similar copy of P

inside Q.

In a congruent copy, we allow translation and rotation; in a similar copy, we allow
translation, rotation, and scaling. Rotation is what makes the problem challenging, as the
corresponding problem without rotation can be solved in linear time by a simple reduction
to linear programming in 3 variables [30].

There were 3 key prior papers on this problem:
1. In 1983, Chazelle [12] initiated the study of polygon containment problems and presented

an O(kn2)-time algorithm specifically for Problem 1(i). In particular, an entire section of
his paper was devoted to an O(n2)-time algorithm just for the k = 3 (triangle) case.

2. Sharir and Toledo [30] (preliminary version in SoCG’91) applied parametric search [23]
to reduce various versions of “extremal” polygon containment problems (about finding
largest copies) to their corresponding decision problems. In particular, they described an
O(n2 log2 n)-time algorithm for Problem 1(ii) in the k = 3 case.
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3. In 1998, Agarwal, Amenta, and Sharir [1] studied Problem 1(ii) and obtained an
O(kn2 log n)-time algorithm. Their approach is to explore the entire solution space.
More precisely, consider a standard 4-parameter representation of similarity transforma-
tions [7]: given (s, t, u, v) ∈ R4, let φs,t,u,v : R2 → R2 be the similarity transformation
(x, y) 7→ (sx− ty + u, tx + sy + v), which has scaling factor

√
s2 + t2. The region

P = {(s, t, u, v) ∈ R4 : φs,t,u,v(p) ∈ Q for all vertexes p of P}

describes all feasible solutions and is an intersection of O(kn) halfspaces in R4 (since
φs,t,u,v(p) is a linear function in the 4 variables s, t, u, v for any fixed point p). The
problem is to find a point in P maximizing the convex function s2 + t2 (the optimum
must be located at a vertex). By standard results, a 4-polytope with O(kn) facets
has O(k2n2) combinatorial complexity (and can be constructed in O(k2n2) time) [28].
Agarwal, Amenta, and Sharir improved the combinatorial bound to O(kn2) for this
particular polytope P, enabling them to derive an algorithm with a similar time bound.

Notice that all these previous algorithms have Ω(n2) time complexity, even in the triangle
(k = 3) case. (Other quadratic algorithms for k = 3 have been found, e.g., mostly recently
by Lee, Eom, and Ahn [22].) To explain why, Chazelle [12] mentioned that there are input
convex polygons Q for which the number of different “stable solutions” is Ω(n2). (Other
authors made similar observations [22].) More generally, Agarwal, Amenta, and Sharir [1]
exhibited a construction of input convex polygons P and Q for which the polytope P has
complexity Ω(kn2), matching their combinatorial upper bound.

Although such combinatorial lower bound results do not technically rule out the possibility
of faster algorithms that find an optimal solution without generating the entire solution space,
they indicate that quadratic complexity is a natural barrier. In general, no techniques are
known to maximize a convex function in an intersection of halfspaces in constant dimensions
with worst-case time better than constructing the entire halfspace intersection.

What motivates us to revisit this topic is the similarity of the k = 3 problem to the
well-known 3SUM problem (in the sense that the main case of the triangle problem is about
finding a triple of vertices/edges of Q in contact with the triangle P ). Our initial thought
is to apply the exciting recent advances for 3SUM and related problems [5, 8, 11, 18, 19]
to design decision trees with subquadratic height. This would potentially lead to slightly
subquadratic algorithms with running time of the form n2/ polylog n.

Although we believe this line of attack can indeed be applied to Problem 1 in the k = 3
case, the improvement in the time complexity would be tiny, and generalization to k > 3
is unclear. Furthermore, the usage of such heavy machinery might seem premature and
unjustified since the k = 3 problem has not been shown to be 3SUM-hard. Barequet and
Har-Peled [9] proved that Problem 1(i) for convex polygons is 3SUM-hard when k = n and
so has a near-quadratic conditional lower bound, but for k = n, the current upper bound is
cubic. More recently, Künnemann and Nusser [20] have obtained conditional lower bounds
for a number of other polygon containment problems, but not in the convex cases.

New results. In this paper, we not only truly break the quadratic barrier but also discover
a near-linear, O(n polylog n)-time algorithm for Problem 1(ii) in the k = 3 case! This
represents a substantial improvement over the previous algorithms from multiple decades
earlier, and directly addresses an open problem posed by Agarwal, Amenta, and Sharir [1]
asking for an algorithm faster than Θ(kn2) time. (We cannot think of too many classical 2D
problems in computational geometry of comparable stature where quadratic/superquadratic
time complexity is reduced to near-linear in a single swoop after a long gap. The closest
analog is perhaps Sharir’s breakthrough O(n polylog n)-time algorithm for the 2D Euclidean
2-center problem [29] that improved a string of previous O(n2 polylog n)-time algorithms.)
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Furthermore, we generalize our approach and obtain an O(n1+ε)-time algorithm for
Problem 1(ii) for any constant k > 3, where ε > 0 is an arbitrarily small constant. For non-
constant k ≤ n, the time bound is O(kO(1/ε)n1+ε) for any choice of (possibly non-constant)
ε > 0. (By choosing ε =

√
log k/ log n, the bound can be rewritten as n2O(

√
log k log n).) This

beats the previous O(kn2) bound for all k < nα for some concrete constant α > 0.

New approach. Although Problem 1(ii) reduces to Problem 1(i) by parametric search [23, 30]
(if one does not mind extra logarithmic factors), we actually find it more convenient to solve
Problem 1(ii) directly (i.e., find the largest copy). The optimal solution must belong to one
of the following cases, as observed in previous works (by simple direct arguments, or by
recalling that the optimum corresponds to a vertex of the 4-polytope P):

2-Contact (i.e., 2-Anchor) Case: 2 distinct vertices of P are in contact with ∂Q, both
of which are at 2 vertices of Q. These 2 vertices of P are called the 2 “anchor” vertices.
3-Contact (i.e., 1-Anchor) Case: 3 distinct vertices of P are in contact with ∂Q, one
at a vertex of Q and the other two on edges of Q. The vertex of P placed at a vertex of
Q is referred to as the “anchor” vertex.
4-Contact (i.e., No-Anchor) Case: 4 distinct vertices of P are in contact with ∂Q,
all on edges of Q.

For k = 3, the main case is the 3-contact case, since it turns out that the 2-contact
case can be solved in a similar way (and the 4-contact case, of course, does not arise). The
overall strategy is to divide into sub-problems involving different “arcs” (i.e., contiguous
pieces) of ∂Q. Our key observation is that under certain conditions about the slopes/angles
of the input arcs, all 3-contact feasible solutions may be covered by just a linear number of
pairs of sub-edges, due to monotonicity arguments – this is despite the fact that the total
number of 3-contact solutions may be quadratic. In such scenarios, we can search for the best
solution by using standard geometric data structuring techniques (concerning intersections
of ellipses, as it turns out). A simple binary divide-and-conquer reduces to instances where
such conditions are met, resulting in an O(n polylog n)-time algorithm.

For k > 3, extending the 3-contact algorithm requires more technical effort (and a slightly
increased running time), but what appears even more challenging is the 4-contact case. The
lack of anchor vertices seems to make everything more complicated (including the needed
geometric data structures). However, with a different strategy, we show surprisingly that the
4-contact case is easier in the sense that the total number of 4-contact feasible solutions is
actually near-linear in n, namely, O(k4n polylog n) (assuming general position input). Thus,
we can afford to enumerate them all! We prove this combinatorial bound by running our
k = 3 algorithm on different triples of vertices of P and then piecing information together
via further interesting monotonicity arguments.

To see how counterintuitive our near-linear combinatorial bound for 4-contact solutions
is, recall that Agarwal, Amenta, and Sharir [1] proved an Ω(kn2) lower bound on the size of
the solution space. They noted that their construction only lower-bounded the number of
3-contact solutions, and at the end of their paper, they asked for another construction with
Ω(kn2) 4-contact solutions. Our proof answers their question in the negative.

Preliminaries. The angle of a line ←−→p1p2, denoted θp1p2 , refers to the angle measured coun-
terclockwise (ccw) from the x-axis to ←−→p1p2. (Note that θp1p2 ∈ [0, π) and θp2p1 = θp1p2 .)
An arc Γ of a convex polygon Q refers to a contiguous portion of the boundary ∂Q whose
supporting lines have angles in an interval of length < π/3. Let Λ(Γ) (the angle range of

SoCG 2024
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Figure 1 The construction from Lemma 1. Each dashed triangle is a similar copy of △p1p2p3,
and the purple arc is fv1 (Γ3). (We draw Γ2 and Γ3 instead of ←→Γ2 and ←→Γ3 for visual clarity.)

Γ) denote the interval containing the angles of all supporting lines of Γ. We allow Λ(Γ) to
wrap around (mod π), so [a, b] indicates [a, π) ∪ [0, b] if a > b. We assume that no polygons
contain parallel adjacent edges, as any such edges can be merged.

We assume that all polygon boundaries and their edges/arcs are oriented in ccw order.
For each edge e of Q, let←→e denote its extension as an oriented line (with Q on its “left” side).
For an arc Γ, let ←→Γ denote an extension of Γ where the first and last edge are extended to
rays (again oriented with Q on its “left” side). We use Õ notation to hide polylog n factors.

2 3-Contact (1-Anchor) Case

In this section, we solve the 3-contact case, where there is 1 anchor vertex p1 of P . We
will first present an algorithm for k = 3 (when P is a triangle), and then we discuss how to
generalize it for k > 3. We will divide into sub-problems operating on different arcs. For
k = 3, the goal is to find a placement where the anchor p1 is at a vertex on an arc Γ1, and
the two other vertices p2 and p3 of P are on edges of arcs Γ2 and Γ3.

2.1 An Easy “Disjoint” Case for k = 3
We begin with an easy lemma to handle the case when the angle ranges for Γ2 and Γ3, after
suitable rotational shifts, are disjoint.

▶ Lemma 1. Let △p1p2p3 be a triangle. Let Γ1, Γ2, Γ3 be arcs of a convex n-gon Q, s.t.
Λ(Γ2) + θp1p3 and Λ(Γ3) + θp1p2 are disjoint (mod π).

In Õ(|Γ1|) time, we can compute, for each vertex v1 of Γ1, a point X(v1) on Γ2 and a sub-arc
I(v1) of Γ2, satisfying the following property:1

For every similarity transformation φ that has φ(p1) being a vertex v1 of Γ1 and φ(p2)
on Γ2, we have: (i) φ(p3) is on Γ3 iff φ(p2) = X(v1), and (ii) φ(p3) is left of ←→Γ3 iff
φ(p2) is on I(v1).

Proof. Let fv1(ζ) be the point φ(p2) for the unique similarity transformation φ with φ(p1) =
v1 and φ(p3) = ζ. In other words, fv1 is a similarity transformation that keeps v1 fixed and
sends p3 to p2, i.e., we rotate around v1 by an angle θp1p2 − θp1p3 + {0,±π}, and scale by

1 We allow X(v1) to be undefined and I(v1) to be empty.
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Figure 2 (Left) Monotonically increasing pairing. (Right) Monotonically decreasing pairing.

factor ∥p1 − p2∥/∥p1 − p3∥. Thus, fv1(Γ3) is a similar copy of Γ3. The supporting lines for
fv1(Γ3) have angles in Λ(Γ3) + θp1p2 − θp1p3 + {0,±π}, which by the assumption is disjoint
from Λ(Γ2) (mod π). Thus,2 fv1(←→Γ3 ) and ←→Γ2 intersect once, at a unique point ν, which we
define as X(v1), and which can be computed by binary search (see Figure 1). We can define
I(v1) to be a prefix or suffix of Γ2 delimited by X(v1). ◀

Thus, to solve the 3-contact problem for k = 3, we can just examine the unique similarity
transformation φ with φ(p1) = v1 and φ(p2) = X(v1) for each vertex v1 of Γ1, in near-linear
total time (assuming the disjointness condition is met). It suffices to consider only this single
similarity transformation for each v1 ∈ Γ1, since this is the only possible 3-contact placement.

2.2 A “Double-Disjoint” Case for k = 3
Next, we address a different case where the angle ranges for Γ1 and Γ2 are disjoint and the
angle ranges for Γ1 and Γ3 are disjoint, after appropriate rotational shifts. The following
lemma reveals a crucial monotonicity phenomenon that we will repeatedly exploit.

To state the lemma, we first introduce some definitions: For two arcs Γ1 and Γ2, a pairing
M between Γ1 and Γ2 refers to a subdivision of the (straight) edges of Γ1 and Γ2 into
sub-edges, together with a bijective mapping between the sub-edges of Γ1 and the sub-edges
of Γ2. For a sub-edge e1 of Γ1, we use M(e1) to denote e1’s corresponding sub-edge in Γ2;
similarly, for a sub-edge e2 of Γ2, we use M(e2) to denote e2’s corresponding sub-edge in Γ1.
We say that the pairing M is monotonically increasing (resp. decreasing) if M(e1) always
advances in ccw (resp. cw) order in Γ2 as e1 advances in ccw order in Γ1 (see Figure 2).

▶ Lemma 2 (Pairing Lemma). Let △p1p2p3 be a triangle. Let Γ1, Γ2, Γ3 be arcs of a convex
n-gon Q, such that
1. Λ(Γ1) + θp2p3 and Λ(Γ2) + θp1p3 are disjoint (mod π), and
2. Λ(Γ1) + θp2p3 and Λ(Γ3) + θp1p2 are disjoint (mod π).

In Õ(n) time, we can compute a (monotonically increasing or decreasing) pairing M between
Γ2 and Γ3 with O(n) sub-edges, satisfying the following property:

For every similarity transformation φ that has φ(p1) on Γ1 and φ(p2) on a sub-edge
e2 of Γ2, we have: (i) φ(p3) is on Γ3 iff φ(p3) is on M(e2); and (ii) φ(p3) is left of
←→Γ3 iff φ(p3) is left of

←−−→
M(e2).

2 This is analogous to the fact that if f and g are functions over R where the ranges of their derivatives
f ′ and g′ are contained in two disjoint closed intervals, then f and g intersect once.

SoCG 2024
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Figure 3 An example of a pairing. Each dashed triangle is a similar copy of △p1p2p3.

Proof. We match a point µ on ←→Γ2 with a point ν on ←→Γ3 iff there exists a similarity transfor-
mation φ with φ(p2) = µ, φ(p1) on ←→Γ1 , and φ(p3) = ν.

Observe that a point µ on ←→Γ2 matches a unique point ν on ←→Γ3 . To see this, let fµ(ζ) be
the point φ(p3) for the unique similarity transformation φ with φ(p2) = µ and φ(p1) = ζ. In
other words, fµ is the similarity transformation that keeps µ fixed and sends p1 to p3, i.e., we
rotate around µ by an angle θp2p3 − θp2p1 + {0,±π}, and scale by factor ∥p3 − p2∥/∥p1 − p2∥.
Thus, fµ(Γ1) is a similar copy of Γ1. The supporting lines for fµ(Γ1) have angles in
Λ(Γ1) + θp2p3 − θp2p1 + {0,±π}, which by assumption 2 is disjoint from Λ(Γ3) (mod π).
Thus, fµ(←→Γ1 ) and ←→Γ3 intersect once, namely, at the unique point ν. A symmetric argument
(swapping subscripts 2 and 3) shows that a point ν on ←→Γ3 matches a unique point µ on ←→Γ2 ,
this time, by assumption 1.

Consequently,3 as µ moves along ←→Γ2 , its matching point ν moves monotonically along←→Γ3 . We break an edge at the points µ on Γ2 that match the vertices of ←→Γ3 , which can be
found by n binary searches. Similarly, we break an edge at the points ν on Γ3 that match
the vertices of ←→Γ3 , which can be found by n binary searches. As a result, all points µ on a
common sub-edge e2 of ←→Γ2 are matched with points on a common sub-edge of ←→Γ3 , which we
define as M(e2). For all these points µ, we have fµ(←→Γ1 ) intersecting this sub-edge M(e2) of
←→Γ3 . Also, for all ζ ∈ Γ1, fµ(ζ) is left of ←→Γ3 iff fµ(ζ) is left of

←−−→
M(e2) (see Figure 3). ◀

In the above, we did not claim a monotone pairing between Γ2 and Γ1, nor between Γ1
and Γ3. Otherwise, we would get a linear upper bound on the number of 3-contact solutions
in this case, which by our subsequent divide-and-conquer algorithm would yield an O(n log n)
bound on the number of 3-contact solutions in general for k = 3, contradicting the known
quadratic lower bound [1, 22]! This contradiction does not arise since in the worst case, each
matched pair from Γ2 and Γ3 could admit legal 3-contact placements with every vertex of Γ1.

With the Pairing Lemma at hand, we can efficiently solve the problem when the two
disjointness conditions are met. Specifically, we set up a range searching sub-problem between
the O(n) pairs of sub-edges in Γ2 and Γ3 (the “data set”), and the O(n) vertices of Γ1 (the
“query points”). This range searching sub-problem turns out to be near-linear-time solvable:

▶ Lemma 3. Let △p1p2p3 be a triangle. Let Γ1, Γ2, Γ3 be arcs of a convex n-gon Q, s.t.
1. Λ(Γ1) + θp2p3 and Λ(Γ2) + θp1p3 are disjoint (mod π), and
2. Λ(Γ1) + θp2p3 and Λ(Γ3) + θp1p2 are disjoint (mod π).

3 This is analogous to the fact that a continuous bijective function over R must be monotone.
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In Õ(n) time, we can find a similarity transformation φ, maximizing the scaling factor, such
that φ(p1) is a vertex of Γ1, φ(p2) is on Γ2, and φ(p3) is on Γ3.

Proof. Given (s, t, u, v) ∈ R4, let φs,t,u,v : R2 → R2 be the similarity transformation
(x, y) 7→ (sx− ty + u, tx + sy + v) (which has scaling factor

√
s2 + t2).

Apply Lemma 2 to get a pairing M between Γ2 and Γ3. For each sub-edge e2 of Γ2, define

P(e2) = {(s, t, u, v) ∈ R4 : φs,t,u,v(p2) is on e2, and φs,t,u,v(p3) is on M(e2)}

Rρ(e2) = {φs,t,u,v(p1) : (s, t, u, v) ∈ P(e2) and s2 + t2 ≥ ρ2}.

Observe that P(e2) is a 2-dimensional convex polygon in R4 with O(1) edges (since φs,t,u,v(p2)
and φs,t,u,v(p3) are linear in the variables s, t, u, v, and the 2 point-on-line-segment conditions
yield 2 linear equality constraints and 4 linear inequality constraints in these 4 variables).
Furthermore, Rρ(e2) is a region in R2 which is the intersection of a convex O(1)-gon with the
exterior of an ellipse (since (s, t, u, v) 7→ φs,t,u,v(p1) is a linear projection from R4 to R2, and
the projection of a 2-dimensional slice of the cylinder {(s, t, u, v) : s2 + t2 = ρ2} is an ellipse).

The decision problem (deciding whether the maximum scaling factor is at least a given
value ρ) reduces to finding a pair of vertex v1 of Γ1 and sub-edge e2 of Γ2, such that
v1 ∈ Rρ(e2). To this end, we will build a data structure to store the O(n) regions Rρ(e2)
over all e2 so that we can quickly decide whether the query point v1 stabs (i.e., is contained
in) some region Rρ(e2).

We use standard techniques in geometric data structures. First, we consider the range
stabbing problem for exteriors of ellipses: build a data structure for a set of O(n) ellipses
in R2, so that we can quickly decide whether a query point stabs the exterior of some
ellipse, i.e., whether a query point is outside the intersection of the interiors of the ellipses.
The intersection of the interiors of O(n) ellipses (which is a single cell in the arrangement)
has almost linear combinatorial complexity by standard results on Davenport-Schinzel
sequences [4], and can be constructed in Õ(n) time, e.g., by divide-and-conquer. Thus, this
problem can be solved with Õ(n) preprocessing time and Õ(1) query time.

Next, we consider range stabbing for our regions Rρ(e2). As each region is the intersection
of a convex O(1)-gon with the exterior of an ellipse, we can use standard multi-level data
structuring techniques [3]to handle the extra O(1) halfplane constraints. Generally, halfplane
range searching cannot be solved with near-linear preprocessing time and polylogarithmic
query time. But in our application, all query points v1 lie on a convex chain Γ1. The
constraint that such a query point v1 lies inside a halfplane is equivalent to the condition that
v1 lies inside one of O(1) 1D intervals, assuming that the vertices of Γ1 are stored in a sorted
array. We can therefore use 1D range trees [3, 21, 28] to handle the halfplane constraints,
with only a logarithmic factor increase in the preprocessing and query time.

The optimization problem reduces to the decision problem by a standard application of
parametric search [23]. (The application requires a parallelization of the decision algorithm:
the preprocessing part, namely, the construction of the intersection of interiors of ellipses,
is straightforwardly parallelizable by divide-and-conquer; the O(n) queries can trivially be
answered in parallel.) Parametric search increases the running time by a polylogarithmic
factor. Alternatively, we can apply Chan’s randomized optimization technique [10], which
avoids extra factors. (The application here is straightforward, since the problem can be
viewed as a generalized “closest-pair-type” problem [10] between two sets of objects.) ◀

SoCG 2024
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2.3 Simple Divide-and-Conquer Algorithm for k = 3
We now have all the ingredients needed to put together a simple recursive algorithm to solve
the k = 3 problem in the 3-contact case:

▶ Theorem 4. Given a triangle P and a convex n-gon Q, in Õ(n) time, we can find the
largest similar copy of P contained in Q that has 1 vertex of P at a vertex of Q and the 2
other vertices of P on edges of Q.

Proof. Let P = △p1p2p3. Arbitrarily divide ∂Q into O(1) arcs, and let Γ1, Γ2, Γ3 be 3 such
arcs (allowing duplicates). We will try all O(1) choices of Γ1, Γ2, Γ3.

Let S be an interval. Let Γ1(S) (resp. Γ2(S) and Γ3(S)) be the sub-arc of Γ1 (resp. Γ2
and Γ3) consisting of all edges whose supporting lines have angles in S−θp2p3 (resp. S−θp1p3

and S − θp1p2) (mod π). We will recursively solve the following problem: find a similarity
transformation φ, maximizing the scaling factor, such that φ(p1) is a vertex v1 of Γ1(S),
φ(p2) is on Γ2(S), and φ(p3) is on Γ3(S).

As a first step, we remove edges not participating in Γ1(S), Γ2(S), Γ3(S), so that the
number of edges in Q is reduced to m(S) := |Γ1(S)|+ |Γ2(S)|+ |Γ3(S)|. Partition S into
sub-intervals S− and S+ (as shown in Figure 4) so that m(S−), m(S+) = m(S)/2± O(1).
We try various possibilities and take the best solution found:

Case 1: φ(p1) is on Γ1(S−), φ(p2) is on Γ2(S−), and φ(p3) is on Γ3(S−). We can
recursively solve the problem for S−.
Case 2: φ(p1) is on Γ1(S+), φ(p2) is on Γ2(S+), and φ(p3) is on Γ3(S+). We can
recursively solve the problem for S+.
Case 3: φ(p1) is on Γ1(S−), φ(p2) is on Γ2(S+), and φ(p3) is on Γ3(S+). Since Λ(Γ1(S−))+
θp2p3 ⊆ S− and Λ(Γ2(S+))+θp1p3 ⊆ S+ are disjoint (mod π), and Λ(Γ1(S−))+θp2p3 ⊆ S−

and Λ(Γ3(S+)) + θp1p2 ⊆ S+ are disjoint (mod π), we can solve this sub-problem by
Lemmas 2–3 in Õ(m(S)) time.
Case 4: φ(p1) is on Γ1(S−), φ(p2) is on Γ2(S−), and φ(p3) is on Γ3(S+). Since Λ(Γ2(S−))+
θp1p3 ⊆ S− and Λ(Γ3(S+)) + θp1p2 ⊆ S+ are disjoint (mod π), we can solve this sub-
problem by Lemma 1 in Õ(m(S)) time. Namely, for each vertex v1 of Γ1(S−), we just
check the unique similarity transformation φ with φ(p1) = v1 and φ(p2) = X(v1).

All remaining cases are symmetric to Cases 3 and 4 (swapping subscripts 2 and 3 and/or S−

and S+).
Letting m = m(S), we obtain the following recurrence for the running time:

T (m) ≤ 2 T (m/2 + O(1)) + Õ(m).

The recurrence solves to T (m) = Õ(m). ◀

It is not difficult to modify the algorithm to also solve the 2-contact (2-anchor) case, as
shown in the full paper. This gives a complete Õ(n) time algorithm for k = 3.

2.4 Generalizing to k > 3
With further effort, we can also solve the problem for general k in the 3-contact case. Say
p1 is the anchor vertex, and p2 and p3 are the other two vertices of P in contact with Q.
The idea is to just apply the Pairing Lemma to the triangles △p1p2pi for all other vertices
pi of P , assuming appropriate disjointness conditions. We need to extend the problem to
equip each vertex v1 of Γ1 with a sub-arc I(v1) of Γ2 which restricts the placement of p2.
The resulting range searching sub-problems can be solved in a manner similar to the triangle
case, which we show in the following extension of Lemma 3 (see the full paper for the proof):
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Figure 4 Partitioning each Γi(S) into Γi(S+) and Γi(S−), for i ∈ {1, 2, 3}.

▶ Lemma 5. Let P be a k-gon with vertices p1, . . . , pk (not necessarily in sorted order). Let
Γ1, . . . , Γk be arcs of a convex n-gon Q, such that
1. for each i ∈ {3, . . . , k}, Λ(Γ1) + θp2pi and Λ(Γ2) + θp1pi are disjoint (mod π), and
2. for each i ∈ {3, . . . , k}, Λ(Γ1) + θp2pi

and Λ(Γi) + θp1p2 are disjoint (mod π).
For each vertex v1 of Γ1, we are given a sub-arc I(v1) of Γ2. In Õ(k2n) time, we can find a
similarity transformation φ, maximizing the scaling factor, such that φ(p1) is a vertex v1 of
Γ1, φ(p2) is on I(v1) ⊆ Γ2, φ(p3) is on Γ3, and for each i ∈ {4, . . . , k}, φ(pi) is left of ←→Γi .

We now give a slightly more intricate divide-and-conquer algorithm for general k:

▶ Theorem 6. Given a k-gon P and a convex n-gon Q (where k ≤ n), we can find the
largest similar copy of P contained in Q that has 1 vertex of P at a vertex of Q and the 2
other vertices of P on 2 edges of Q, in O(kO(1/ε)n1+ε) time for any ε > 0.

Proof. Suppose the vertices of P are p1, . . . , pk (not necessarily in sorted order). Divide ∂Q

into O(1) arcs, and let Γ1, Γ2, Γ3 be 3 such arcs (allowing duplicates). We will try all choices
for p1, p2, p3 and Γ1, Γ2, Γ3; this increases the final running time by a factor of O(k3).

Let Γ4, . . . , Γk be arcs of ∂Q, so that a similarity transformation φ has φ(P ) inside Q iff
φ(pi) is left of ←→Γi for all i ∈ {1, . . . k}. This is w.l.o.g. since we can just make O(1) copies
of p4, . . . , pk and associate each copy with an arc of ∂Q, while increasing k by a constant
factor. Note that duplicate arcs are allowed, and some of these arcs may even be the same
as Γ1, Γ2, or Γ3.

We will describe a recursive algorithm, where the input consists of k arcs ⟨Γ1, . . . , Γk⟩
together with a sub-arc I(v1) ⊆ Γ2 for every vertex v1 of Γ1. (For the initial problem, I(v1)
will be all of Γ2 for all v1.) Our algorithm will find a similarity transformation φ, maximizing
the scaling factor, such that φ(p1) is a vertex v1 of Γ1, φ(p2) is on I(v1), φ(p3) is on Γ3, and
for all i ∈ {4, . . . , k}, φ(pi) is left of ←→Γi .

To this end, let clipi(Γi, Γ2) be the sub-arc of Γi consisting of all edges of Γi whose support-
ing lines have angles in Λ(Γ2)+θp1pi−θp1p2 (mod π). Let m(Γ2) =

∑k
i=3 |clipi(Γi, Γ2)|+ |Γ2|.

Partition Γ1 into r sub-arcs such that each sub-arc γ1 has |Γ1|/r ±O(1) edges. Partition Γ2
into r sub-arcs such that each sub-arc γ2 has m(γ2) = m(Γ2)/r ± O(k). (This is possible
because for a single edge e2 of γ2, m(e2) ≤ O(k).)

By Lemma 1, we first enumerate all similarity transformations φ with φ(p1) on a vertex
of Γ1, φ(p2) on some sub-arc γ2, and φ(p3) on each of the O(1) contiguous pieces of
Γ3 \ clip3(Γ3, γ2); the disjointness condition in Lemma 1 is satisfied by our definition of clipi

(see Figure 5). This gives O(|Γ1|) transformations to check per γ2, which requires Õ(|Γ1| · rk)
time over all γ2 (checking the feasibility of one transformation takes O(k log n) time, since
we can tell whether any given point is inside Q via binary search [28]).

SoCG 2024
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Figure 5 Example where both sub-arcs constituting Γ3\clip3(Γ3, γ2) (denoted (Γ3\clip3(Γ3, γ2))+

and (Γ3 \ clip3(Γ3, γ2))−) have a similarity transformation that places p1 at a vertex v1 of Γ1, p2

on γ2, and p3 on Γ3 \ clip3(Γ3, γ2). X+(v1) and X−(v2) can be found rapidly via Lemma 1 since
(Λ(Γ3 \clip3(Γ3, γ2))+θp1p2 )∩(Λ(γ2)+θp1p3 ) = ∅ (mod π). Dashed triangles are similar to △p1p2p3.

It remains to search for transformations φ such that φ(p1) is on a vertex of some sub-arc
γ1, φ(p2) is on some sub-arc γ2, and φ(p3) is on clip3(Γ3, γ2). There are two possibilities:

Case 1: For each i ∈ {3, . . . , k}, Λ(γ1) + θp2pi
and Λ(γ2) + θp1pi

are disjoint (mod π).
For each i ∈ {3, . . . , k}, we apply Lemma 1 to (γ1, γ2, γ′) for each of the O(1) contiguous
pieces γ′ of Γi \ clipi(Γi, γ2). For each vertex v1 of γ1, let I ′(v1) be the intersection
of all sub-arcs I(v1) produced during these applications of Lemma 1. We now use
Lemma 5 on ⟨γ1, γ2, clip3(Γ3, γ2), . . . , clipk(Γk, γ2)⟩. The sub-arc we pass to Lemma 5
for each vertex v1 of γ1 is I(v1) ∩ I ′(v1). The total time for all instances of this case
is Õ(r2 · k2(|Γ1|/r + m(Γ2)/r + k)) (since we can operate on a truncated version of Q

consisting of just the arcs/sub-arcs specified).
Case 2: For some i ∈ {3, . . . , k}, Λ(γ1) + θp2pi and Λ(γ2) + θp1pi intersect (mod π). Here,
we recursively solve the problem for ⟨γ1, γ2, clip3(Γ3, γ2), . . . , clipk(Γk, γ2)⟩. The sub-arc
we pass to the recursive call for each vertex v1 of γ1 is I(v1) ∩ I ′(v1), where I ′(v1) is
defined as in Case 1. There are O(r) pairs (γ1, γ2) satisfying this condition per i, since
when we overlay two subdivisions of R into O(r) intervals, the number of intersecting
pairs of intervals is O(r). Thus, the total number of recursive calls for this case is O(kr).
The time to produce the sub-problems is subsumed by the time bound in Case 1.

We take the best solution found in all cases. Letting m̂ = |Γ1| + m(Γ2), we obtain the
following recurrence for the running time:

T (m̂) ≤ O(kr) T (m̂/r + O(k)) + Õ(k2r2(m̂/r + k)).

As base case, if m̂ ≤ kr, we use the naive bound T (m̂) = O(k2m̂2) by constructing the
space of all feasible placements [1]. The recurrence solves to T (m̂) ≤ O(k)logr m̂ · (kr)O(1)m̂.
Choosing r = m̂ε yields T (m̂) ≤ kO(1/ε)m̂1+O(ε). (We can adjust ε by a constant factor.) ◀

Note that our earlier divide-and-conquer approach in Theorem 4 (which yielded a slightly
better O(n polylog n) running time) does not work here. This is because we need to ensure
disjointness conditions for multiple triangles △p1p2pi with different rotational shifts, meaning
that we cannot use one common interval S to represent the k arcs in a sub-problem.

It is not difficult to modify the algorithm to solve the 2-contact (2-anchor) case, as shown
in the full paper.
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Extension to the 4-contact case is more challenging, however. Without an anchor vertex,
Lemma 1 is no longer applicable, so we cannot clip arcs as in Theorem 6’s proof. With some
care, we could still use the Pairing Lemma to solve the problem, but we would need to pair
some arcs Γi with Γ2 and some arcs Γi with another arc such as Γ1. As a result, the range
searching sub-problems become more complex, and the running time would be much larger
(though subquadratic). In the next section, we suggest a better, more elegant way to solve
the 4-contact case in near-linear time, without needing range searching at all!

3 4-Contact (No-Anchor) Case

To solve the 4-contact case, we will actually show that the number of solutions (not necessarily
optimal nor locally optimal) is actually near-linear in n, assuming general position input.4
This allows us to focus on the problem of enumerating all 4-contact placements (as we can
check their feasibility rapidly). For the enumeration problem, we can immediately reduce
the general k case to the k = 4 case.

3.1 Covering All 3-Contact Solutions by Pairs and Triples for k = 3
To solve the enumeration problem for k = 4, we will actually revisit the k = 3 case. Although
the number of 3-contact solutions may be quadratic in the worst case, we observe that our
divide-and-conquer algorithm from Theorem 4 can generate a near-linear number of pairs
that “cover” all 3-contact solutions. To be precise, we make the following definitions: We say
that (q1, q2, q3) is covered by a list L of triples of edges if q1 is on e1, q2 is on e2, and q3 is
on e3 for some (e1, e2, e3) ∈ L. We say that (q1, q2) is covered by a pairing M of sub-edges if
q1 is on e1 and q2 is on M(e1) for some sub-edge e1.

We begin with a variant of the Pairing Lemma that guarantees monotonically increasing
pairings, which will be crucial later (see the full paper for the proof):

▶ Lemma 7 (Modified Pairing Lemma). Let △p1p2p3 be a triangle. Let Γ1, Γ2, Γ3 be arcs of
a convex n-gon Q, such that
1. Λ(Γ1) + θp2p3 and Λ(Γ2) + θp1p3 are disjoint (mod π), and
2. Λ(Γ1) + θp2p3 and Λ(Γ3) + θp1p2 are disjoint (mod π).

In Õ(n) time, we can compute a monotonically increasing pairing M between Γ2 and Γ3 with
O(n) sub-edges, or a list L of O(n) triples of edges, satisfying the following property:

For every similarity transformation φ that has φ(p1) on Γ1 and φ(p2) on Γ2 and φ(p3)
on Γ3, we have (φ(p2), φ(p3)) covered by M or (φ(p1), φ(p2), φ(p3)) covered by L.

By adapting our k = 3 algorithm, we can cover all 3-contact solutions by O(log n)
monotonically increasing pairings, together with an extra set of O(n log n) triples:

▶ Theorem 8. Let △p1p2p3 be a triangle. Let Γ1, Γ2, Γ3 be arcs of a convex n-gon Q. In
Õ(n) time, we can compute a collection M of O(log n) monotonically increasing pairings
between Γ1 and Γ2, between Γ2 and Γ3, and between Γ1 and Γ3, each with O(n) sub-edges,
and a list L of O(n log n) triples of edges, satisfying the following property:

4 In degenerate scenarios, e.g., when P and Q are squares, there could technically be an infinite number
of 4-contact placements; in such cases, we may apply small perturbations, or instead count the number
of distinct quadruples of edges of Q corresponding to such placements.
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For every similarity transformation φ that has φ(p1) on Γ1 and φ(p2) on Γ2 and
φ(p3) on Γ3, we have (φ(p1), φ(p2)) or (φ(p2), φ(p3)) or (φ(p1), φ(p3)) covered by
some pairing in M, or (φ(p1), φ(p2), φ(p3)) covered by L.

Proof. We modify the divide-and-conquer algorithm in the proof of Theorem 4. Let S be
an interval. Define Γ1(S), Γ2(S), Γ3(S) as before. We will recursively solve the problem for
Γ1(S), Γ2(S), Γ3(S).

As a first step, we remove edges not participating in Γ1(S), Γ2(S), Γ3(S), so that the
number of edges in Q reduced to m(S) := |Γ1(S)| + |Γ2(S)| + |Γ3(S)|. Divide S into two
disjoint sub-intervals S− and S+ so that m(S−), m(S+) = m(S)/2 ± O(1). We consider
various possibilities:

Case 1: φ(p1) is on Γ1(S−), φ(p2) is on Γ2(S−), and φ(p3) is on Γ3(S−). We can
recursively solve the problem for S−.
Case 2: φ(p1) is on Γ1(S+), φ(p2) is on Γ2(S+), and φ(p3) is on Γ3(S+). We can
recursively solve the problem for S+.
Case 3: φ(p1) is on Γ1(S−), φ(p2) is on Γ2(S+), and φ(p3) is on Γ3(S+). Since Λ(Γ1(S−))+
θp2p3 ⊆ S− and Λ(Γ2(S+)) + θp1p3 ⊆ S+ are disjoint, and Λ(Γ1(S−)) + θp2p3 ⊆ S− and
Λ(Γ3(S+)) + θp1p2 ⊆ S+ are disjoint (mod π), we can solve the problem by Lemma 7 in
Õ(m(S)) time.

All remaining cases are symmetric to Case 3. (The previous Case 4 is now symmetric to
Case 3, since p1 is no longer treated as a special anchor vertex.)

A pairing between Γ1(S−) and Γ2(S−) and a pairing between Γ1(S+) and Γ2(S+)
produced by the recursive calls in Cases 1 and 2 can be joined into one pairing while
remaining monotonically increasing, since Γ1(S−) precedes Γ1(S+) and Γ2(S−) precedes
Γ2(S+) in ccw order. We can join the pairings for Γ2, Γ3 and Γ1, Γ3 similarly. (And we can
trivially union the lists of triples together.)

This yields a total of O(log n) pairings each with O(n) sub-edges, plus an extra list of
O(n log n) triples. ◀

3.2 Enumerating All 4-Contact Solutions for k = 4
To solve the enumeration problem for k = 4, we claim that we do not need any further
ingredients! We can just run our k = 3 algorithm for each of the 4 triangles from the input
4-gon and then piece the outputs together in a careful way.

▶ Lemma 9. Let p1p2p3p4 be a 4-gon and Q be a convex n-gon in general position. Given
3 edges e1, e2, e3 of Q, there are only O(1) similarity transformations φ with φ(p1) on e1,
φ(p2) on e2, φ(p3) on e3, and φ(p4) on ∂Q, and they can be computed in O(log n) time.

Proof. See the full paper. ◀

▶ Theorem 10. Let P be a 4-gon with vertices p1, p2, p3, p4 and Q be a convex n-gon in
general position. There are at most O(n log2 n) similarity transformations φ such that
φ(p1), φ(p2), φ(p3), φ(p4) are on ∂Q, and they can be enumerated in Õ(n) time.

Proof. Divide ∂Q into O(1) arcs, and let Γ1, . . . , Γ4 be 4 such arcs of Q. (We will try all
O(1) choices for Γ1, . . . , Γ4.) We apply Theorem 8 to the 4 triangles △p1p2p3, △p1p2p4,
△p1p3p4, and △p2p3p4, to get a combined collectionM of O(log n) monotonically increasing
pairings and a combined list L of triples.
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We consider various possibilities (we will try them all and return the union of the outputs).
If (φ(p1), φ(p2), φ(p3)), (φ(p1), φ(p2), φ(p4)), (φ(p1), φ(p3), φ(p4)), or (φ(p2), φ(p3), φ(p4))
is covered by L, we can examine each of the O(n log n) triples in L, and use Lemma 9 to
generate O(1) transformations φ per triple, in Õ(n) time.

Otherwise, define a small graph Gφ with vertices {1, 2, 3, 4}, where ij is an edge iff
(φ(pi), φ(pj)) is covered by a pairing in M. We know that each of triple of vertices contains
an edge in Gφ. It is easy to see (from a short case analysis) that Gφ must have ≥ 2 edges.

Case 1: Gφ contains 2 adjacent edges, w.l.o.g., 12 and 23. Then (φ(p1), φ(p2)) is covered
by a pairing M12 ∈ M between Γ1 and Γ2, and (φ(p2), φ(p3)) is covered by a pairing
M23 ∈M between Γ2 and Γ3. We overlay the 2 subdivisions along Γ2. We examine the
triple (M12(e2), e2, M23(e2)) for each sub-edge e2 of Γ2, and use Lemma 9 to generate
O(1) transformations φ per triple, in Õ(n) time. The total number of resulting triples over
all O(log2 n) choices of M12 and M23 is O(n log2 n), giving O(n log2 n) transformations.

Case 2: Gφ contains 2 independent edges, w.l.o.g., 12 and 34. Then (φ(p1), φ(p2)) is
covered by a pairing M12 ∈ M between Γ1 and Γ2, and (φ(p3), φ(p4)) is covered by a
pairing M34 ∈M between Γ3 and Γ4.

For 2 sub-edges e and e′, define the angle interval Θ(e, e′) = {θqq′ : q ∈ e, q′ ∈ e′}. It
suffices to enumerate quadruples (e1, M12(e1), e3, M34(e3)) over all sub-edges e1 of Γ1
and all sub-edges e3 of Γ3, under the restriction that Θ(e1, M12(e1))− θp1p2 intersects
Θ(e3, M34(e3))− θp3p4 (mod π). See Figure 6 for an example quadruple.

Observe that because M12 is monotonically increasing, the angle intervals Θ(e1, M12(e1))
are disjoint5 and move monotonically as e1 moves in ccw order. Similarly, because
M34 is monotonically increasing, the angle intervals Θ(e3, M34(e3)) are disjoint and
move monotonically as e3 moves in ccw order. By overlaying the 2 sets of O(n)
intervals {Θ(e1, M12(e1)) − θp1p2 : sub-edge e1 of Γ1} and {Θ(e3, M34(e3)) − θp3p4 :
sub-edge e3 of Γ3}, we see that there are at most O(n) choices of (e1, e3) such that

Θ(e1, M12(e1))− θp1p2 intersects Θ(e3, M34(e3))− θp3p4 (mod π), and they can be enu-
merated in O(n) time. The total number of quadruples over all O(log2 n) choices of M12
and M34 is O(n log2 n), giving O(n log2 n) transformations. ◀

Interestingly, Case 2 exploits a different phenomenon than in our earlier proofs: besides
monotone pairings of sub-edges, we have monotone “pairings of pairs” of sub-edges.

3.3 Generalizing to k > 4
Finally, an algorithm for the 4-contact case for general k immediately follows:

▶ Corollary 11. Given a k-gon P and a convex n-gon Q in general position, there are at
most O(k4n log2 n) similar copies of P contained in Q that have 4 different vertices of P on
4 edges of Q, and they can be enumerated in Õ(k5n) time.

Proof. For each of the O(k4) choices of vertices p1, p2, p3, p4 of P , we generate the O(n log2 n)
similarity transformations from Theorem 10 and test the feasibility of each transformation in
O(k log n) time via binary searches [15]. ◀

5 Θ(e1, M12(e1)) and Θ(e′
1, M12(e′

1)) may share a limit point if e1 and e′
1 are adjacent, but this does not

affect the proof.
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Figure 6 An example quadruple from Case 2 in the proof of Theorem 10. The pairing M12 is
produced using △p1p2p4 and the pairing M34 is produced using △p2p3p4.
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