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Abstract
A (1 + ε)-stretch tree cover of a metric space is a collection of trees, where every pair of points has a
(1 + ε)-stretch path in one of the trees. The celebrated Dumbbell Theorem [Arya et al. STOC’95]
states that any set of n points in d-dimensional Euclidean space admits a (1 + ε)-stretch tree cover
with Od(ε−d · log(1/ε)) trees, where the Od notation suppresses terms that depend solely on the
dimension d. The running time of their construction is Od(n log n · log(1/ε)

εd + n · ε−2d). Since the
same point may occur in multiple levels of the tree, the maximum degree of a point in the tree cover
may be as large as Ω(log Φ), where Φ is the aspect ratio of the input point set.

In this work we present a (1 + ε)-stretch tree cover with Od(ε−d+1 · log(1/ε)) trees, which
is optimal (up to the log(1/ε) factor). Moreover, the maximum degree of points in any tree is
an absolute constant for any d. As a direct corollary, we obtain an optimal routing scheme in
low-dimensional Euclidean spaces. We also present a (1 + ε)-stretch Steiner tree cover (that may use
Steiner points) with Od(ε(−d+1)/2 · log(1/ε)) trees, which too is optimal. The running time of our
two constructions is linear in the number of edges in the respective tree covers, ignoring an additive
Od(n log n) term; this improves over the running time underlying the Dumbbell Theorem.
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37:2 Optimal Euclidean Tree Covers

1 Introduction

Let M be a given metric space with distance function δ, and X be a finite set of points in M .
A tree cover for (M, X) is a collection of trees F , each of which consists of (only) points in
X as vertices and abstract edges between vertices, such that between every two points x and
y in X, one has δM (x, y) ≤ δT (x, y) for every tree T in F . A tree cover F has stretch α if for
every two points x and y in X, there is a tree T in F that preserves the distance between
x and y up to α factor: δT (x, y) ≤ α · δM (x, y). We call such F an α-tree cover of X. In
this paper, we will focus on the scenario where M is the d-dimensional Euclidean space for
some constant d = O(1). It is not hard to see that, in this case, the edges can be drawn as
line segments in Rd between the corresponding two endpoints, with weights equal to their
Euclidean distances. If we relax the condition so that trees in F may have other points
from M (called Steiner points) as vertices instead of just points from X, the resulting tree
cover is called a Steiner tree cover.

Constructions of tree covers, due to their algorithmic significance, are subject to growing
research attention [4, 2, 3, 16, 21, 11, 7, 5, 9, 10]; by now generalizations in various metric
spaces and graphs are well-explored. The main measure of quality for tree cover is its
size, that is, the number of trees in a tree cover F . The existence of a small tree cover
provides a framework to solve distance-related problems by essentially reducing them to trees.
Exemplified applications include distance oracles [9, 10], labeling and routing schemes [25, 18],
spanners with small hop diameters [18], and bipartite matching [1].

The celebrated Dumbbell Theorem by Arya, Das, Mount, Salowe, and Smid [3] from
almost thirty years ago demonstrated that in d-dimensional Euclidean space, any point set X

has a tree cover of stretch 1 + ε that uses only Od(ε−d · log(1/ε)) trees.1 Moreover, the tree
cover can be computed within time Od

(
n log n · log(1/ε)

εd + n · ε−2d
)

, where n is the number
of points in X. In the Euclidean plane (when d = 2), this gives us a tree cover of size
O(ε−2 · log(1/ε)). The theorem has a long and complex proof, which spans a chapter in
the book of Narasimhan and Smid [22]. A few years ago, this theorem was generalized for
doubling metrics2 by Bartal, Fandina, and Neiman [5], who achieved the same bound as [3]
via a much simpler construction;3 the running time of their construction was not analyzed.
In the constructions by [3, 5], same point may have multiple copies in different levels of
the tree, hence the maximum degree of points4 may be as large as Ω(log Φ), where Φ is the
aspect ratio of the input point set; see Section 1.2 and the full version of the paper for a
more detailed discussion.

Since the number of trees provided by the two known constructions [3, 5] matches the
packing bound ε−d (up to a logarithmic factor), it is tempting to conjecture that this bound
is tight. However, there is a gap between this upper bound and the best lower bound we
have, which comes indirectly from (1 + ε)-stretch spanners. For any parameter α ≥ 1, a
Euclidean α-spanner for any d-dimensional point set is a weighted graph spanning the input
point set, whose edge weights are given by the Euclidean distances between the points, that
approximates all the original pairwise Euclidean distances within a factor of α. We note that

1 The Od notation suppresses terms that depend solely on the dimension d.
2 The doubling dimension of a metric space (M, δ) is the smallest value ddim such that every ball in M

can be covered by 2ddim balls of half the radius. A metric δ is called doubling if its doubling dimension
is constant.

3 In high-dimensional Euclidean spaces the upper bound in [5] improves over that of [3], since the Od

notation in [3] and [5] suppress multiplicative factors of dO(d) and 2O(d), respectively.
4 The degree of a point is the number of edges incident to it.
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an α-spanner can be obtained directly by taking the union of all trees in any α-tree cover for
the input point set. The Ω(n · ε−d+1) size lower bound for (1 + ε)-spanners [19, Theorem 1.1]
directly implies that any (1+ε)-tree cover must contain Ω(ε−d+1) trees. This is an ε−1-factor
away from the packing bound. In particular, in the Euclidean plane, there is a gap between
the upper bound of O(ε−2) and the lower bound of Ω(ε−1). One can extend the notions
of spanner by introducing Steiner points as well, which are additional points that are not
part of the input. A weaker Ω(ε(−d+1)/2) lower bound can be obtained for Steiner tree cover,
from the Ω(n/

√
ε) size lower bound for Steiner (1 + ε)-spanner in R2 [19, Theorem 1.4], and

the Ω(n/ε(d−1)/2) size lower bound in general Rd [6].

Short survey on tree covers. There are many papers published on tree covers in recent
years, with subtle variations in their definitions due to differences in main objectives and
applications. In the full version of the paper, we attempt to summarize the best upper and
lower bounds known to our knowledge, including some results that were not in any earlier
literature.

1.1 Main Results
We improve the longstanding bound on the number of trees for Euclidean tree cover by a
factor of 1/ε, for any constant-dimensional Euclidean space.5 In view of the aforementioned
lower bound [19, 6], this is optimal up to the log(1/ε) factor. Roughly speaking, we show
that the packing bound barrier (incurred in both [3] and [5]) can be replaced by the number
of ε-angled cones needed to partition Rd; for more details, refer to Section 1.2.

▶ Theorem 1. For every set of points in Rd and any 0 < ε < 1/20, there exists a tree cover
with stretch 1 + ε and Od(ε−d+1 · log(1/ε)) trees. The running time of the construction is
Od(n log n + n · ε−d+1 · log(1/ε)).

We note our construction is faster than that of the Dumbbell Theorem of [3] by more than a
multiplicative factor of ε−d.

In addition, we demonstrate that the bound on the number of trees can be quadratically
improved using Steiner points; in R2 we can construct a Steiner tree cover with stretch 1 + ε

using only O(1/
√

ε) many trees. The result generalizes for higher dimensions. In view of the
aforementioned lower bound [19, 6], this result too is optimal up to the log(1/ε) factor.

▶ Theorem 2. For every set of points in Rd and any 0 < ε < 1/20, there exists a Steiner
tree cover with stretch 1 + ε and Od(ε(−d+1)/2 · log(1/ε)) trees. The running time of the
construction is Od(n log n + n · ε(−d+1)/2 · log(1/ε)).

1.1.1 Bounded degree tree cover
Although the number of trees in the tree cover is the most basic quality measure, together
with the stretch, another important measure is the degree. One can optimize the maximum
degree of a point in any of the trees, or to optimize the maximum degree of a point over all
trees – both these measures are of theoretical and practical importance.

5 As with [3], the Od notation in our bound suppresses a multiplicative factor of dO(d), which should be
compared to the multiplicative factor of O(1)d suppressed in the bound of [5]. Thus, our results improve
over that of [5] only under the assumption that ε is sufficiently small with respect to the dimension d;
this assumption should be acceptable since the focus of this work, as with the great majority of the
work on Euclidean spanners, is low-dimensional Euclidean spaces.

SoCG 2024
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Both the Dumbbell Theorem [3] and the BFN construction [5] use copies of the same
point in multiple trees, and even in different levels of the same tree. Consequently, each
point may have up to log Φ copies, which can be viewed as distinct nodes of the tree, where
Φ is the aspect ratio of the input point set. The Dumbbell trees have bounded node-degree
(which is improved to degree 3 in [24]), but the maximum point-degree in any tree could still
be Θ(log Φ) after reidentifying all the copies of the points. The construction of [5] may also
incur a point-degree of Ω(log Φ) in any of the trees.6

In the full version of the paper, we strengthen Theorem 1 by achieving a constant degree
for each point in any of the trees; in fact, our bound is an absolute constant in any dimension.
As a result, the maximum degree of a point over all trees is Od(ε−d+1 · log(1/ε)); this is
optimal up to the log(1/ε) factor, matching the average degree (or size) lower bound of
spanners mentioned above [19].

Routing. We highlight one application of our bounded degree tree cover to efficient routing.

▶ Theorem 3. For any set of points in Rd and any 0 < ε < 1/20, there is a compact routing
scheme with stretch 1 + ε that uses routing tables and headers with Od(ε−d+1 log2(1/ε) · log n)
bits of space.

Our routing scheme uses smaller routing tables compared to the routing scheme of Gottlieb
and Roditty [15], which uses routing tables of O(ε−d log n) bits. At a high level, we provide
an efficient reduction from the problem of routing in low-dimensional Euclidean spaces to
that in trees; more specifically, we present a new labeling scheme for determining the right
tree to route on in the tree cover of Theorem 1. Having determined the right tree to route on,
our entire routing algorithm is carried out on that tree, while the routing algorithm of [15] is
carried out on a spanner; routing in a tree is clearly advantageous over routing in a spanner,
also from a practical perspective. The details are omitted due to space constraints; refer
to [15] for the definition of the problem and relevant background.

1.2 Technical Highlights

1.2.1 Achieving an optimal bound on the number of trees
The tree cover constructions of [3] and [5] achieve the same bound of O(ε−d · log(1/ε)) on the
number of trees, which is basically the packing bound O(ε−d). The Euclidean construction
of [3] is significantly more complex than the construction of [5] that applies to the wider
family of doubling metrics. Here we give a short overview of the simpler construction of [5];
then we describe our Euclidean construction, aiming to focus on the geometric insights that
we employed to breach the packing bound barrier.

The starting point of [5] is the standard hierarchy of 2w-nets {Nw} [17], which induces a
hierarchical net-tree.7 Each net Nw is greedily partitioned into a collection of Θ( 2w

ε )-sub-nets
Nw,t, which too are hierarchical. For a fixed level w, the number of sub-nets {Nw,t} is
bounded by the packing bound O(ε−d), and each of them is handled by a different tree via a
straightforward clustering procedure. Naïvely this introduces a log Φ factor to the number

6 Even node-degrees may blow up in the construction of [5], but it appears that a simple tweak of their
construction can guarantee a node-degree of ε−O(d).

7 The standard notation in the literature on doubling metrics, including [5], uses index i instead of w to
refer to levels or distance scales; however, this paper focuses on Euclidean constructions, and we view it
instructive to use a different notation.
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of trees, each corresponding to a level (Φ is the aspect ratio of the point set). The key
observation to remove the dependency on the aspect ratio is that two far apart levels are
more or less independent, and one can pretty much use the same collection of trees for both.
More precisely, the levels are partitioned into ℓ := log(1/ε) congruence classes I0, I1, . . . , Iℓ−1,
where Ij := {w | w ≡ j (mod ℓ)}. Since distances across different levels of the same class Ij

differ by at least a factor of 1/ε, it follows that all sub-nets {Nw,t}w∈Ij can be handled by a
single tree via a greedy hierarchical clustering. Now the total number of trees is the number
of sub-nets in one level, which is O(ε−d), times the number of congruence classes log(1/ε).

Taking a bird’s eye view of the construction of [5], the following two-step strategy is used
to handle pairwise distances within each congruence class Ij :
1. Reduce the problem from the entire congruence class Ij to a single level w ∈ Ij. This is

done by a simple greedy procedure.
2. Handle each level w ∈ Ij separately. This is done by a simple greedy clustering to the

sub-nets {Nw,t}.

In Euclidean spaces, we shall use quadtree which is the natural analog of the hierarchical
net-tree. We too employ the trick of partitioning all levels in the hierarchy to congruence
classes [7, 5, 19, 1] and handle each one separately, and follow the above two-step strategy.
However, the way we handle each of these two steps deviates significantly from [5].

Step 1: Reduce the problem to a single level. At any level w, we handle every quadtree
cell of width 2w separately. Every cell is partitioned into subcells from level w − ℓ of width
ε · 2w, and each non-empty cell contains a single representative assigned by the construction
at level w − ℓ. At level w, we construct a partial (1 + ε)-tree cover, which roughly speaking
only preserves distances between pairs of representatives that are at distance roughly 2w

from each other; this is made more precise in the description of Step 2 below. Let τ(ε) be the
number of trees required for such a partial tree cover. To obtain a tree cover for all points in
the current level-w cell, we simply merge the aforementioned partial tree cover constructed
for the level-(w − ℓ) representatives with the tree cover obtained previously for the points
in the subcells. Finally, we choose one of those level-(w − ℓ) representatives as the level-w
representative of the current cell, and proceed to level w + ℓ of the construction.

To achieve the required stretch bound, it is sufficient to guarantee that for every pair of
points (p, q), some quadtree cell of side-length proportional to ∥pq∥ would contain both p

and q. Alas, this is impossible to achieve with a single quadtree. To overcome this obstacle,
we use a result by Chan [8]: there exists a collection of Θ(d) carefully chosen shifts of the
input point set, such that in at least one shift there is a quadtree cell of side-length at
most Θ(d) · ∥pq∥ that contains both p and q. The number of trees in the cover grows by a
factor of Od(1). Consequently, if each cell can be handled using τ(ε) trees, then ranging
over all the log(1/ε) congruence classes and all the shifts, the resulting tree cover consists of
τ(ε) · log(1/ε) · Od(1) trees; see Lemma 7 for a more precise statement. The full details of
the reduction are in Section 2.1.

Step 2: Handling a single level. Handling a single level is arguably the more interesting
step, since this is where we depart from the general packing bound argument that applies to
doubling metrics, and instead employ a more fine-grained geometric argument. We next give
a high-level description of the tree cover construction for a single level w. For brevity, in this
discussion, we focus on the 2-dimensional construction that does not use Steiner points. The
full details of this construction, as well as of the generalization for higher dimension and the
Steiner tree cover construction, are given in Sections 2.2 and 2.3.

SoCG 2024



37:6 Optimal Euclidean Tree Covers

We consider a single 2-dimensional quadtree cell of side-length ∆ := 2w at level w, which
is subdivided into subcells of side-length ε · 2w. Every level-(w − ℓ) cell has a representative
and our goal is to construct a partial tree cover for any pair of representatives that are at a
distance between ∆/10 and ∆. (The final constants are slightly different; here we choose 10
for simplicity.) To this end, we select a collection of Θ(1/ε) directions. For each direction ν,
we partition the plane into strips of width ε∆, each strip parallel to ν. We then shift each
such partition orthogonally by ε∆/2; we end up with a collection of 2 · Θ(1/ε) partitions,
two for each direction. We call these partitions the major strip partitions. Observe that
for every pair of representative points p and q, there is at least one major strip partition
in some direction, such that both p and q are contained in the same strip. Crucially, we
show that for every strip S in a partition P , there is a collection of O(1) trees that preserves
distances between all points p and q in strip S that are at distance between ∆/100 and ∆.
The key observation is that, since the strips in the same partition P are disjoint by design,
the O(1)-many trees for each strip of P can be combined into O(1) forests. Thus the total
number of forests is O(1/ε).

To construct a collection of trees preserving distances within a single strip S, we first
subdivide the strip S. If S is in direction ν, we partition S into sub-strips orthogonal to ν,
each of width ∆/20. We call this a minor strip partition. Observe that if points p and q are
at distance ≥ ∆/10, they are in different sub-strips of the minor strip partition. For every
pair of sub-strips S1 and S2 in the minor strip partition, we construct a single tree that
preserves distances between points in S1 and S2 to within a factor of 1 + ε. There are O(1)
sub-strips in the minor strip partition, so overall only O(1) trees are needed for any strip S.

1.2.2 Bounding the degree
The tree cover construction described above achieves the optimal bound on the number of
trees, but the degree of points could be arbitrarily large. While the previous tree cover
constructions [3, 5] incur unbounded degree, the Euclidean construction of [3], when restricted
to a single level in the hierarchy, achieves an absolute constant degree.8

In our construction, when restricted to a single level, the degree of points can be easily
bounded by O(1/ε2). However, in contrast to [3], our goal is to achieve this bound for the
entire tree, across all levels of the hierarchy. In particular, if we achieve this goal, the total
degree of each point over all trees will be O(ε−1 · log(1/ε))) (O(ε−d+1 · log(1/ε)) in general),
which is optimal (up to logarithmic factor) due to the aforementioned lower bound [6].
To achieve this goal, we strengthen the aforementioned two-step strategy as follows. The
details appear in the full version of the paper.

1. In the reduction from the entire congruence class Ij to a single level w ∈ Ij , the challenge
is not to overload the same representative point over and over again across different levels of
Ij . To this end, we refine a degree reduction technique, originally introduced by Chan et al. [7]
to achieve a bounded degree for (1+ε)-stretch net-tree spanners in arbitrary doubling metrics.
The technique of [7] is applied on a bounded-arboricity net-tree spanner, first by orienting its
edges to achieve bounded out-degree for all points. Then, apply a greedy edge-replacement
process, where the edges are scanned in nondecreasing order of their level (or weight), and
any incoming edge (u, v) leading to a high-in-degree point v is replaced by an edge leading
to an incoming neighbor w of v in a sufficiently lower level, with ∥wv∥ ≤ ε∥uv∥. It is shown

8 Although in the original paper of [3] (as well as in [22]) the bound is not an absolute constant, it was
shown in [24] that an absolute constant bound can be obtained. Nonetheless, overlaying all levels of the
hierarchy leads to a final degree bound of Θ(log Φ).
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that this process terminates with a bounded-degree spanner, where the degree bound is
quadratic in the out-degree bound (arboricity) of the original spanner, and the stretch bound
increases only by an additive factor of O(ε).

We would like to apply this technique on every tree in the tree cover separately; if instead
we were to apply it on the union of the trees, we would create cycles; resolving them blows
up the number of trees in the cover. We demonstrate that by working on each tree separately,
not only does the greedy edge-replacement process reduce the degree in each tree to an
absolute constant, but it also keeps the tree cycle-free as well as provides the required stretch
bound. In fact, it turns out to be advantageous to operate on each tree separately rather
than on their union, since this way the out-degree bound in a single tree reduces to 1, which
directly improves the total degree bound over all trees to be linearly depending on 1/ε rather
than quadratically. This is the key to achieving an optimal degree bound both within each
tree as well as over all trees.

2. When handling a single level individually, the degree of points can be easily bounded by
O(1/ε2) as mentioned. However, we would like to achieve an absolute constant bound at
each level. Recall that, for every pair of sub-strips S1 and S2 in the minor strip partition of
some strip S, we construct a single tree that preserves distances between points in S1 and S2
to within a factor of 1 + ε; this tree is in fact a star. Perhaps surprisingly, every such star
can be transformed into a binary tree via a simple greedy procedure, with the stretch bound
increased by just a factor of 1 + O(ε log(1/ε)).

1.3 Organization
In Section 2, we present the construction of tree covers with an optimal number of trees in
both non-Steiner and Steiner settings, proving Theorem 1 and Theorem 2. In the full version
of the paper, we reduce the degree of every tree in the (non-Steiner) tree cover an absolute
constant; and we show some applications of our tree cover to routing, proving Theorem 3.

2 Optimal Tree Covers for Euclidean Spaces

2.1 Reduction to Partial Tree Cover
Let X be a set of points in Rd. For any two points p and q in X, we use ∥pq∥ to denote
their Euclidean distance. Without loss of generality we assume that the minimum distance
between any two points in X is 1.

▶ Lemma 4 (Cf. [8, 14]). Let L > 0 be an arbitrary real parameter. Consider any two points
p, q ∈ [0, L)d, and let T be the infinite quadtree of [0, 2L)d. For D := 2⌈d/2⌉ and i = 0, . . . , D,
let νi := (iL/(D + 1), . . . , iL/(D + 1)). Then there exists an index i ∈ {0, . . . , D}, such that
p + νi and q + νi are contained in a cell of T with side-length at most (4⌈d/2⌉ + 2) · ∥pq∥.

▶ Definition 5. We call two points (µ, ∆)-far if their distance is in [∆/µ, ∆].

▶ Definition 6. A (µ, ∆)-partial tree cover for X ⊂ Rd with stretch (1 + ε) is a tree cover
with the following property: for every two (µ, ∆)-far points p and q, there is a tree T in the
cover such that δT (p, q) ≤ (1 + ε) · ∥pq∥.

▶ Lemma 7 (Reduction to partial tree cover). Let X be a set of points in Rd, and let ε be a
number in (0, 1/20). Suppose that for every µ > 0, every set of points in Rd with diameter
∆ admits a (µ, ∆)-partial tree cover with stretch (1 + ε), size τ(ε, µ) and diameter of each
tree at most γ∆ for some γ ≥ 1. Then X admits a tree cover with stretch (1 + ε) and size
O(d · log γ·d

√
d

ε · τ(ε, µ)) with µ := 10d
√

d.

SoCG 2024



37:8 Optimal Euclidean Tree Covers

Proof. Assume without loss of generality that the smallest coordinate of a point in X is 0
and let L be the largest coordinate in X. Let D := 2⌈d/2⌉ and let Q be the quadtree as in
Lemma 4. For i ∈ {0, . . . , D}, let Qi be Q shifted by −νi = (−iL/(D +1)), . . . , −iL/(D +1)).

Constructing the tree cover. Let ℓ := log γd
√

d
ε and let µ := 10d

√
d. (Assume for simplicity

that ℓ is an integer.) Fix some i ∈ {0, . . . , D}, j ∈ {0, . . . , ℓ − 1}, and k ∈ {1, . . . , τ(ε, µ)}.
We proceed to construct tree Ti,j,k. Consider the congruence class Ij := {z ≥ 0 | z ≡ j

(mod ℓ))}. The following construction is done for every z ∈ Ij in increasing order. Consider
the level-w quadtree Qi, with cells of width 2w. If w < ℓ, for each level-w cell C, construct
the kth among τ(ε, µ) trees from the (µ, 2w)-partial tree cover on the points in C, and root it
at an arbitrary point in C. For w ≥ ℓ, consider the subdivision of level-w cell into subcells of
level w − ℓ. Let X ′ be a subset of X consisting of all the roots of the previously built subtrees
in subcells of levels w − ℓ. Let ∆w := 2w

√
d, and observe that ∆w is an upper-bound on the

diameter of X ′. Construct a (µ, ∆w)-partial tree cover for X ′ with τ(ε, µ) trees, and let T

be the kth tree of the τ(ε, µ) trees constructed. Take the previously built subtrees rooted at
X ′, and construct a new tree by identifying their roots with the vertices of T . Root this new
tree arbitrarily. The tree Ti,j,k is the final tree obtained after iterating over every z ∈ Ij .

We prove the following two claims inductively.

▷ Claim 8. Let T w
i,j,k be a tree constructed at level w for i ∈ {0, . . . , D}, j ∈ {0, . . . , ℓ − 1},

k ∈ {1, . . . , τ(ε, µ)} and w ∈ Ij .
1. T w

i,j,k is a tree.
2. T w

i,j,k has diameter ϕw at most 2γ∆w.

Proof. We prove the claim by induction over the level w ∈ Ij .
1. The base case holds because the graph Ti,j,k is initialized as a tree. For the induction

step, consider some level w ∈ Ij that is at least ℓ. At this stage we construct a tree T

with vertex set consisting of representatives of the level w − ℓ, and attach the trees rooted
at each of the representatives we constructed previously to T . This is clearly a tree and
the induction step holds.

2. The base case holds because the diameter of each tree is at most γ∆w, as guaranteed
in the statement of Lemma 7. For the induction step, we have γ∆w + 2γ∆w−ℓ =
γ∆w + 2γ ∆wε

γd
√

d
≤ 2γ∆w. ◁

▷ Claim 9. The number of trees in the cover is O(d log γd
√

d
ε · τ(ε, µ)).

Proof. The tree cover consists of trees Ti,j,k ranging over (D + 1) · ℓ · τ(ε, µ) = (2⌈d/2⌉ + 1) ·
log γd

√
d

ε · τ(ε, µ) indices. ◁

▷ Claim 10. For every two points p, q ∈ X, there is a tree T in the cover such that
δT (p, q) ≤ (1 + ε) · ∥pq∥, where δT (p, q) is the distance between p and q in T .

Proof. By Lemma 4, there exists a cell C in one of the D + 1 quadtrees which contains both
p and q and has side-length 2w ≤ (4⌈d/2⌉ + 2) · ∥pq∥ ≤ 5d · ∥pq∥. Let Qi be such a quadtree,
where 0 ≤ i ≤ D, and let 0 ≤ j ≤ ℓ − 1 be such that j ≡ w (mod ℓ). Observe that p and q

are (µ, ∆w)-far. If w < ℓ, we constructed a (µ, ∆w)-partial tree cover of C, so the claim holds.
Otherwise suppose w ≥ ℓ. Recall that in the construction of the tree cover, we considered a
subdivision of a level-w cell (of side-length 2w) into smaller subcells of level w − ℓ. For each
subcell we choose a representative and constructed a tree cover on top of them. Let p′ (resp.
q′) denote the representative of p (resp. q) in the subcell at level w − ℓ. We claim that p′
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and q′ are (µ, ∆w)-far, where ∆w = 2w
√

d denotes the diameter of the cell at level w. The
bound ∥p′q′∥ ≤ ∆w follows from the fact that p′ and q′ are both in cell C. The distance can
be lower-bounded as follows.

∥p′q′∥ ≥ ∥pq∥ − 2∆w−ℓ ≥ 2w

5d
− 2 · ε · 2w

γd
√

d

√
d

= 2w

(
1
5d

− 2ε

γd

)
≥ 2w

10d
= ∆w

µ
as ε <

1
20 , γ ≥ 1, and µ = 10d

√
d

In other words, the representatives p′ and q′ are (µ, ∆w)-far, meaning that one of the τ(ε, µ)
trees T in the partial tree cover for cell C will preserve the stretch between p′ and q′ up to a
factor of (1 + ε). The distance between p and q in this tree can be upper bounded as follows.

δT (p, q) ≤ δT (p, p′) + δT (p′, q′) + δT (q, q′)
≤ (1 + ε) · ∥p′q′∥ + δT (p, p′) + δT (q, q′)
≤ (1 + ε) · (∥p′p∥ + ∥pq∥ + ∥qq′∥) + δT (p, p′) + δT (q, q′)
≤ (1 + ε) · (∥pq∥ + 2∆w−ℓ) + 2ϕw−ℓ

≤ (1 + ε) · (∥pq∥ + 2∆w−ℓ) + 4γ∆w−ℓ by Claim 8

≤ (1 + ε) ·
(

∥pq∥ + 6∆w · ε

d
√

d

)
= (1 + O(ε)) · ∥pq∥

Stretch 1 + ε can be obtained by appropriate scaling. ◁

Claims 8–10 imply that the resulting construction is a tree cover with stretch (1 + ε) and
O(d log γd

√
d

ε · τ(ε, µ)) trees, as required. This concludes the proof of Lemma 7. ◀

Running Time. Let Timeµ,∆(n) be the time needed to construct a (µ, ∆)-partial tree cover
for a given set of points of size n. In this paper, we assume that all algorithms are analyzed
using the real RAM model [13, 20, 23, 12]. Constructing a (compressed) quadtree and
computing the shifts require Od(n log n) time [8]. For each non-trivial node in the quadtree
(a trivial node is a node that have only one child), we select a representative point, and then
compute a (µ, ∆)-partial tree cover of the representative points corresponding to descendants
of the node at ℓ = O(log(1/ε)) levels lower. Computing this (µ, ∆)-partial tree cover on
k representatives takes Timeµ,∆(k) time. We can charge each of the k representatives
by Timeµ,∆(k)/k. Each of the n points in our point set is charged ℓ = Od(log(1/ε))
times. Assuming that Timeµ,∆(a) + Timeµ,∆(b) ≤ Timeµ,∆(a + b), we can bound the total
charge across all points by Od(Timeµ,∆(n) · log(1/ε)). Hence, the total time complexity is
Od(n log n + Timeµ,∆(n) · log(1/ε)).

2.2 Partial Tree Cover Without Steiner Points
This part is devoted to the proof of Theorem 1. We present the argument in R2, and defer
the proof for Rd with d ≥ 3 to the full version of the paper.

▶ Lemma 11. Let X be a set of points in R2 with diameter ∆. For every constant µ > 0
there is a (µ, ∆)-partial tree cover for X with stretch (1 + ε) and size O(1/ε), where each
tree has diameter at most 2∆ log(4µε).
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x

y

α

β

θ

θ⊥

ε
4µ

ε∆2µ

∆
2µ

||v||

Figure 1 A major strip partition (in blue) in direction θ, and a minor strip partition (in purple)
in direction θ⊥. Points x and y, and the vector v broken into components parallel to and orthogonal
to θ.

The construction relies on partitioning the plane into strips. Let θ be a unit vector. We
define a strip in direction θ to be a region of the plane bounded by two lines, each parallel
to θ. The width of the strip is the distance between its two bounding lines. We define the
strip partition with direction θ and width w (shorthanded as (θ, w)-strip partition) to be
the unique partition of R2 into strips of direction θ and width w, where there is one strip
that has a bounding line intersecting the point (0, 0). Let θ⊥:= (−θy, θx) be a unit vector
perpendicular to θ. A (θ, w)-strip partition with shift s is obtained by shifting the boundary
lines of the (θ, w) strip partition by s · θ⊥.

Consider the following family of strip partitions: Let θi := (cos(i · ε
4µ ), sin(i · ε

4µ )) be the
unit vector with angle i · ε

4µ , for i ∈ {0, . . . , 8πµ
ε − 1}. Let set ξi contains (1) the (θi, ε ∆

2µ )-strip
partition with shift 0, and (2) the (θi, ε ∆

2µ )-strip partition with shift ε ∆
4µ . Let ξ :=

⋃
i ξi. We

call the strip partitions of ξ the major strip partitions. Clearly, ξ contains 16πµ/ε = O(1/ε)
major strip partitions. We define θ⊥

i to be a vector orthogonal to θi; and we define ξ⊥ to be
the set of all (θ⊥

i , ∆
2µ )-strip partitions with shift 0, for every i ∈ {0, . . . , 8πµ

ε − 1}. We call
the shift partitions of ξ⊥ the minor strip partitions. Every set ξi of major strip partitions
is associated with a minor strip partition; notice that every major strip partition has an
ε-factor smaller width to its orthogonal minor strip partition. See Figure 1.

▷ Claim 12. For any two points x, y ∈ X such that x and y are (µ, ∆)-far, there exists some
major strip partition P ∈ ξ such that (1) the points x and y are in the same strip of P ; and
(2) in the associated minor strip partition P ⊥ ∈ ξ⊥, the points x and y are in different strips.

Proof. Let v denote the vector y − x. There exists some i ∈ {0, . . . , 8πµ/ε − 1} such that
the angle between the vector θi and v is at most ε/4µ. We write v as a linear combination of
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θi and a vector θ⊥
i orthogonal to θ: v = α · θi + β · θ⊥

i . As the angle between v and θi is at
most ε/4µ (and ∆/µ ≤ ∥xy∥ ≤ ∆), we have

|α| ≥ ∥v∥ cos
(

ε

4µ

)
>

∥v∥
2 ≥ ∆

2µ
, and

|β| ≤ ∥v∥ sin
(

ε

4µ

)
≤ ε

4µ
∥v∥ ≤ ∆

4µ
.

Let ξi be the set of major strip partitions in direction θi. As |β| ≤ ∆
4µ , and ξi consists of

shifted strip partitions of width ∆
2µ , there is some major strip partition P ∈ ξi in which x

and y are in the same strip. Further, every strip in the associated minor strip partition P ⊥

has width ∆
2µ , so the fact that |α| > ∆

2µ implies that x and y are in different strips of P ⊥.
This proves the claim. ◁

For every major strip partition in ξ, we now construct a tree which preserves approximately
distances between points that lie in the same major strip but different minor strips. The
following is the key claim.

▷ Claim 13. Let S be a strip from a major strip partition in ξ, with direction θ. Let S1 and
S2 be two strips from a minor strip partition in ξ, both with direction θ⊥. Then there is a tree
T on X ∩S such that for every a ∈ X ∩S1∩S and b ∈ X ∩S2∩S, ∥ab∥ ≤ δT (a, b) ≤ ∥ab∥+ ε∆

µ .

In particular, if x and y are (µ, ∆)-far, then ∥ab∥ ≤ δT (a, b) ≤ (1 + ε) · ∥ab∥.

Proof. For any point x ∈ R2, we define scoreθ(x) to be the inner product ⟨x, θ⟩. Let
A := X ∩ S1 ∩ S and B := X ∩ S2 ∩ S. As A and B belong to different minor strips in
direction θ⊥, without loss of generality scoreθ(a) < scoreθ(b) for every a ∈ A and b ∈ B. Let
a∗ := arg maxa∈A scoreθ(a). We claim that for any a ∈ A and b ∈ B,

∥aa∗∥ + ∥a∗b∥ ≤ ∥ab∥ + ε∆
µ

. (1)

To show this, consider the line segment ℓ between a and b. Let L be the line in direction θ⊥

that passes through a∗. Because scoreθ(a) ≤ scoreθ(a∗) ≤ scoreθ(b), line L and segment ℓ

intersect at some point a′ in the slab S; see Figure 2. (Note that a′ is not the projection of a∗

onto ℓ.) The distance ∥a∗a′∥ can be no greater than the width of the slab, so ∥a∗a′∥ ≤ ε ∆
2µ .

By triangle inequality, we have

∥aa∗∥ + ∥a∗b∥ ≤ (∥aa′∥ + ∥a′a∗∥) + (∥a∗a′∥ + ∥a′b∥)

≤ ∥aa′∥ + ∥a′b∥ + ε
∆
µ

≤ ∥ab∥ + ε∆
µ

.

Let T be the star centered at a∗, with an edge to every other point x ∈ A∪B; the weight of the
edge between a∗ and x is ∥a∗x∥. For any a ∈ A and b ∈ B, we clearly have ∥ab∥ ≤ δT (a, b),
and Equation (1) guarantees that δT (a, b) ≤ ∥ab∥ + ε∆

µ . ◁

We can now prove Lemma 11.

Proof of Lemma 11. Let ξ be the set of major strip partitions defined above. Let P be an
arbitrary major strip partition in ξ, and let P ⊥ be the associated minor strip partition in ξ⊥.

SoCG 2024
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a

ba∗

a′

L

A

B

θ

Figure 2 Point sets A and B, both in the same major strip (blue) but in different minor strips
(purple). The points a, a∗, and b, with scoreθ(a) ≤ scoreθ(a∗) ≤ scoreθ(b), and the line L passing
through a∗.

For each pair of strips S1 and S2 in P ⊥, we define tree TP,S1,S2 as follows: For every strip S

in P , apply Claim 13 to construct a tree TS on (a subset of) X ∩ S that preserves distances
between X ∩ S1 and X ∩ S2; and let TP,S1,S2 be the tree obtained by joining together the
trees TS from all strips S in P . To join the trees, we build a balanced binary tree from the
roots of TS for all strips S in P . The tree cover T consists of the set of all trees TP,S1,S2 ,
for every major strip partition P ∈ ξ and every pair of strips S1, S2 in the associated minor
strip partition P ⊥.

To bound the size of T , observe that (1) there are at most 8πµ
ε · 2 = O(1/ε) major strip

partitions containing points in X, and (2) for every strip S in a major strip partition, at
most 2µ + 1 = O(1) strips in the associated minor strip partition contain points in X ∩ S

(recall that point set X has diameter ∆). Thus T contains 16πµ
ε ·

(2µ+1
2

)
= O(1/ε) trees.

To bound the stretch, let a and b be arbitrary points in X. By Claim 12, there exists
some major strip partition P ∈ ξ such that (1) a and b are in the same strip in P ; and (2)
a and b are in different strips S1 and S2 of the associated minor strip partition P ⊥. Thus
Claim 13 implies that tree TP,S1,S2 satisfies ∥ab∥ ≤ δT (a, b) ≤ (1 + ε) · ∥ab∥.

To bound the diameter, let P be a major strip partition and let S be a major strip in P .
Observe that TS is a star and the distance from the root of TS to any other point in TS is at
most ∆. The roots of trees corresponding to strips in P are connected by a binary tree by
construction. Each edge of this binary tree is of length at most ∆. The number of strips in P is
upper bounded by 2µ/ε. Hence, the height of the binary tree is at most log(2µ/ε). This means
that the diameter of the resulting tree is at most 2 · (∆ + log(2µ/ε) · ∆) = 2∆ log(4µ/ε). ◀

Running Time. The inner product between each point with each vector θi can be precom-
puted using O(|X| · 4µ

ε ) operations. For a major strip S, finding the maximum point in
the intersection between S and each of its minor strip only need time proportional to the
number of points in S ∩ X. Those points are chosen as roots of the stars corresponding
to S. For each root, constructing the corresponding star requires O(|S ∩ X|) time. There
are

(2µ+1
2

)
roots for each major strip. Hence, the total time complexity of constructing the

(µ, ∆)-partitial tree cover is:
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|X| · 4µ

ε
+

(
2µ + 1

2

) ∑
major strip S

|S ∩ X| = O(|X| · ε−1)

Therefore, the time complexity of constructing the tree cover is Od(n log n + nε−1 log(1/ε)).

2.3 Partial tree cover with Steiner points
This part is devoted to the proof of Theorem 2 for R2; the argument for dimension d ≥ 3 is
deferred to the full version of the paper.
▶ Lemma 14. Let X be a set of points in R2 with diameter ∆. For every constant µ > 0,
there is a Steiner (µ, ∆)-partial tree cover with stretch (1 + ε) for X with 1/

√
ε trees, where

each tree has diameter at most 3∆.
Consider a square of side-length ∆ containing X, and let µ be an arbitrary constant.

Divide the square into vertical slabs of width ∆
3

√
2µ

and height ∆, and into horizontal slabs
of width ∆ and height ∆

3
√

2µ
.

▶ Observation 15. For any two points p, q ∈ X such that p and q are (µ, ∆)-far, there exists
either a horizontal or a vertical slab such that p and q are from different sides of the slab.
Proof. Suppose towards contradiction there are two adjacent horizontal slabs containing
both p and q and also two adjacent vertical slabs containing both p and q. The distance
between p and q is at most ∥pq∥ ≤ 2 · ∆

3
√

2µ
·
√

2 < ∆
µ , contradicting the assumption that p

and q are (µ, ∆)-far. ◀

For each horizontal (resp. vertical) slab S, we consider the horizontal (resp. vertical) line
segment ℓ that cuts the slab into two equal-area parts. The length of ℓ is ∆. Let k := ⌊2µ/

√
ε⌋

be an integer. We partition ℓ into k intervals, called [a0, a1], [a2, a3], . . . [ak−1, ak], each of
length

√
ε∆/2µ. For each point ai, we construct tree T i

S by adding edges between ai and
every point in X. Finally, connect the points ai using a straight line and let T be the
resulting tree. The diameter of this tree is at most 3∆.
▷ Claim 16. For any two points p, q ∈ X such that p and q are (µ, ∆)-far, there exists a
slab s and an integer i ∈ {0, . . . , k} such that δT i

S
(p, q) ≤ (1 + ε) · ∥pq∥.

Proof. By Observation 15, there exists a slab S such that p and q are in different sides of it.
Without loss of generality assume that S is horizontal. By construction, we partition the
middle interval ℓ of S into k intervals [a0, a1], [a2, a3], . . . [ak−1, ak] each of length

√
ε∆/2µ.

Let r be the intersection between pq and ℓ, and let ai be the closest point to r. Let r′ be the
projection of ai to r′. Hence, ||air

′|| ≤ ||air|| ≤
√

ε∆/2µ. Using the triangle inequality, we
have:

δT i
S
(p, q) ≤ ||pai|| + ||aiq|| =

√
||pr′||2 + ||r′ai||2 +

√
||r′q||2 + ||r′ai||2. (2)

Observe that ||pr′|| ≥ ∆/2µ. Thus, ||r′ai|| ≤
√

ε∆/2µ ≤ ||pr′||
√

ε. Similarly, ||r′ai|| ≤
||r′q||

√
ε. Combining with Equation 2, we get:

δT i
S
(p, q) ≤ ||pai|| + ||aiq|| =

√
||pr′||2 + ε||pr′||2 +

√
||r′q||2 + ε||r′q||2

≤
√

1 + ε · (||pr′|| + ||r′q||) ≤ (1 + ε) · ||pq||. ◁

We now prove Lemma 14. Let T be the set containing trees T i
s for every horizontal or

vertical slabs s and every index i ∈ [0, k]. There are O(µ) = O(1) horizontal and vertical
slabs, so T contains O(k) = O(1/

√
ε) trees. It follows immediately from Claim 16 that T is

a Steiner (µ, ∆)-partial tree cover for X with stretch (1 + ε).
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Running Time. For a set X, creating the set of slabs can be done in O(1) time. For each
slab, finding a net of the middle line takes O(1/

√
ε) time. For each Steiner point, it requires

O(|X|) time to create a tree connecting that point to everyone in X. Totally, the time
complexity is O(|X|/

√
ε). Therefore, the time complexity of constructing the tree cover is

Od(n log n + nε−1/2 log(1/ε)).
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