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Abstract
Finding the diameter of a graph in general cannot be done in truly subquadratic assuming the
Strong Exponential Time Hypothesis (SETH), even when the underlying graph is unweighted and
sparse. When restricting to concrete classes of graphs and assuming SETH, planar graphs and
minor-free graphs admit truly subquadratic algorithms, while geometric intersection graphs of unit
balls, congruent equilateral triangles, and unit segments do not. Unit-disk graphs is one of the major
open cases where the complexity of diameter computation remains unknown. More generally, it is
conjectured that a truly subquadratic time algorithm exists for pseudo-disk graphs where each pair
of objects has at most two intersections on the boundary.

In this paper, we show a truly-subquadratic algorithm of running time Õ(n2−1/18), for finding
the diameter in a unit-disk graph, whose output differs from the optimal solution by at most 2. This
is the first algorithm that provides an additive guarantee in distortion, independent of the size or
the diameter of the graph. Our algorithm requires two important technical elements. First, we show
that for the intersection graph of pseudo-disks, the graph VC-dimension – either of k-hop balls or the
distance encoding vectors – is 4. This contrasts to the VC dimension of the pseudo-disks themselves
as geometric ranges (which is known to be 3). Second, we introduce a clique-based r-clustering for
geometric intersection graphs, which is an analog of the r-division construction for planar graphs.
We also showcase the new techniques by establishing new results for distance oracles for unit-disk
graphs with subquadratic storage and O(1) query time. The results naturally extend to unit L1 or
L∞-disks and fat pseudo-disks of similar size. Last, if the pseudo-disks additionally have bounded
ply, we have a truly subquadratic algorithm to find the exact diameter.
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1 Introduction

Given a set F of n objects in the d-dimensional Euclidean space Rd, the geometric intersection
graph F × has vertices representing the objects in F and edges representing two overlapping
objects. When the objects F are disks of radius 1, the intersection graph is called the unit-disk
graph, where the vertices are centers of the disks in F and two vertices are connected if and
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38:2 Computing Diameter+2 in Truly-Subquadratic Time for Unit-Disk Graphs

only if their distance is no more than 2. Unit-disk graphs have been widely used to model
wireless communication. It is also an interesting family of graphs that admit approximation
schemes for many graph optimization problems [25, 31].

Geometric intersection graphs, unlike planar graphs, can be dense. But such graphs can
be implicitly represented by storing only the set of objects, and the existence of an edge in
the graph can often be verified by directly examining the two corresponding objects. Thus
many algorithms on geometric intersection graphs avoid computing the set of edges explicitly.
For example, single-source shortest paths in (unweighted) unit-disk graphs can be done in
time O(n log n) [19, 11, 12], even though the graph may have Θ(n2) many edges. All-pairs
shortest paths can be solved in near-quadratic time for several geometric intersection graphs,
including disks, axis-parallel segments, fat triangles in the plane, and boxes in constant
dimensional spaces [13].

In this paper, we examine two distance-related problems, namely, the graph diameter
problem and the distance oracle problem for geometric intersection graphs, in particular for
unit-disk graphs. A fundamental problem in this area is to determine whether Diameter
problem can be solved in truly subquadratic time for geometric intersection graphs. This is
answered negatively for many types of geometric intersection graphs [9] using a reduction
from the Orthogonal Vector Conjecture [32] (which is implied by SETH): Deciding if diameter
is at most 2 for unit segments in R2, congruent equilateral triangles in R2, axis-parallel
hypercubes in R12; and deciding if diameter is at most k for unit balls in R3, axis-parallel
unit cubes in R3 and axis-parallel line segments in R2. On the positive side, one can decide
in O(n log n) time whether graph diameter is at most two for unit-square graphs in R2.
However, for unit-disk graphs, arguably the most basic intersection graphs, the complexity
of Diameter problem remains wide open.

▶ Question 1. Can we compute the diameter of unit-disk graphs in truly-subquadratic time?

Currently, there is no strong evidence that the answer of Question 1 is positive or negative.
As we mentioned above, Diameter for unit-ball graphs in dimension at least 3 does not have
a truly-subquadratic time algorithm unless the Orthogonal Vector Conjecture is false. On
the other hand, dimension 2 is fundamentally different from dimension 3 or above, and there
exist problems that are hard for dimension 3 or above but become much easier in R2 [9].

Given the lack of progress on Question 1, it is natural to consider approximation algorithms.
When edges in unit-disk graphs are given their Euclidean distances as weights, finding (1 + ε)-
approximation of the graph diameter takes Õ(n3/2) time [22]; this is later improved to
near-linear time [14]. Their approach could be modified to handle unweighted unit-disk
graphs to get a hybrid (1 + ε, 4 + 2ε)-approximation algorithm for Diameter, meaning
that the returned approximate diameter is at most (1 + ε)D + (4 + 2ε) where D is the true
diameter. The difference is because, when the edges are weighted, for a dense set of disks (e.g.,
forming cliques of arbitrary size) we can use a subset of disks of density O(1/ε2) to obtain a
(1 + ε)-multiplicative distance approximation; this is no longer true in the unweighted setting
– even removing one disk can potentially introduce a constant additive error to the diameter.
While these results indicate that being on the Euclidean plane helps, stronger evidence
supporting the positive answer for Question 1 would be a +β-additive approximation, where
the returned diameter lies in between D and D + β.

▶ Question 2. Can we compute +β-approximation of the diameter of (unweighted) unit-disk
graphs for some constant β in truly subquadratic time?

A much more general and harder problem is to compute the diameter for the intersection
graphs of pseudo-disks [9]. Not surprisingly, we are very far from having the answer, given
that the unit-disk case remains wide open (Question 1). Unlike the unit-disk graphs, to
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the best of our knowledge, there are no known non-trivial approximation of the diameter
in truly-subquadratic time, even for pseudo-disks with constant complexity. In this work,
we consider the possibility of obtaining a purely additive approximation of diameter for the
intersection graphs of pseudo-disks with constant complexity that have reasonable shapes.
Specifically, we assume that the pseudo-disks are fat objects that have constant complexity
and are similar in size – those that can be sandwiched between two disks of the same center
of radius r and R, where r ≤ R being two universal constants. These objects include unit
Lp-disks, as well as same-size constant-sided convex polygons.

▶ Question 3. Can we compute +β-approximation of the diameter of (unweighted) inter-
section graphs of similar-size pseudo-disks with constant complexity for some constant β in
truly-subquadratic time?

One source of difficulty in computing diameter in truly-subquadratic time of geometric
intersection graphs is that the explicit representation of the intersection graphs could have
Θ(n2) edges. This naturally raises the question of obtaining such an algorithm for sparse
intersection graphs, where the number of edges is O(n2−δ) for some constant δ > 0. The
answer to this question also remains open. A significant progress toward answering this
question would be the case of constant ply. A set of objects is said to have ply k if every
point in the space can stab at most k objects in the set.

▶ Question 4. Can we compute the exact diameter of (unweighted) intersection graphs of
similar-size pseudo-disks with constant complexity and ply in truly-subquadratic time?

A positive answer to Question 4 also provides strong evidence for a positive answer to
Question 1, as unit-disk graphs of constant ply is a special case of similar-size pseudo-disks
with constant complexity and ply.

1.1 Main Results
In this work, we resolve Questions 2, 3, and 4 affirmatively. We can even set the additive
approximation constant β as small as 2, which is almost close to the true diameter. First, we
present our results for unit-disk graphs.

▶ Theorem 1. There is an algorithm computing a +2-approximation of the diameter of any
given unweighted unit-disk graph with n vertices in Õ(n2−1/18) time.

Our algorithm is a combination of two technical ingredients. (1) We show that both
the distance encoding vectors defined by Le and Wulff-Nilsen [28] as well as the set of
k-neighborhood balls defined by Ducoffe, Habib, and Viennot [17] have VC-dimension of 4
for unit-disk graphs and pseudo-disk graphs in general. (2) We develop a new clique-based
r-clustering which is analogous to an r-division for planar and minor-free graphs [20, 33]. The
combination is inspired by recent developments in computing diameter in truly-subquadratic
time for minor-free graphs [28]; we will discuss these technical ideas in detail in Section 1.2.
We then generalize our algorithm for unit-disk graphs to work with similar-size pseudo-disks
with constant complexity.

▶ Theorem 2. Given an unweighted n-vertex similar-size pseudo-disk graphs with constant
complexity, we can compute a +2-approximation of the diameter in Õ(n2−1/18) time.

In this general case, we need an additional component: a single-source shortest path
(SSSP) algorithm with Õ(n) running time for the intersection graphs of similar-size pseudo-
disks with constant complexity. SSSP algorithms with running time Õ(n) are known for
some special cases, including unit-disk graphs [19, 14], unit Lp-disks for p = 1 or p = ∞ [27],
and arbitrary disks [26].

SoCG 2024
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When the objects have bounded ply (or even nδ-ply for small δ), the intersection graphs
have truly-sublinear separators, using the observation by de Berg et al. [4] that the intersection
graph of fat objects has sublinear clique-based separators. (Indeed, the objects in each clique
of the clique-based separators are stabbed by a single point.) We use this fact combined with
our VC-dimension result for pseudo-disk graphs to prove the following theorem.

▶ Theorem 3. Let G be an unweighted n-vertex similar-size pseudo-disk graphs of with
constant complexity, and let k be the ply of G. We can compute the exact diameter in
Õ(k11/9n2−1/18) time.

The running time of Theorem 3 is truly subquadratic when k = O(n1/22−ε) for any constant
ε, including the special case of k = O(1) as asked in Question 4.

Next, we showcase another application of our technique in constructing a distance oracle
for (unweighted) unit-disk graphs. The same technique in Chan and Skrepetos [14] for the
diameter problem mentioned above gives a distance oracle returning a hybrid (1 + ε, 4 + 2ε)-
approximation of the shortest distance using O(n log3 n) space and O(1) query time. In
the weighted setting, they got a multiplicative (1 + ε)-approximation with the same space
and query time, improving upon an earlier result [22]. Mark de Berg [3] considered the
transmission graph where each point has a transmission radius and can reach any vertex within
the transmission radius. On this graph (which by definition is directed and unweighted), de
Berg presented a distance oracle of size Õ(n3/2/ε) that can answer approximate distance
queries with a hybrid (1 + ε, +1)-approximation in time Õ(n1/2/ε). The question is: can we
develop a distance oracle with truly-subquadratic space and constant query time, returning a
purely additive approximation of shortest distances? We use the same technique developed
for the diameter problem to answer this question positively.

▶ Theorem 4. Given an unweighted unit-disk graph with n vertices, we can construct a
distance oracle with O(n2−1/18) space and O(1) query time, returning a +2-approximation
of the true distances.

Theorem 4 extends to pseudo-disk graphs as well.

▶ Theorem 5. Given an unweighted n-vertex similar-size pseudo-disk graph with constant
complexity, we can construct a distance oracle with O(n2−1/18) space and O(1) query time,
returning a +2-approximation of the true distances.

Due to space limitation, we defer all proofs and analysis to the full version.

1.2 Technical Ideas
Our technique is inspired directly by recent developments in computing exact diameters
for minor-free graphs [17, 28] that combine two well-known tools in geometric algorithms:
VC-dimension and r-division. An r-division is a decomposition of the graph into Θ(n/r)
pieces, each with O(r) vertices and O(

√
r) boundary vertices that are incident to other pieces.

The result by Chepoi, Estellon, and Vaxès [16] showed that the set of all k-neighborhood balls
in a Kh-minor-free graph, when treated as a set system over the vertices, has VC-dimension
at most h − 1. Ducoffe et al. [17] was the first to combine the VC-dimension result [16]
and r-division to design truly-subquadratic time algorithm for minor-free graphs. Le and
Wulff-Nilsen [28] designed a different VC set system based on that of Li and Parter [29],
which is easier to combine with r-division. They obtained, among other things, an improved
algorithm for computing exact diameter in minor-free graphs.
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We follow a path similar to the one taken for minor-free graphs [28] to design an algorithm
for unit-disk graphs. To carry out this plan, we have to develop the two corresponding
technical components in the geometric setting: An appropriate VC set system and an r-
division for unit-disk graphs. There are two main challenges. The first challenge is that
while the definitions of the VC set systems proposed in [29, 28] are naturally applicable to
any graphs, their proof technique heavily depends on graphs being minor-free (by building
a minor directly from a system of high VC-dimension), and in some case involves tedious
case analysis. Our proof for unit disks only relies on their topological property of being
pseudo-disks. The second challenge is rooted from the reality that r-division does not exist
for unit-disk graphs. Here we introduced a new notion called clique-based r-clustering, which
allows cliques to be on the boundary of each region (called cluster in our terminology).
Our notion of clique-based r-clustering is inspired by clique-based balanced separators for
geometric intersection graphs [4, 5]. However, formulating the right definition for clique-based
r-clustering ends up to be delicate and challenging; the paragraphs after Remark 6 explain
why several naïve approaches do not work, and our eventual solution. We now elaborate on
the two main technical components in more details.

Various definitions of VC-dimensions on graphs. In computational geometry literature,
VC-dimension has been used to characterize the complexity and “richness” of geometric
shapes [15]. The VC-dimension for unit-disks (as well as disks of all possible radii) is 3 – no
four points can be shattered by disks in the plane [30]. We remark that in prior work the
VC-dimension of a graph is defined on the set system of the closed immediate neighborhoods,
i.e., for each vertex v, the set of vertices including v and its one-hop neighbors [24, 2, 6]. In
this definition, the VC-dimension of a unit-disk graph is 3 as well [6].

Here we study the VC-dimension of two set systems: (1) the set of balls in the geometric
intersection graph with radius r ranges over all possible non-negative integers – this is referred
to as the VC-dimension of the ball hypergraph of G, also called the distance VC-dimension
of G [16, 7, 17]; (2) the distance encoding vectors as defined in [28] in a unit-disk graph
with respect to a set S of k vertices. For both cases we show that the VC-dimension is
exactly 4 (not 3) – and we have an example of 4 points that are shattered. In fact, we
present a proof that is purely topological and thus can be generalized to the intersection
graphs of pseudo-disks – topological disks in the plane bounded by Jordan curves such that
the boundaries of any two objects have at most two intersection points. The pseudo-disk
requirement is actually crucial and cannot be dropped. For example, we can construct
n unit-size equilateral triangles (possibly with rotations) with VC-dimension Ω(log n) by
modifying the fine-grained hardness construction in Bringmann et al. [9, Theorem 17].

▶ Remark 6. In [1] it is shown that unit-disk graph has distance VC-dimension 4. As we
completed the VC-dimension results for pseudo-disk graphs, we discovered an independent
work posted on arXiv by Duraj, Konieczny and Potȩpa [18]. They showed that geometric
intersection graphs of objects that are closed, bounded, convex, and center symmetric has
distance VC-dimension at most 4, which is a subset of our result. Both proof techniques rely
on geometry. Our proof approach is purely topological, and applies for general pseudo disk
graphs and distance encoding vectors.

Duraj, Konieczny and Potȩpa [18] combined their distance VC dimension bound with
an (improved) argument along the lines of Ducoffe, Habib, and Viennot [17] to design
truly-subquadratic time algorithms for intersection graphs of unit squares and translations
of convex polygons with center of symmetry when the diameter is small. However, as noted
above, it remains an open problem if the same result could be obtained for unit-disk graphs

SoCG 2024
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even when the diameter is small – one missing element is a data structure that can efficiently
build the r-neighborhood with increasing r. It is unclear if such a data structure could be
constructed for unit-disk graphs.

Clique-based r-clustering. As we mentioned above, r-division does not exist in unit-disk
graphs. Here we develop an analogous clique-based r-clustering. A δ-balanced clique-based
separator of a geometric intersection graph G [4, 5] is a collection C of vertex-disjoint cliques
whose removal will partition the graph into two parts of size at most δn, with no edges
between the parts. The clique size of C is the number of cliques in C, and the vertex size of
C is the total number of vertices in all cliques in C.

As alluded to earlier, the definition and construction of the clique-based analog of r-
division requires handling several subtleties. To explain these subtleties, we will suggest
some natural ideas and discuss why these ideas do not work.

First attempt: Let D be the input set of n disks, whose intersection graph is G. We
could apply the clique-based separator [4, 3] to find a set of

√
n cliques S such that

D \ S could be partitioned into sets {D1, D2, . . .} such that each set of disk Di has size
at most 2n/3 and induces a maximally connected intersection graph. We call cliques in
S boundary cliques and disks in S boundary disks. Ideally, we want to recursively apply
the clique-based separators to each set Di until we obtain the set of clusters R of size
at most r each. The issue here is that the number of boundary cliques adjacent to each
region in R could be arbitrarily large, up to Ω(

√
n). Note that we want each set to have

only O(r) boundary cliques in the same way that r-division guarantees each region to
have O(r) boundary vertices.
Second attempt: Instead of separating each Di directly, we could add the boundary disks
in S back to Di, and then recursively apply the clique-based separator theorem on each
resulting Di, as done in algorithms for constructing an r-division of planar and minor-free
graphs [20, 33]. There are several issues, and one of them is running time. Specifically, S
could contain up to Ω(n) disks, and by reinserting the boundary disks across different Di,
the number of disks (counted with multiplicity) might be more than n, and hence the
total number of disks arising over the course of the entire recursion could be up to Ω(n2).
Third attempt: One way to avoid adding too many boundary disks to Di is to add only
one boundary disk per clique in S. Specifically, for each clique in S, we choose a disk in
the clique to be its representative. Next, we add the representative of each clique to Di,
if the clique intersects at least one disk in Di. We then recursively apply the clique-based
separator to the resulting set of disks. Here the total number of disks, counted with
multiplicity, is n + O(

√
n) at the second level, and O(n) over all levels.

However, there is another technical issue with using representative disks of cliques in S.
Suppose that we apply the clique-based separator to Di (after adding the representative
boundary disks) to find a clique-based separator Si. Removing Si partitions Di into two
balanced sets of disks X1 and X2. There could be a representative disk x ∈ Di of a
clique in S that is assigned to X1 and not to X2. Yet, the clique represented by x might
contain a disk (other than x) that intersects disks in X2. As x is not in X2, the algorithm
does not correctly capture the boundary disks of X2, and hence, when the algorithm
terminates, the number of boundary cliques of each region could still be Ω(

√
n).

We ended up with the following (rather delicate) definition of a clique-based r-clustering.

▶ Definition 7 (Clique-based r-clustering). Let r ≥ 1 be a parameter. A clique-based r-
clustering of a geometric intersection graph G is a pair (R, C) where R contains subsets of
V (G) called clusters, and C is a set of vertex-disjoint cliques of G such that:
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1. Every set R ∈ R induces a connected subgraph of G. Furthermore, |R| = O(n/
√

r).
2. Every cluster R ∈ R can be partitioned into two parts, boundary ∂R and interior R◦,

such that all vertices in R having neighbors outside R belongs to ∂R, and furthermore, (i)
R◦ has at most r vertices and (ii) ∂R contains at most r cliques in C, denoted by C(∂R).

3.
∑

R∈R |C(∂R)| = O(n/
√

r). This in particular implies that |C| = O(n/
√

r).
4. Every vertex of G either belongs to a clique in C or to R◦ for some cluster R ∈ R.

There are several differences between our clique-based r-clustering and an r-division in
planar graph literature [20]. First, in our clique-based r-clustering we can only guarantee
that the internal part R◦ of each cluster R has size at most r. Indeed, the size of R could be
Ω(n), thus, we only compute an implicit representation of R. Second, the fact that R could
have size Ω(n) makes other algorithms relying on clique-based r-clustering more challenging:
we cannot go through every vertex of R to do the computation in the way other planar
algorithms do. Third, the number of cliques in the boundary of R is O(r) in the clique-based
r-clustering, instead of O(

√
r) in a standard planar r-division. Last but not least, to compute

a clique-based r-clustering, we have to rely on a well-separated clique-based separator, such
that the remaining disks can be partitioned into two sets that are far from each other relative
to the radii of the disks.

Specifically, we will compute an implicit representation of R: for each clique in C, we will
choose an arbitrary vertex to be the representative of the clique, and for each cluster R ∈ R,
we explicitly store vertices in R◦ and all representatives of the cliques in C(∂R), denoted by
rep(R). Furthermore, for each vertex u ∈ R◦, we will maintain a list of representatives x by
which u has a neighbor in the clique represented by x.

▶ Lemma 8. For any given integer r and an n-vertex unit-disk graph G, we can find the
implicit representation of a clique-based r-clustering (R, C) of G in O(n log2 n) time.

Pseudo-disk graphs with constant ply. Ducoffe et al. [17] showed that if a monotone
class of graphs G has truly-sublinear balanced separators and distance VC-dimension at
most d, then we can compute the diameter in time O(n2−εG(d)) where εG(d) = 1/2OG(d);
the OG(·) notation hides a dependency on the family G. Our results above imply that the
family of intersection graphs of similar-size pseudo-disks of constant complexity and ply
has truly-sublinear balanced separators and distance VC-dimension at most d. Thus, we
can solve diameter exactly in time O(n2−εk(d)) where the constant εk(d) depends on the
ply k using the algorithm of Ducoffe et al. [17] as a black box. However in their algorithm
the dependency on k is not explicitly computed, and furthermore, the dependency on d is
exponentially diminishing. Instead, we modify our approximation algorithm for unit-disk
graphs to obtain a better dependency on k and a smaller constant in the exponent of n. The
basic idea is that we could now use r-division instead of clique-based r-division. We note
that r-division for low-ply geometric intersection graphs was used earlier to solve different
problems by Har-Peled and Quandrud [23].

2 VC-dimension of Unit-Disk and Pseudo-Disk Graphs

2.1 Unit-Disk Graphs and Pseudo-Disk Graphs
An undirected, unweighted unit-disk graph is a graph obtained from a set of points P in the
plane such that two points are connected by an edge if and only if their Euclidean distance
is at most 2. A unit-disk graph is a special type of geometric intersection graph, which can
be defined for a set F of objects in Rd where an edge exists between two vertices if and only
if the two corresponding objects overlap.

SoCG 2024
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One interesting family of geometric intersection graphs is when the objects are pseudo-
disks. Specifically, a simple closed Jordan curve C partitions the plane into two regions, one
of them is bounded, called the interior of C. A family of simple closed Jordan curves is
called pseudo-circles if every two curves are either disjoint or properly crossed at precisely
two points. (Without loss of generality we assume there are no tangencies.) In a family of
pseudo-circles, the interior of each pseudo-circle is called a pseudo-disk. Each pseudo-disk
is a simply connected set and the intersection of a pair of pseudo-disks is either empty or
is a connected set [10]. For a family of pseudo-disks D1, D2, . . . , Dn, we can construct the
intersection graph G of the pseudo-disks – combinatorially, we use a set of vertices with
vi corresponding to Di and connect an edge for vi and vj if and only if Di and Dj have
non-empty intersections.

The following property of unit-disk graphs is folklore (e.g., see Breu [8, Lemma 3.3]).

▶ Lemma 9. If two edges ab and cd in a unit-disk graph intersect, then one of the four
vertices a, b, c, d is connected to the rest of three vertices.

We now prove an analog of Lemma 9 for pseudo-disks. The proof uses only the topological
properties of pseudo-disks. If two pseudo-disks D and D′ intersect, for any two points p ∈ D

and p′ ∈ D′, we can find a curve π(p, p′) from p to p′ inside D ∪ D′ such that this path can
be partitioned into three pieces, at point q, q′ with π(p, q) ∈ D \ D′, π(q, q′) ∈ D ∩ D′ and
π(q′, p′) ∈ D′ \ D. Any of the three pieces may be empty. See Figure 1 for an example. We
call the curve π(p, p′) a proper curve connecting p and p′, and q, q′ the entrance and exit
point respectively.

D D′

p p′q

π(p, p′)

q′

Figure 1 A proper curve π(p, p′).

▶ Lemma 10. For four pseudo-disks {Da, Db, Dc, Dd} with Da intersects Db and Dc in-
tersects Dd, take four points a ∈ Da, b ∈ Db, c ∈ Dc and d ∈ Dd and proper curves
π(a, b), π(c, d). If π(a, b), π(c, d) have an odd number of intersections and none of point
i ∈ {a, b, c, d} stays inside any pseudo-disk Dj with j ∈ {a, b, c, d} and j ̸= i, then one of the
four pseudo-disks intersects all three other pseudo-disks.

Now we consider a pseudo-disk graph. We can find a planar drawing of the pseudo-disk
graph in the plane in the following manner: for each pseudo-disk D, we take one representative
point p ∈ D. If two pseudo-disks D and D′ intersect, we connect their representative points
p ∈ D and p′ ∈ D′ by a proper curve π(p, p′). This graph is unweighted, i.e., the proper
curve π(p, p′) has length of 1. Path P (p, q) for two pseudo-disks represented by p and q

consists of several proper curves visiting the representative points of the pseudo-disks on the
path. We use |P (p, q)| to denote the hop length of a path P (p, q).

We can prove a generalized version of Lemma 10 for the hop distances of paths in the
pseudo-disk graph. This will be useful for bounding the VC-dimension of set systems defined
on the pseudo-disk graph. Consider four vertices a, b, c, d representing four pseudo-disks
Da, Db, Dc, Dd and assume that there are two paths P (a, b) and P (c, d). We define a local
crossing pattern to be four distinct vertices a′, b′, c′, d′ with a′, b′ on path P (a, b) (with a′

closer to a than b′) and c′, d′ on path P (c, d) (with c′ closer to c than d′) such that one of
the four vertices a′, b′, c′, d′ has edges to all the other three vertices.
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▶ Lemma 11. Consider four vertices a, b, c, d representing four pseudo-disks Da, Db, Dc, Dd

and assume that there is a local crossing pattern of the two paths P (a, b) and P (c, d), then
the followings are true:
1. Either there is a path P ′(a, c) whose hop length is at most |P (c, d)| or there is a path

P ′(b, d) whose hop length is at most |P (a, b)|.
2. Either there is a path P ′(a, c) whose hop length is at most |P (a, b)| or there is a path

P ′(b, d) whose hop length is at most |P (c, d)|.

2.2 VC-dimension of Unit-Disk Graphs and Pseudo-Disk Graphs
The VC-dimension of a set system (P, R) with R containing subsets of P is the largest
cardinality of a subset S ⊆ P that can be shattered, i.e., all subsets of S can be obtained
by the intersection of some sets in R with P . Here we consider the VC-dimension of two
other set systems defined on a unit-disk graph or a pseudo-disk graph G, namely the distance
VC-dimension of G and the distance encoding VC-dimension of G.

Distance VC-dimension. In an unweighted graph G, consider the collection of balls B(v, r),
which is the set of all points within a hop distance of r from a vertex v. Since we consider
unweighted graphs, we assume r to be non-negative integers. We define the ball system of a
graph G on points P as the sets

B(G) :=
{

B(v, r) : ∀v ∈ P , ∀r ∈ Z, r ≥ 0
}

.

The VC-dimension of the set of balls with radius r for all possible non-negative integers
is referred to as the VC-dimension of the ball hypergraph of G, also called the distance
VC-dimension of G [17]. It is known that the set system of balls of any undirected (weighted)
Kh-minor-free graphs have VC-dimension at most h − 1 [16]. Thus the set of balls for planar
graphs has VC-dimension at most 4, since a planar graph does not have K5 as a minor.
Notice that a unit-disk graph can be a complete graph thus is not Kh-minor-free for any
h ≤ n. Thus the above result does not immediately apply to a unit-disk graph. Ducoffe
et al. [17] also showed that interval graphs have distance VC-dimension of two. Unit-disk
graph is a natural extension of the interval graph to two dimensional space.

▶ Theorem 12. The distance VC-dimension of a pseudo-disk graph is 4.

Distance encoding VC-dimension. Li and Parter [29] defined a distance encoding function
in a graph and used it for computing diameter in a planar graph. Later Le and Wulff-
Nilsen [28] used a slighly revised one. We take the definition by Le and Wulff-Nilsen [28]
and argue that this set defined on a unit-disk graph also has low VC-dimension.

▶ Definition 13. Let M ⊆ R be a set of real numbers. Let S = {s0, s1, . . . , sk−1} be a
sequence of k vertices in an undirected weighted graph G = (V, E). For every vertex v define

X(v) :=
{

(i, ∆) : 1 ≤ i ≤ k − 1, ∆ ∈ M, d(v, si) − d(v, s0) ≤ ∆
}

.

Let LG,M (S) := {X(v) : v ∈ V } be a set of subsets of the ground set [k − 1] × M .

The set LG,M (S) is a set of “ranges” where each range X(v) corresponds to a vertex
v ∈ V , which captures the distance to vertices in S compared to the distance to s0. We note
that si and si+1 may not be adjacent in G.

▶ Theorem 14. Let S be as any set of vertices of a pseudo-disk graph G and M ⊆ R be any
set of real numbers. LG,M (S) has VC-dimension at most 4.

SoCG 2024
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3 +2-Approximation for Diameter in Unit-Disk Graphs

As we discussed in Section 1.2, we will combine the distance encoding with the clique-based
r-division in Lemma 8, along the line of Le and Wulff-Nilsen [28].

Distance encoding. Fix a sequence of vertices S = ⟨s0, s1, . . . , sk−1⟩. Following previous
work [21, 28], we define a pattern of v with respect to S, denoted by pv, to be a k-dimensional
vector where:

pv[i] := dG(v, si) − dG(v, s0) for every 0 ≤ i ≤ k − 1. (1)

Note that pv[0] = 0 by definition. The following lemma is from [28, 21].

▶ Lemma 15 ([28, 21]). Let G be an unweighted graph and S be a sequence of vertices.
Suppose that LG,M (S) has VC-dimension at most d for any M . Let P := {pv : v ∈ V } be
the set of all patterns with respect to S. Suppose that dG(si, s0) ≤ ∆ for every i ∈ [k − 1],
then |P| = O((k · ∆)d).

Computing approximate diameter. Our algorithm will be based on a clique-based r-
clustering. Let (R, C) be a clique-based r-clustering for a parameter r to be chosen later.
Recall that for each cluster R ∈ R the boundary vertices ∂R belong to O(r) cliques in C.

For subgraph R ∈ R, we define a sequence SR = ⟨s0, s1, . . . , skR
⟩ from all the clique

representatives in rep(R). Note that kR = O(r) and rep(R) ⊆ ∂R by Definition 7. Since R is
connected, by the triangle inequality, dG(si, s0) ≤ |V (R◦)| + |rep(R)| + 2 = O(r). For each
vertex u ∈ V , we form a pattern pu with respect to SR, and let PR := {pu : u ∈ V }.

Given a pattern pu of u and a vertex v ∈ G, we want to estimate the distance dG(u, v)
via pu. This leads to the definition of distance d(p, v) between a pattern p and a vertex v:

d(p, v) := min
i

{
dG(v, si) + p[i]

}
(2)

Previous work [21, 28] showed that if the sequence SR contains all vertices of ∂R, then
dG(u, v) = d(pu, v) + dG(u, s0). In our setting SR only contains a subset of vertices of ∂R, so
recording d(p, v) does not give us exact distances; however, we get a +2-approximation as
shown by the following lemma.

▶ Lemma 16. Suppose that π(u, v, G) ∩ ∂R ≠ ∅ where π(u, v, G) is a shortest path from u

to v in G. Let

d̃G(u, v) := dG(u, s0) + d(pu, v). (3)

Then, dG(u, v) ≤ d̃G(u, v) ≤ dG(u, v) + 2.

We now describe our algorithm. The eccentricity of a vertex u is defined to be ecc(u) :=
maxv∈V (G) dG(u, v). We will compute the approximate diameter by computing the ap-
proximate eccentricities for all vertices in G; that is, for each vertex u, we will compute
an approximation ẽcc(u), and then output maxu ẽcc(u). Our algorithm is similar to the
algorithm of Le and Wullf-Nilsen [28] for computing exact diameter in minor-free graphs.
Here, we use clique-based r-clustering in place of an r-division and have to handle the cliques
in C. We also have to be more careful in the way we handle clusters in R as a cluster could
have a very large size. The algorithm has three steps:
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Step 1. Construct a clique-based r-clustering (R, C) of G. For each clique K(x) in C
represented by a vertex x, we find the shortest path distances from x to all other vertices
of G using a single-source shortest path algorithm [19]. For each cluster R ∈ R, form
a sequence of boundary vertices SR as described above. We compute a set of patterns
PR = {u ∈ V : pu} with respect to SR. We store all the information computed in this
step in a table T

(1)
R .

Step 2. For each cluster R ∈ R, each pattern p ∈ PR, and each vertex v ∈ R◦, we
compute d(v, p). Then we find vp := arg maxv∈V (R◦) d(v, p), which is the furthest vertex
from p. We store both d(v, p) and d(p, vp) in a table T

(2)
R .

Step 3. We now compute ẽcc(u) for each vertex u ∈ V . For each cluster R ∈ R, we
compute the approximate distance from u to the vertex v ∈ R◦ furthest from u, denoted
by ∆(u, R◦), as follows. Let pu be the pattern of u with respect to SR computed in
Step 1.

Step 3a. If u ̸∈ R◦, let v be the furthest vertex from pu, computed in Step 2. We
return ∆(u, R◦) := dG(u, s0) + d(pu, v) where s0 is the first vertex of SR.
Step 3b. If u ∈ R◦, then we compute a distance dR◦(u, v) from u to every v ∈ R◦ where
this distance is in the intersection graph of the disks in R◦. Then, compute d̃G(u, v) =
dG(u, s0) + d(pu, v) and finally return ∆(u, R◦) := maxv∈R◦ min

{
d̃G(u, v), dR◦(u, v)

}
.

We are not done yet: we have to compute the maximum approximate distance, denoted
by ∆(u, C) from u to vertices in cliques in C:

∆(u, C) = 1 + max
K(x)∈C

dG(u, x) (4)

Here K(x) is the clique in C represented by x. The distance dG(u, x) was computed and
store in T

(1)
R in Step 1. Finally, we compute:

ẽcc(u) = max
{

max
R∈R

∆(u, R◦), ∆(u, C)
}

.

4 Well-Separated Clique-Based Separator Decomposition

In this section, we prove Lemma 8; see Section 1.2 for an overview of the argument.

▶ Definition 17 (Well-separated clique-based separators). Let D be a set of n unit-disks. Let
G be its geometric intersection graph. We say a family of disjoint subsets of cliques of G,
denoted by S, is a well-separated clique-based separator of D if all following conditions hold:

Balanced. Every connected component of G \ S contains at most 2n/3 disks.
Well-separated. For every two disks a and b in different components of G \ S, the
minimum Euclidean distance ∥a, b∥ between points in a and points in b is greater than 2.
Low-ply. The disks in each clique in S are stabbed by a single point. Furthermore, we
could choose for each clique X ∈ S a representative disk x such that the ply with respect
to the intersection graph of all representative disks in S is O(1).

We say that the size of S is the number of cliques in S.

We will show that by adapting the clique-based separator theorem for geometric inter-
section graphs [4, 3], we can construct a well-separated clique-based separator for unit-disk
graphs in near-linear time.

▶ Lemma 18. Let D be a set of n unit disks. We can construct a well-separated clique-based
separator S for D of size O(

√
n) in O(n log n) time, such that for every disk y, there are

O(1) cliques in S that intersect y. Furthermore, we can compute the list of the representative
disks of cliques in S that intersect y for every disk y in a total of O(n log n) time.
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Clique-based r-clustering algorithm. Let D be the set of n disks and G be its geometric
intersection graph. In this step, we recursively partition D into a family of sets of disks
such that each set has at most r disks and at most r boundary cliques. We also maintain a
(global) set of cliques C and their representative disks. For each representative disk x, let
K(x) be the clique in C represented by x.

At each intermediate recursive step, we will maintain an (explicit) set D̂ of size at least
r that includes two types of disks: regular disks and representative disks. We assume that
|D̂| ≥ r; otherwise, the algorithm will stop in the previous step. For each regular disk y ∈ D̂,
we maintain a list of representative disks, denoted by ρ(y), in D̂ such that for each x ∈ ρ(y)
the clique K(x) it represents has at least one disk that intersects with y. (Notice that the
representative x itself might not intersect y.) Furthermore, we will show that every neighbor
of y in G is in a clique represented by some disk in ρ(y). Let Γ(D̂) be the graph obtained
from D̂ by first taking the intersection graph of D̂ and, for every regular disk y, adding
an edge (y, x) for every x ∈ ρ(y). (Intuitively, we pretend as if the representative x itself
intersects y instead of the clique K(x).) We call Γ(D̂) the extended intersection graph of D̂.
We will ensure that Γ(D̂) is a connected graph. Note that we will not explicitly maintain
Γ(D̂) as it could have super-linear many edges, where as our goal is near-linear time. Initially,
D̂ = D and Γ(D̂) = G, and all disks in D̂ are regular disks.

y

x

K(x)

x′

K(x′)

Figure 2 The extended intersection graph Γ(D̂). The edges connecting a regular disk y and
representative disks in ρ(y) are shown in solid edges.

We then apply Lemma 18 to construct a well-separated clique-based separator Ŝ for D̂.
If there is a representative disk x in D̂ contained in a clique in Ŝ, we split x out of the clique
and consider x an independent clique in Ŝ. We then add new cliques in Ŝ to C.

Let R(Ŝ) be the set of representative disks of cliques in Ŝ. We partition D̂ \ Ŝ into two
set of disks D1, D2 each contains at most 2|D̂|/3 disks. For each Di, we construct a spanning
forest F of the extended intersection graph Γ(Di ∪ R(Ŝ)). For each connected component,
say T of F , if T has at most r vertices, we then form a cluster RT containing all regular and
representative disks of T , and all disks in the clique of the representative disks of T , and
add RT to R. Otherwise, T has at least r vertices, we recurse on the set of disks, say D̂i,
corresponding to vertices of T . The extended intersection graph of D̂i will be connected.

5 Open Problems

The obvious open question is whether a truly subquadratic time algorithm can be found for
the exact diameter, thus resolving the long-standing open question. Another open problem
is whether the results can be extended to the intersection graph of disks of possibly different
radii. The challenge there is to develop something similar to an r-division. While the
clique-based separator by de Berg [3] works for general disk graphs, there are challenges
applying the separator (or some other variants) recursively to get a nice subdivision with
bounded boundary size per piece.
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