
Semi-Algebraic Off-Line Range Searching and
Biclique Partitions in the Plane
Pankaj K. Agarwal #

Department of Computer Science, Duke University, Durham, NC, USA

Esther Ezra #

Department of Computer Science, Bar-Ilan University, Ramat-Gan, Israel

Micha Sharir #

School of Computer Science, Tel Aviv University, Tel Aviv, Israel

Abstract
Let P be a set of m points in R2, let Σ be a set of n semi-algebraic sets of constant complexity
in R2, let (S, +) be a semigroup, and let w : P → S be a weight function on the points of P .
We describe a randomized algorithm for computing w(P ∩ σ) for every σ ∈ Σ in overall expected
time O∗(m 2s

5s−4 n
5s−6
5s−4 + m2/3n2/3 + m + n

)
, where s > 0 is a constant that bounds the maximum

complexity of the regions of Σ, and where the O∗(·) notation hides subpolynomial factors. For s ≥ 3,
surprisingly, this bound is smaller than the best-known bound for answering m such queries in an
on-line manner. The latter takes O∗(m

s
2s−1 n

2s−2
2s−1 + m + n) time.

Let Φ : Σ × P → {0, 1} be the Boolean predicate (of constant complexity) such that Φ(σ, p) = 1
if p ∈ σ and 0 otherwise, and let Σ Φ P = {(σ, p) ∈ Σ × P | Φ(σ, p) = 1}. Our algorithm actually
computes a partition BΦ of Σ Φ P into bipartite cliques (bicliques) of size (i.e., sum of the sizes
of the vertex sets of its bicliques) O∗(m 2s

5s−4 n
5s−6
5s−4 + m2/3n2/3 + m + n

)
. It is straightforward to

compute w(P ∩ σ) for all σ ∈ Σ from BΦ. Similarly, if η : Σ → S is a weight function on the regions
of Σ,

∑
σ∈Σ:p∈σ

η(σ), for every point p ∈ P , can be computed from BΦ in a straightforward manner.
We also mention a few other applications of computing BΦ.

2012 ACM Subject Classification Theory of computation

Keywords and phrases Range-searching, semi-algebraic sets, pseudo-lines, duality, geometric cuttings

Digital Object Identifier 10.4230/LIPIcs.SoCG.2024.4

Related Version Full Version: https://arxiv.org/abs/2403.12276 [11]

Funding Pankaj K. Agarwal: Partially supported by NSF grants CCF-20-07556 and CCF-22-23870
and by a US-Israel Binational Science Foundation Grant 2022131.
Esther Ezra: Partially supported by Israel Science Foundation Grant 800/22 and US-Israel Binational
Science Foundation Grant 2022131.
Micha Sharir : Partially supported by Israel Science Foundation Grant 495/23.

Acknowledgements We thank Nabil Mustafa and Sergio Cabello for useful discussions that motivated
the study reported in this paper.

1 Introduction

A typical range-searching problem asks to preprocess a set P of m points in Rd into a data
structure so that for a query region σ, some aggregate statistics on σ ∩ P can be computed
quickly, e.g., testing whether σ ∩ P = ∅, computing |σ ∩ P |, or computing a weighted sum of
σ ∩ P (given a weight function on P). A central problem in computational geometry, range
searching has been extensively studied over the last five decades, and sharp bounds are known
for many instances; see [1, 2, 3, 10, 47] and references therein. For instance, a simplex range
query (where the query region is a simplex) can be answered in O∗(m/ω1/d) time using O∗(ω)

© Pankaj K. Agarwal, Esther Ezra, and Micha Sharir;
licensed under Creative Commons License CC-BY 4.0

40th International Symposium on Computational Geometry (SoCG 2024).
Editors: Wolfgang Mulzer and Jeff M. Phillips; Article No. 4; pp. 4:1–4:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pankaj@cs.duke.edu
https://orcid.org/0000-0002-9439-181X
mailto:ezraest@cs.biu.ac.il
https://orcid.org/0000-0001-8133-1335
mailto:michas@tauex.tau.ac.il
https://orcid.org/0000-0002-2541-3763
https://doi.org/10.4230/LIPIcs.SoCG.2024.4
https://arxiv.org/abs/2403.12276
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 Semi-Algebraic Off-Line Range Searching and Biclique Partitions

space and preprocessing for any ω ∈ [m,md], and (almost) matching lower bounds are known.1
In particular, the total time spent, including the preprocessing cost, in answering a set Σ of n
simplex range queries is O∗((mn)1− 1

d+1 +m+ n). The known lower bounds imply that this
bound is tight within a logO(1) m factor. However, such sharp lower bounds are not known
for more general classes of range queries. For instance, the best known data structures answer
a disk range query (for points in the plane and disks as queries) in O(m3/4/ω1/4 + logm)
time using O(ω) space and O(ω logm) preprocessing, for any ω ∈ [m,m3], and thus the total
cost of answering n disk range queries is O((m3/5n4/5 +m+ n) logn), while the best known
lower bound is Ω(m2/3n2/3). (Slightly better lower bounds are known for annulus range
queries [1].) A similar gap holds (see below for the exact bounds) for the more general class
of semi-algebraic range queries.2 A natural and fundamental open question is whether this
gap can be narrowed. There is some evidence that the current upper bounds are not optimal.

Given a set P of m points and a set Γ of n surfaces in Rd, the incidence problem on P

and Γ asks for obtaining a sharp bound on the maximum number of incidences, i.e., pairs
(p, γ) ∈ P × Γ such that p ∈ γ. Originally posed for bounding the number of incidences
between points and lines in the plane [56], by now there is vast literature on this topic;
see [14, 51, 54, 53, 55, 56] for a sample of references. There is a deep connection between range
searching and the incidence problem. For example, many of the techniques developed for
bounding incidences (e.g., geometric cuttings and polynomial partitioning techniques) have
led to fast data structures for range searching, and vice versa. Similarly, many of the lower-
bound constructions for range searching exploit the incidence structure between points and
curves/surfaces [1]. As such, there is a general belief that the two problems are closely related,
and that the running time of (at least off-line) range queries should be almost the same as the
number of incidences between points and the corresponding curves/surfaces that bound these
regions. This certainly holds for simplex range searching and for incidences between points
and lines in R2, and, with some constraints, for points and halfspaces (for range searching)
and hyperplanes (for incidences) in higher dimensions; see, e.g., [18, 27]. This also used to
be the case for disk range searching and point-circle incidence problem – the best known
upper bound on incidences between m points and n circles used to be O(m3/5n4/5 +m+ n)
(see, e.g., Pach and Sharir [50]). However, Aronov and Sharir [20], and later Agarwal
et al. [14], have obtained an improved bound of O∗(m2/3n2/3 + m6/11n9/11 + m + n) for
point-circle incidences (see also [8, 53] for related results), and later Agarwal and Sharir [16]
presented an algorithm for computing these incidences in the same time bound (up to the
factor in the O∗(·) notation). More recently, Sharir and Zahl [53] obtained a bound of
O∗(m

2s
5s−4n

5s−6
5s−4 +m2/3n2/3 +m+ n) on the number of incidences between m points and n

semi-algebraic curves of constant complexity, where s is the number of degrees of freedom
of the curves (the number of real parameters needed to specify a curve). If we believe the
above conjecture, as we tend to, a natural question is whether one can obtain algorithms for
disk range searching, and more broadly for semi-algebraic range searching, that have these
running times, up to possible O∗(·) factors, at least in the off-line setting.

In this paper we answer this question in the affirmative for d = 2, by presenting an
algorithm for the off-line semi-algebraic range-searching problem in R2, with (randomized
expected) running time that almost matches (again, up to O∗(·) factors) the aforementioned

1 Throughout this paper, the O∗(·) notation hides subpolynomial factors, typically of the form mε, and
its associated ε-dependent constant of proportionality, for any ε > 0.

2 Roughly speaking, a semi-algebraic set in Rd is the set of points in Rd satisfying a Boolean predicate
over a set of polynomial inequalities; the complexity of the predicate and of the set is defined in terms
of the number of polynomials involved and their maximum degree; see [23] for details.

P. K. Agarwal, E. Ezra, and M. Sharir 4:3

incidence bounds. Our algorithm also works for off-line point-enclosure queries (see below)
amid semi-algebraic sets in R2 within the same time bound. A recent result of Chan et
al. [33] shows that two-dimensional m point-enclosure queries amid n semi-algebraic sets
in an on-line context can be performed within the same bound as in the off-line setting
discussed in this paper.

Problem statement. Let P be a set of m points in R2, let Σ be a set of n semi-algebraic
sets of constant complexity in R2. Let s denote the parametric dimension of the regions in
Σ, for some constant s > 0, meaning that each region can be specified by at most s real
parameters. Let (S,+) be a semigroup, and let w : P → S be a weight function. For a subset
R ⊆ P , let w(R) =

∑
p∈R w(p). Our goal is to compute w(P ∩ σ), for every σ ∈ Σ. This

semigroup model encapsulates many popular variants of range searching [3]. Alternatively,
we may assign a weight function η : Σ → S and compute, for every point p ∈ P , the weight∑

σ∈Σ:p∈σ η(σ). This dual setup is referred to as point enclosure searching.
To solve the above problems, and some of their variants, we formulate a more general

problem: Let Φ : Σ × P → {0, 1} be the Boolean predicate such that, for σ ∈ Σ and
P ∈ P , Φ(σ, p) = 1 iff p ∈ σ. Let Σ ΦP = {(σ, p) ∈ Σ × P | Φ(σ, p) = 1}. A popular
method of representing Σ ΦP compactly is to use a biclique partition BΦ := BΦ(Σ, P) =
{(Σ1, P1), . . . , (Σu, Pu)}, where Φ(σ, p) = 1 for all pairs (σ, p) ∈ Σi × Pi, and for any pair
(σ, p) ∈ Σ × P with Φ(σ, p) = 1, there is a unique i ≤ u such that (σ, p) ∈ Σi × Pi. The
size of BΦ, denoted by |BΦ|, is defined to be

∑u
i=1 (|Σi| + |Pi|). Given BΦ, both off-line

range-searching and point-enclosure problems can be solved in O(|BΦ|) time. We thus focus
on computing BΦ, which is useful for other problems as well – see below.

Related work. We refer the reader to the survey papers [3, 10, 47] for a review of range-
searching. The best-known data structures for semi-algebraic range searching can answer a
query, on an input set of m points, in O∗(m1−1/d) time using O(m) space, or in O(logm)
time using O∗(ms) space, where s is the parametric dimension of the query ranges [13, 49, 6].
By combining these data structures, in a so-called space/query-time tradeoff, for ω ∈ [m,ms],

a semi-algebraic range query can be answered in O∗((m/ω1/s)
1−1/d
1−1/s) time using O∗(ω) space

and preprocessing, and thus the total time taken (including preprocessing cost) in answering

n semi-algebraic queries is O∗(n
1−1/s

1−1/dsm
1−1/d
1−1/ds + m + n) [5]. Afshani and Chang [1, 2]

showed that any data structure of size ω needs Ω∗((ns/ω)1/ρ) time, where ρ = (s2 + 1)(s− 1),
to answer a 2D semi-algebraic range-reporting query in the pointer machine model. They
also showed that if P is a set of random points in Rd, a range query can be answered in
O((ns/ω)

1
3s−4) time.

The problem of representing a graph compactly using cliques or bicliques has been studied
for at least four decades [36, 57]. For an arbitrary graph with n vertices, the worst-case
bound on the size of the smallest biclique partition (again, the size of the partition is the
sum of the sizes of the vertex sets of its bicliques) is Θ(n2/ logn) [57]. However, significantly
better bounds are known for geometric graphs, where the vertices are geometric objects
(such as points, disks, segments, etc.) and two vertices are connected by an edge if the
corresponding objects satisfy some geometric relation (such as two objects intersect, or be
within distance r, for some parameter r). For example, interval graphs on n intervals on
the line admit a biclique partition of size O(n logn), point-orthogonal-rectangle-incidence
graphs in Rd admit such a representation of size O((m+n) logO(1) n), unit-disk and segment-
intersection graphs have a representation of size O∗(n4/3) [17, 46], and point-hyperplane

SoCG 2024

4:4 Semi-Algebraic Off-Line Range Searching and Biclique Partitions

incidence graphs admit an O∗((mn)1−1/d +m+ n) representation size [18]. Recently, there
has been some work on bounding the size of biclique partitions of general semi-algebraic
geometric graphs (whose vertices are points in Rd and whose edges are defined by a semi-
algebraic predicate) [5, 39]. We note though that not all geometric graphs, even in the plane,
admit a small-size bipartite clique cover [4]. Biclique partitions/covers have been effectively
applied to study extremal properties of geometric graphs, such as the regularity lemma,
Zarankiewicz’s problem, etc. [39, 41, 42, 43]. Most algorithms for computing these biclique
partitions are based on off-line range-searching techniques; see, e.g., [15, 17, 46], affirming
the close relationship between incidence and range-searching problems.

In addition, faster algorithms for some basic graph problems have been proposed using
biclique partitions (their running time being faster than what one could have obtained by
running them on an explicit representation of the graph) [12, 17, 29, 40]. For example,
BFS/DFS can be implemented in O(N) time [12, 17] and a maximum bipartite matching
in an intersection graph can be computed in O∗(N) time [29], assuming that a biclique
partition of size N is given. The applicability of biclique partitions, however, goes far beyond
basic graph algorithms. For example, the multipole algorithms for the so-called n-body
problem, developed in the 1980’s, can be regarded as an application of biclique partition of
the complete graph of a set of points, where each biclique is well-separated. Building on, and
extending, this idea, Callahan and Kosaraju [31, 30] introduced the notion of well-separated
pair decomposition (WSPD), showed the existence of small-size WSPD for point sets in Rd,
and applied such decompositions to develop faster algorithms for many geometric proximity
problems. Biclique partitions of geometric graphs also have been extensively used for a range
of geometric optimization problems [7, 15, 17, 46, 48].

Our results. The main result of this paper is stated in the following theorem.

▶ Theorem 1. Let P be a set of m points in R2, and let Σ be a set of n semi-algebraic
regions in R2 with parametric dimension s for some constant s > 0. Let Φ : Σ × P → {0, 1}
be the Boolean predicate such that Φ(σ, p) = 1 iff p ∈ σ. A biclique partition of Σ ΦP of

size O∗
(
m

2s
5s−4n

5s−6
5s−4 +m2/3n2/3 +m+ n

)
can be computed within the same randomized

expected time (up to a subpolynomial factor).

This immediately implies the following corollary:

▶ Corollary 2. Let P be a set of m points in R2, let Σ be a set of n semi-algebraic regions
in R2 with parametric dimension s for some constant s > 0, let (S,+) be semigroup, and let
w : P → S be a weight function. The weight w(σ ∩ P), for every σ ∈ Σ, can be computed

in O∗
(
m

2s
5s−4n

5s−6
5s−4 +m2/3n2/3 +m+ n

)
randomized expected time. Conversely, given a

weight function η : Σ → S, the weight
∑

σ∈Σ:σ∋p η(σ), for every p ∈ P , can be computed
within the same time bound.

Our main observation is that the boundary arcs of the regions in Σ can be processed to
yield a family Ψ of O∗(n3/2) pseudo-trapezoids, each bounded by (up to) two vertical lines
and two subarcs of boundaries of regions in Σ, such that the edges of Ψ are pseudo-segments,
i.e., any pair of edges of Ψ intersect in at most one point. Using the duality transform
for pseudo-lines, proposed by Agarwal and Sharir [16], we first present (in Section 2) an
algorithm for computing a biclique partition of ΨΦP of size O∗(m

√
n + n3/2). Using a

standard hierarchical-cutting based method [16], we improve (in Section 3) the size of the
biclique partition to O∗(m2/3n2/3 + n3/2), or even further to O∗(m2/3χ1/3 + n3/2), where χ

P. K. Agarwal, E. Ezra, and M. Sharir 4:5

is the number of intersections between the curves. Finally, by working in the s-dimensional
parametric space of Σ, we further improve the bound on the size of the biclique partition to
O∗(m

2s
5s−4n

5s−6
5s−4 +m2/3n2/3 +m+ n) (Section 4).

We conclude the discussion on our contributions by mentioning two further applications
of our results. The first is efficiently obtaining approximate solutions for the geometric hitting
set and set cover problems, and the latter concerns faster implementations of basic graph
algorithms for geometric proximity graphs. Due to lack of space we defer these details to the
full version [11].

2 Bicliques Using Pseudo-Line Duality: The First Step

Let Ψ be a set of n pseudo-trapezoids in R2, each bounded from above and below by x-
monotone semi-algebraic arcs with parametric dimension s > 0, for some constant s > 0,
and from left and right by two vertical lines (some of these boundary arcs and lines may
be absent). Furthermore, we assume that each pair of these arcs intersect in at most one
point, i.e., the upper and lower edges of the pseudo-trapezoids in Ψ form a collection of
pseudo-segments. Let P be a set of m points in R2. Let Ψ ΦP ⊆ Ψ × P be the set of pairs
(ψ, p) such that p ∈ ψ. The main result of this section is a randomized algorithm, with
O∗(m

√
n+ n) expected running time, that constructs a biclique partition B := BΦ(Ψ, P) of

ΨΦP of size O((m
√
n+ n) log3 n). We first give an overview of the algorithm, then describe

its main steps in detail, and finally analyze its performance. This algorithm serves as the
innermost routine in our overall algorithm.

2.1 Overview of the algorithm
We begin by defining two Boolean predicates Φ↑,Φ↓ : Ψ × P → {0, 1} such that Φ↑(ψ, p) = 1
(resp., Φ↓(ψ, p) = 1) if p lies vertically above (resp., below) the bottom (resp., top) arc of ψ.
Note that Φ(ψ, p) = Φ↑(ψ, p) ∧ Φ↓(ψ, p).

The algorithm consists of the following high-level steps:

(i) We construct a segment tree T on the x-projections of the pseudo-trapezoids in Ψ.
Each node v of T is associated with a vertical slab Wv = Iv × R. A pseudo-trapezoid
ψ ∈ Ψ is stored at v if the x-projection of ψ contains Iv but does not contain Ip(v),
where p(v) is the parent of v. Let Ψv ⊆ Ψ be the set of pseudo-trapezoids stored at v,
clipped to within Wv, and let Pv = P ∩Wv. Set nv = |Ψv| and mv = |Pv|.

(ii) For each node v of T , we compute a biclique partition Bv := BΦ(Ψv, Pv) of ΨvΦPv, as
follows. We partition Pv into rv = ⌈mv/

√
nv⌉ subsets P (1)

v , . . . , P
(rv)
v of size at most

√
nv each. Set mv,i = |P (i)

v | ≤ √
nv. We compute a biclique partition Bv,i := B(Ψv, P

i
v)

for every i ≤ rv, in (the following) two stages.
(ii.a) For every node v ∈ T and for every i ≤ rv, we compute a biclique partition

B↑
v,i := BΦ↑(Ψv, P

i
v).

(ii.b) Next, for each biclique (Ψj , Pj) ∈ B↑
v,i, we compute a biclique partition Bv,i,j :=

BΦ↓(Ψj , Pj) of ΨjΦ↓Pj . We set Bv,i =
⋃

(Ψj ,Pj)∈B↑
v,i

Bv,i,j .

(iii) We set Bv =
⋃rv

i=1 Bv,i and return B =
⋃

v∈T Bv as the desired biclique partition
BΦ(Ψ, P).

Steps (ii.a) and (ii.b) are the only nontrivial steps in the above algorithm. We describe
the algorithm for Step (ii.a). A symmetric procedure can be used for Step (ii.b).

SoCG 2024

4:6 Semi-Algebraic Off-Line Range Searching and Biclique Partitions

2.2 Biclique partition for Φ↑

Let W be a vertical slab. Let Γ be a set of n x-monotone semi-algebraic arcs with parametric
dimension s, for some constant s > 0, whose endpoints lie on the boundary lines of W , and
any pair of arcs in Γ intersect in at most one point, i.e., Γ is a set of pseudo-segments. Let
P ⊂ W be a set of m points. Abusing the notation, let Φ↑ : Γ × P → {0, 1} be a Boolean
predicate such that Φ↑(γ, p) = 1 if p lies above γ and 0 otherwise. We describe a randomized
algorithm, with expected running time O(m2 + n logn), for computing a biclique partition B
of ΓΦ↑P of size O(m2 + n logn). By choosing P to be P i

v and Γ to be the set of bottom arcs
of trapezoids in Ψv, we compute BΦ↑(Ψv, P

i
v), as required in Step (ii.a).

Our algorithm is built on two previous algorithms. First, we rely on the pseudo-line
duality transform described by Agarwal and Sharir [16], as a major tool for the construction
of the desired biclique partition (see also [44]). The duality transform maps the arcs in Γ to a
set Γ∗ of dual points lying on the x-axis, and the points in P to a set P ∗ of dual x-monotone
curves, such that p lies above (resp., on, below) γ if and only if the dual curve p∗ passes
above (resp., through, below) the dual point γ∗. Furthermore, P ∗ is a set of pseudo-lines, i.e.,
each pair of them intersect at most once. Agarwal and Sharir describe an O∗(m2 + n)-time
sweep-line algorithm to construct P ∗ and to compute a DCEL representation [24] of the
arrangement A(P ∗), as well as the subset Γ∗

f ⊂ Γ∗ of dual points lying in each face f of A(P ∗).
Let γ1, . . . , γn be the ordering of arcs in Γ in increasing order of the y-coordinates of their left
endpoints, then the x-coordinate of the dual point γ∗

i is i. Conversely, the dual curves are
ordered in the (+y)-direction at x = −∞ in the decreasing order of the x-coordinates of the
primal points; see [16]. We note that the curves in P ∗ do not have constant combinatorial
(or geometric) complexity, as each of them may contain many breakpoints and turns, in
which it weaves its way above and below the dual points of Γ∗ on the x-axis. Nevertheless,
we never need an explicit representation of a dual curve. The representation computed by
the algorithm in [16] enables us to compute (i) the vertical ordering of a pair of curves at
any given x-coordinate, and (ii) the (unique) intersection point between any pair of curves,
in O(1) time.

Second, we use the randomized algorithm by Clarkson and Shor [38] for constructing
the vertical decomposition A∥(P ∗) of A(P ∗), from which we will obtain the desired biclique
partition. Although one can combine the ideas of the two algorithms and work directly in
the primal plane, we describe, for the simplicity of exposition and analysis, the construction
in two stages – namely, we first compute A(P ∗) using the sweep-line algorithm of [16], so
that we have P ∗ (implicitly) at our disposal, and then we run the algorithm of Clarkson and
Shor on P ∗. Since we will be adapting the Clarkson-Shor algorithm to compute the biclique
partition, we describe the algorithm briefly, but first a few notations.

For a subset R∗ ⊆ P ∗, let A∥(R∗) denote the vertical decomposition of the arrangement
A(R∗), i.e., we draw rays in both (+y)- and (−y)-directions from every vertex of A(R∗)
until it intersects another curve, or all the way to ±∞. A∥(R∗) partitions each face of
A(R∗) into pseudo-trapezoids, which we refer to as cells, to distinguish them from the input
pseudo-trapezoids. Let F = FR∗ be the family of all cells that appear in A∥(R∗), for some
specific subset R∗ ⊂ P ∗. By construction, each cell τ ∈ F is defined by a set D(τ) of at most
four curves of P ∗. Let K(τ) ⊆ P ∗ denote the subset of curves that intersect the interior of τ ,
the so-called conflict list of τ . It is well known (see, e.g., [38]) that τ appears in A∥(R∗) if
and only if D(τ) ⊂ R∗ and K(τ) ∩R∗ = ∅.

Let p∗
1, . . . , p

∗
m be a random permutation of P ∗, and let P ∗

i = {p∗
1, . . . , p

∗
i }. The Clarkson-

Shor algorithm maintains the invariant that after processing the first i curves, it has computed
(i) A∥(P ∗

i), represented by its dual graph, (ii) the conflict list K(τ) of each cell in τ ∈ A∥(P ∗
i),

P. K. Agarwal, E. Ezra, and M. Sharir 4:7

and (iii) for every dual curve p∗
j ∈ P ∗ \P ∗

i , the set L(p∗
j) of cells of A∥(P ∗

i) that p∗
j crosses, i.e.,

L(p∗
j) = {τ ∈ A∥(P ∗

i) | p∗
j ∈ K(τ)}, sorted along p∗

j . Suppose we have inserted p∗
1, . . . , p

∗
i−1

and computed A(P ∗
i−1) and A∥(P ∗

i−1), plus the auxiliary structures just mentioned. In the
i-th step, we process the cells of L(p∗

i) in order along p∗
i . For each τ ∈ L(p∗

i), we partition τ
into O(1) pseudo-trapezoids (new cells), by the pattern in which p∗

i crosses τ , and compute
the conflict list of each new cell from K(τ). This step requires (i) comparing the vertical
ordering of curves in K(τ) with p∗

i at the left or right edge of τ , and (ii) testing whether a
curve of K(τ) intersects p∗

i in a given x-interval. As mentioned above, both of these steps
can be done in O(1) time using the information computed by the sweep-line algorithm. After
this step, we have a refinement of A∥(P ∗

i) – each cell (obtained by the split induced by p∗
i)

lies in a cell of A∥(P ∗
i), but multiple cells of the refinement might lie in the same cell of

A∥(P ∗
i). To address this issue, the algorithm performs a clean-up step in which it merges

the newly created cells if they lie in the same cell of A∥(P ∗
i) (when we merge two cells, we

also merge their conflict lists). When the iteration over i terminates, we obtain A∥(R∗). The
total time spent in inserting p∗

i is O
(∑

τ∈L(p∗
i

) |K(τ)|
)

. The fairly straightforward details of
the algorithm, and the accompanying analysis of its expected running time, can be found
in [25, 38, 52].

Let Ξ be the set of cells created by the algorithm over all steps, i.e., Ξ =
⋃n

i=1 A∥(P ∗
i).

We also add τ0 = R2 as a cell to Ξ, which is the initial cell before any of the curves were
inserted. For a pair of cells τ, τ ′ ∈ Ξ, we say τ ′ is a child cell of τ if τ ∩ τ ′ ̸= ∅ and there
exists an i < m such that τ ∈ A∥(P ∗

i−1), τ ′ ∈ A∥(P ∗
i) \ A∥(P ∗

i−1); τ is called the parent of τ ′.
Note that a cell τ ′ may have many parents, but a cell has only O(1) children. We construct
a history DAG G = (Ξ, E), where τ ′ → τ ∈ E if τ ′ is a parent of τ .

For each cell τ ∈ Ξ, we construct a canonical subset C(τ) ⊆ P ∗, the set of curves that
appear in the conflict lists of its parents and that lie above τ (without intersecting it), i.e.,

C(τ) = {p∗
i | p∗

i lies above τ , p∗
i ∈ K(τ̂), and τ̂ → τ ∈ E}.

Set Pτ = {pi | p∗
i ∈ C(τ)}. Since the out-degree of each node in G is O(1), for any r ≥ 1,

∑
τ∈Ξ

|C(τ)|r = O

(∑
τ∈Ξ

|K(τ)|r
)
. (1)

Using the information computed by the Agarwal-Sharir algorithm [16], we can check in O(1)
time, for each curve p∗

i ∈ K(τ̂), whether p∗
i lies above τ . Hence, the total time spent in

computing Pτ , over all τ ∈ Ξ, is O
(∑

τ∈Ξ |K(τ)|
)
.

Next, for a cell τ ∈ Ξ, we set Γτ = {γ ∈ Γ | γ∗ ∈ τ}. We compute Γτ as follows. For
every (dual) point γ∗ ∈ Γ∗, we traverse a path Πγ in G, starting from the root until we reach
the leaf (the cell of A∥(P ∗)) that contains γ∗, such that γ∗ ∈ τ for every cell τ on Πγ , as
follows. Suppose we are at a node τ that contains γ∗. We check which of its O(1) children
contains γ∗. This step requires testing whether γ∗ lies inside a child cell τ ′. We can easily
determine in O(1) time whether γ∗ lies to the left (resp., to the right) of the left (resp.,
right) vertical edge of τ ′, but the top/bottom edge of τ ′ may have large complexity (due
to the “erratic” way in which the dual arrangement is constructed in [16]). However, the
top (or bottom) arc is a portion of a dual curve p∗

i , and the duality transform ensures that
γ∗ lies below/above p∗

i if and only if γ lies below/above pi. Since γ is a semi-algebraic arc
of constant complexity, we can test the above/below relationship between pi and γ in O(1)
time. Hence, Πγ can be computed in O(|Πγ |) time. For each cell τ ∈ Πγ , we add γ to τ . We
return BΦ↑ := {(Γτ , Pτ) | τ ∈ Ξ} as the desired biclique partition of ΓΦ↑P .

SoCG 2024

4:8 Semi-Algebraic Off-Line Range Searching and Biclique Partitions

▶ Lemma 3. BΦ↑ is a biclique partition of ΓΦ↑P .

Proof. By construction and the property of the dual transform, it is clear that all points
of Pτ lie above all the arcs in Γτ . Conversely, let (γ, p) ∈ Γ × P be a pair such that p lies
above γ. By construction, p∗ ∈ K(τ0) since τ0 = R2 and K(τ) = ∅ for the leaf τ ∈ Πγ . Let τ̂
be the lowest node in the path Πγ for which p∗ ∈ K(τ̂); τ̂ is a non-leaf node. Let σ ∈ Πγ

be the child of τ̂ in Πγ . Since p∗ ̸∈ K(σ), γ∗ ∈ σ, and p∗ lies above γ∗, we conclude that p∗

lies above σ and p∗ ∈ C(σ). Hence, (γ, p) ∈ Γσ × Pσ. Furthermore, σ is the only cell in Πγ

for which p∗ ∈ C(σ), therefore there is a unique biclique in BΦ↑ that contains the pair (γ, p),
implying that it is a biclqiue partition of ΓΦ↑P . ◀

We now bound the size of BΦ↑ and the expected running time of the algorithm. It follows
from the above discussion that the total size of BΦ↑ is

|BΦ↑ | = O

(∑
τ∈Ξ

|K(τ)| +
∑
γ∈Γ

|Πγ |
)
. (2)

Since the randomized incremental construction adheres to the Clarkson-Shor framework, we
can follow the standard analysis of a randomized incremental construction in the Clarkson-
Shor framework, as given in [25, 38, 52], from which the following properties hold:
(P1) The expected depth of the history DAG G is O(logm).
(P2) For any t ≤ m, let Ξt = A∥(P ∗

t) \ A∥(P ∗
t−1) be the set of cells that were created in the

i-th step of the algorithm. For any 1 ≤ t ≤ m and for any d ≥ 1, we have

E
[∑

τ∈Ξt

|K(τ)|d
]

= O

(
1
t

(m
t

)d

t2
)

= O

(
md

td−1

)
. (3)

See, e.g., [38, 25]. We will be using (3) for d = 1, 2, for which the expected values are
O(m) and O(m2/t), respectively.

Plugging the bounds in (P1) and (P2) into (2), we obtain:

E[|BΦ↑ |] = O

(m∑
t=1

E
[∑

τ∈Ξt

|K(τ)|
]

+ n logm
)

= O

(m∑
t=1

m+ n logm
)

= O(m2 + n logm).

If the size of B(Γ, P) ≥ c(m2 + n logm), for some sufficiently large constant c > 0, we
reconstruct BΦ↑ . A similar argument then shows that the expected running time of the
algorithm is O(m2 + n logm). We thus obtain the following lemma:

▶ Lemma 4. Let Γ be a set of n x-monotone semi-algebraic arcs in R2 of constant complexity,
whose endpoints lie on the boundary lines of a vertical slab W , and any pair of arcs in Γ
intersect in at most one point, i.e., Γ is a set of pseudo-segments. Let P ⊂ W be a set of
m points. Then a biclique partition of Γ Φ↑ P of size O(m2 + n logm) can be computed in
expected time O(m2 + n logm).

2.3 Putting it all together
Returning to the problem of computing a biclique partition of Ψ ΦP , let v be a node of the
segment tree T , and let Ψv and P

(1)
v , . . . , P

(rv)
v be the sets as defined above. Set nv = |Ψv|

and mv = |Pv|. For a pseudo-trapezoid ψa ∈ Ψv, let γ−
a , γ

+
a be its bottom and top boundary

arcs, respectively. By construction, the endpoints of γ−
a , γ

+
a lie on the boundary lines of the

vertical slab Wv, so ψa also straddles Wv. Let Γ−
v = {γ−

i | ψi ∈ Ψv} be the set of bottom

P. K. Agarwal, E. Ezra, and M. Sharir 4:9

arcs of the pseudo-trapezoids in Ψv. Fix a value 1 ≤ i ≤ rv. We first compute a biclique
partition B↑

v,i of Γ−
v Φ↑ P

(i)
v using the above algorithm. Let (Γ−

j , Pj) be a biclique in this
partition, and let Γ+

j be the set of top arcs of the pseudo-trapezoids whose bottom arcs are in
Γ−

j , i.e., Γ+
j = {γ+

a | γ−
a ∈ Γ−

j }. Following the above algorithm (but reversing the direction
of the y-axis), we compute a biclique partition Bv,i,j of Γ+

j Φ↓ Pj . For each resulting biclique
(Γ+

j,t, Pj,t), we replace Γ+
j,t with Ψj,t ⊆ Ψ, the set of trapezoids whose top arcs are in Γ+

j .
Abusing the notation a little, let Bv,i,j denote the resulting biclique partition. We repeat this
step for all bicliques in B(Γ−

v , P
(i)
v), and set Bv,i =

⋃
(Γ−

j
,Pj)∈B↑

v,i
Bv,i,j , and return Bv,i as a

biclique partition of Ψv ΦP
(i)
v . By repeating this step for all i ≤ rv and for all v ∈ T , we

obtain the desired biclique partition B := BΦ(Ψ, P). It is easy to check that, by construction,
the resulting collection of bicliques is edge disjoint, and its union gives all pairs (p, σ) with
p ∈ σ, so it is indeed a desired biclique partition. It remains to bound its size.

By Lemma 4, |Bv,i,j | = O(|Γ+
j | + |Pj |2 log |Pj |). Let Gv,i = (Ξv,i, Ev,i), where Ξv,i is

the set of cells created by the algorithm while constructing A∥(P ∗
v,i), be the history DAG

constructed by the algorithm (invoked on Γv and P (i)
v) for computing Bv,i. Recall that each

biclique (Γj , Pj) in Bv,i corresponds to a cell τ ∈ Ξv,i. Hence, for each cell (node) τ ∈ Gv,i,
we compute a biclique partition of size O(m2

τ + nτ logmτ), where mτ = |Pτ | = |C(τ)| and
nτ = |Γτ |. Summing over all cells of Ξ and using (1), the total size of the biclique partition
of BΦ(Γv, P

(i)
v) is∑

τ∈Ξ
O(m2

τ + nτ logm) =
∑
τ∈Ξ

O
(
|K(τ)|2 + nτ logm

)
.

The same argument as above implies that

E
[∑

τ∈Ξ
nτ

]
= O(nv logmv,i)

(recall that mv,i = |P (i)
v |). By (3),

E
[∑

τ∈Ξ
|K(τ)|2

]
= E

[m∑
t=1

∑
τ∈Ξt

|K(τ)|2
]

= O

(mv,i∑
t=1

m2
v,i

t

)
= O(m2

vi
logmv,i) = O(nv lognv),

because mv,i ≤ √
nv. Hence, the size of Bv,i is O(nv log2 nv). Summing over all i ≤ rv =

⌈ mv√
nv

⌉, the size of Bv is O((mv
√
nv +nv) log2 nv). Again, reconstructing Bv if its size exceeds

c1((m
√
n+ n) log2 n, for an appropriate constant c1, we obtain a biclique partition of size

O((m
√
n+ n) log2 n).

▶ Lemma 5. Let Ψ be a set of n pseudo-trapezoids in R2, each bounded from above and
below by x-monotone semi-algebraic arcs of constant complexity, such that any pair of these
arcs intersect in at most one point, and whose vertical edges lie on the boundary lines of a
vertical slab W . Let P be a set of m points lying in W . Then a biclique partition of Ψ ΦP

of size O((m
√
n+ n) log2 n) can be computed in expected time O((m

√
n+ n) log2 n).

Finally, summing the size of biclique partitions over all nodes v of the segment tree and
plugging the values

∑
v∈T mv = O(m logn),

∑
v∈T nv = O(n logn), we conclude:

▶ Corollary 6. Let Ψ be a set of n pseudo-trapezoids in R2, each bounded from above and below
by x-monotone semi-algebraic arcs of constant complexity, such that any pair of these arcs
intersect in at most one point, and let P be a set of m points in R2. Then a biclique partition
of Ψ ΦP of size O((m

√
n+n) log3 n) can be computed in expected time O((m

√
n+n) log3 n).

SoCG 2024

4:10 Semi-Algebraic Off-Line Range Searching and Biclique Partitions

3 Bicliques Using Cuttings: The Second Step

Let P be a set of m points in R2, and let Σ be a set of n semi-algebraic sets of constant
complexity in R2, as defined in the introduction. Our goal is to compute a biclique partition
BΦ(Σ, P) for the inclusion predicate Φ, i.e., Φ(σ, p) = 1 if p ∈ σ. Let Γ denote the set of
boundary edges of regions in Σ, each of which is a semi-algebraic arc of constant complexity.

Following the technique in [53] (see also [21]), we cut the arcs in Γ into O∗(n3/2) subarcs
that constitute a family of pseudo-segments, i.e., each pair of subarcs intersect at most
once. Agarwal et al. [6] (see also [19]) presented an efficient algorithm for constructing these
cuts that runs in O∗(n3/2) time. Without loss of generality, we assume that each subarc
is x-monotone. This step partitions the edges of each region σ ∈ Σ into subarcs, which
we view as new edges of σ. We compute the vertical decomposition of σ, which divides σ
into a set of pseudo-trapezoids and further partitions its edges into smaller pieces. Each
resulting pseudo-trapezoid is bounded by at most two vertical edges and two (top and
bottom) semi-algebraic arcs that are portions of edges of σ. Let Ψ denote the resulting set
of pseudo-trapezoids, and let Γ denote the set of their top and bottom edges. Set |Ψ| = N ,
so |Γ| ≤ 2N ; by construction, N = O∗(n3/2). Let χ denote the number of intersection points
between the arcs of Γ; χ = O(n2). It suffices to construct a biclique partition for Ψ ΦP (that
is, for Ψ instead of Σ). The algorithm described in the previous section already computes
a biclique partition of size O((m

√
N + N) log3 N) = O∗(mn3/4 + n3/2), within the same

expected time. In this section, we show how to improve the bound to O∗(m2/3χ1/3 + n3/2),
using hierarchical cuttings [16, 34] in the primal plane. This step is analogous to the widely
used approach for obtaining sharp bounds on various substructures of arrangements of curves
in the plane or for the number of incidences between points and curves in the plane (see
e.g. [16, 37, 52]).

Abstracting the setup for a moment, let X be a set of n x-monotone semi-algebraic arcs
of constant complexity in R2, let χ be the number of vertices in A(X), and let ∆ be a
pseudo-trapezoid, within which we want to apply our construction. For a parameter r > 1, a
partition of ∆ into a family Ξ of pseudo-trapezoids, referred to as cells, to distinguish them,
as before, from the input pseudo-trapezoids, is called a (1/r)-cutting of X within (or with
respect to) ∆ if every cell of Ξ is crossed by at most n/r arcs of X. As before, the conflict
list of a cell τ ∈ Ξ, denoted by Xτ , is the subset of arcs that cross τ . We follow Chazelle’s
hierarchical-cutting algorithm [34] to construct a (1/r)-cutting Ξ of X within ∆: we choose
a sufficiently large constant r0 and set ν = ⌈logr0 r⌉. We construct a sequence of cuttings
Ξ0 = ∆,Ξ1, . . . ,Ξν = Ξ where Ξi is a (1/ri

0)-cutting of X within ∆. Ξi is obtained from
Ξi−1 by computing for each τ ∈ Ξi−1 a (1/r0)-cutting of A(Xτ) within τ . By following the
analysis in [34], it can be shown that the size of Ξi is bounded by c1((c2r0)i + r2i

0 χ/n
2),

where c1, c2 are some suitable constants independent of r. Therefore |Ξ| = O(r1+ε +χr2/n2),
for any ε > 0, or O∗(r) + O(χr2/n2), provided r0 is chosen sufficiently large, and the run
time is O(n1+ε + χr/n) = O∗(n) +O(χr/n) [34] (see also [16]).

Returning to the problem of computing a biclique partition of ΨΦP , we follow the same
overall algorithm as described in Section 2.1, except that we compute a biclique partition
in Step (ii) as follows. Let v be a node of the segment tree T , let Wv be the vertical
slab associated with v, and let Ψv, Pv be the subset of pseudo-trapezoids (clipped within
Wv) and points stored at v, respectively. Let Γv be the set of top and bottom arcs in the
pseudo-trapezoids of Ψv. Recall that the endpoints of Γv, and thus the vertical edges of
Ψv, lie on the boundary lines of Wv. Set Nv = |Ψv|, mv = |Pv|, and χv the number of
intersection points between the arcs of Γv. We compute a biclique partition Bv of ΨvΦPv, as
follows.

P. K. Agarwal, E. Ezra, and M. Sharir 4:11

Fix a parameter r > 1, whose precise value will be set later, and construct a hierarchical
(1/r)-cutting Ξ0 = R2,Ξ1, . . . ,Ξν = Ξ of Γv of size O∗(r) + O(χr2/N2

v), in time O∗(Nv) +
O(χvr/Nv). For every i ≤ ν and for every cell τ ∈ Ξi, let Ψτ be the set of pseudo-trapezoids
ψ whose boundary crosses τ , i.e., the top or bottom edge of ψ crosses τ . Let τ ′ ∈ Ξi−1
be the parent cell that contains τ . We set Cτ = {ψ ∈ Ψτ ′ | τ ⊆ ψ} to be the set of input
pseudo-trapezoids of Ψτ ′ that contain τ . Set Pτ = P ∩ τ . Set Nτ = |Ψτ | and mτ = |Pτ |.
Finally, for each cell τ ∈ Ξ, we compute a biclique partition Bτ of Ψτ ΦPτ using the algorithm
described in the previous section (cf. Lemma 5). We set

Bv = {(Cτ , Pτ) | τ ∈ Ξi, 1 ≤ i ≤ ν} ∪
⋃

τ∈Ξ
Bτ , (4)

We repeat this step for all nodes of the segment tree and return
⋃

v Bv as the desired biclique
partition of ΨΦP . Following an argument similar to that in Lemma 3, we can argue that
Bv is indeed a biclique partition of Ψ ΦP . We remark that the points of P lying on the
boundary of cells in the cuttings need to be handled carefully to ensure that Bv is a biclique
partition, but we omit the relatively straightforward details from this version.

We now analyze the size of Bv and the running time of the algorithm. Since r0 is a
constant and we have already computed conflict lists for each cell τ , we get that Ψτ , Cτ , Pτ ,
for all cells τ over all cuttings, can be computed in O∗(Nv) + O(mv log r + χvr/Nv) time.
By Lemma 5, computing Bτ takes O∗(mτN

1/2
τ +Nτ) expected time. Since Nτ = Nv/r and∑

τ mτ = mv, the total time spent in computing Bτ over all cells of Ξ is

∑
τ∈Ξ

O∗(mτN
1/2
τ +Nτ) = O∗

(
N

1/2
v

r1/2

∑
τ∈Ξ

mτ + Nv

r
|Ξ|

)
= O∗

(
N

1/2
v

r1/2 mv + χv
r

Nv
+Nv

)
.

By choosing r = max
{
Nv,

⌈
Nvm

2/3
v /χ

2/3
v

⌉}
, the expected running time is O∗(m2/3

v χ
1/3
v +

mv +Nv). This also bounds the size of
⋃

τ∈Ξ |Bτ |.
To bound the size of the first term in (4), we observe that

∑
τ |Pτ |, where the sum is

taken over all cuttings Ξi, is O(mv log r) = O∗(mv). Similarly,∑
τ

|C(τ)| = O∗(Nv) +O(χvr/Nv) = O∗(m2/3
v χ1/3

v +Nv).

Hence, the total size of Bv is O∗(m2/3
v χ

1/3
v +mv +Nv).

Summing the above bound over all nodes v of T and plugging the values
∑

v mv =
O(m logn),

∑
v Nv = O(N logn),

∑
v χv ≤ χ = O(n2), and N = O∗(n3/2), the expected

running time, as well as the size of B, are O∗(m2/3n2/3 + m + n3/2). Putting everything
together, we obtain the following lemma.

▶ Lemma 7. Let P be a set of m points in R2, and let Σ be a set of n semi-algebraic sets of
constant complexity in R2. A biclique partition of Σ ΦP of size O∗(m2/3n2/3 +m+n3/2) can
be computed in expected time O∗(m2/3n2/3 +m+ n3/2). If χ is the number of intersection
points between the edges of Σ, then the size and the expected running time are bounded by
O∗(m2/3χ1/3 +m+ n3/2).

4 Bicliques in Query Space: The Final Step

A weakness of the above algorithm is that the n3/2 term in the bounds on the size and the
running time dominates for m < n5/4. To mitigate the effect of this term for smaller values
of m, we apply a divide-and-conquer technique in the s-dimensional parametric space of the

SoCG 2024

4:12 Semi-Algebraic Off-Line Range Searching and Biclique Partitions

query regions, so that the number of query regions reduces more rapidly than the number of
input points in the recursive subproblems. When we reach subproblems for which m ≥ n5/4,
we switch back to the two-dimensional plane and apply Lemma 7. This process yields the
improved bound promised in Theorem 1 in the introduction.

For simplicity, we assume that the regions in Σ are defined by a single polynomial
inequality. Namely, there is an (s+ 2)-variate polynomial g(x,y) : R2 × Rs → R such that
each σi ∈ Σ is of the form g(x,yi) ≥ 0 for some yi ∈ Rs. We denote yi as σ̃i, which is a
representation of σi as a point in Rs. Set Σ̃ = {σ̃i | 1 ≤ i ≤ n} ⊂ Rs. For each pi ∈ P , we
define a semi-algebraic set p̃i = {y ∈ Rs | g(pi,y) ≥ 0}. Set P̃ = {p̃i | 1 ≤ i ≤ m}. Clearly,
pi ∈ σj if and only if σ̃j ∈ p̃i. Thus a biclique (P̃a, Σ̃a) of P̃ Φ Σ̃ also leads to a biclique
(Σa, Pa) of Σ ΦP .

We use the polynomial-partitioning technique of Guth and Katz [45] for computing bi-
cliques of P̃ Φ Σ̃. In particular, we rely on the following result by Matoušek and Patáková [49],
used for constructing a partition tree for on-line semi-algebraic range searching:

▶ Lemma 8 (Matoušek and Patáková [49]). Let V be an algebraic variety of dimension k ≥ 1
in Rd such that all of its irreducible components have dimension k as well, and the degree
of every polynomial defining V is at most some parameter E. Let S ⊂ V ∩ Rd be a set of n
points, and let D ≫ E be a parameter. There exists a polynomial g ∈ R[x1, . . . , xd] of degree
at most EdO(1)

D1/k that does not vanish identically on any of the irreducible components
of V (i.e., V ∩ Z(g) has dimension at most k − 1), and each cell of V \ Z(g) contains at
most n/D points of S. Assuming D,E, d are constants, the polynomial g, a semi-algebraic
representation of the cells in V \Z(g), and the points of S lying in each cell, can be computed
in O(n) time.

Algorithm

We now describe the algorithm for computing the biclique partition. A complication in using
Lemma 8 is that it does not provide any guarantees on the partitioning of the points that
lie on Z(g). As such, we have to handle S ∩ Z(g) separately. Nevertheless, the lemma does
provide us with the means of doing this, as it is formulated in terms of point sets lying
on a variety of any dimension. This leads to two different threads of recursion – one of
them recurses on subproblems of smaller size, as in the earlier algorithms, and the other
recurses on the dimension of the variety that contains the point set. We will view each
recursive subproblem as associated with a node v of the recursion tree, which will naturally
be a multi-level structure. Each recursive subproblem, at some node v, consists of a triple
(Fv,Σv, Pv), where Fv is a set of O(1) s-variate polynomials of constant degree in R[y], and
Σv ⊆ Σ is a set of regions such that Σ̃v ⊂ Z(Fv), where Z(Fv) =

⋂
F ∈Fv

Z(F) is the common
zero set of Fv, and Pv ⊆ P . Initially, Fv = ∅ and Z(Fv) = Rs, Σv = Σ, and Pv = P . The
goal is to compute a biclique partition Bv of Σv ΦPv, in a recursive manner.

For lack of space, we delegate the rest of this section, which presents the analysis of the size
of the resulting biclique partition, and which extends the analysis to more general containment
predicates, that involve more than one polynomial inequality, to the full version [11].

References
1 P. Afshani and P. Cheng, Lower bounds for semialgebraic range searching and stabbing

problems, Proc. 37th Intl. Sympos. Comput. Geom., pages 8:1–8:15, 2021.
2 P. Afshani and P. Cheng, On semialgebraic range reporting, Proc. 38th Intl. Sympos. Comput.

Geom., pages 3:1–3:14, 2022.

P. K. Agarwal, E. Ezra, and M. Sharir 4:13

3 P. K. Agarwal, Simplex range searching, in Journey Through Discrete Mathematics (M. Loebl,
J. Nešetřil and R. Thomas, eds.), Springer Verlag, Heidelberg, 2017, pp. 1–30.

4 P. K. Agarwal, N. Alon, B. Aronov, and S. Suri, Can visibility graphs be represented compactly?,
Discrete Comput. Geom., 12 (1994), 347–365.

5 P. K. Agarwal, B. Aronov, E. Ezra, M. J. Katz, and M. Sharir, Intersection queries for flat
semi-algebraic objects in three dimensions and related problems, Proc. 38th Intl. Sympos.
Comput. Geom., pages 4:1–4:14, 2022. (Full version appeared as Arxiv:2203.10241.)

6 P. K. Agarwal, B. Aronov, E. Ezra, and J. Zahl, An efficient algorithm for generalized
polynomial partitioning and its applications, SIAM J. Comput. 50 (2021), 760–787.

7 P. K. Agarwal, Boris Aronov, and Micha Sharir, Computing envelopes in four dimensions with
applications, SIAM J. Comput. 26 (1997), 1714–1732.

8 P. K. Agarwal, B. Aronov, and M. Sharir, On the complexity of many faces in arrangements
of pseudo-segments and of circles, in Discrete and Computational Geometry: The Goodman-
Pollack Festschrift (B. Aronov, S. Basu, J. Pach, and M. Sharir, eds.), Springer Verlag, Berlin,
2003, pp. 1–24.

9 P. K. Agarwal, A. Efrat, and M. Sharir, Vertical decomposition of shallow levels in 3-dimensional
arrangements and its applications, SIAM J. Comput. 29(3) (1999), 912–953.

10 P. K. Agarwal and J. Erickson, Geometric range searching and its relatives, In Advances in
Discrete and Computational Geometry, volume 223 of Contemp. Math., pages 1–56. AMS
Press, Providence, RI, 1999.

11 P. K. Agarwal, E. Ezra, M. and M. Sharir, Semi-algebraic off-line range searching and biclique
partitions in the plane, Arxiv 2403.12276, 2024.

12 P. K. Agarwal, M. J. Katz, Micha Sharir, On reverse shortest paths in geometric proximity
graphs. Comput. Geom. 117:102053 (2024).

13 P. K. Agarwal, J. Matoušek, and M. Sharir. On range searching with semialgebraic sets II.
SIAM J. Comput., 42 (2013), 2039–2062.

14 P. K. Agarwal, E. Nevo, J. Pach, R. Pinchasi, M. Sharir and S. Smorodinsky, Lenses in
arrangements of pseudo-circles and their applications, J. ACM 51(2) (2004), 139–186.

15 P. K. Agarwal and M. Sharir: Efficient randomized algorithms for some geometric optimization
problems, Discrete Comput. Geom. 16 (1996), 317–337.

16 P. K. Agarwal and M. Sharir, Pseudoline arrangements: Duality, algorithms and applications,
SIAM J. Comput. 34 (2005), 526–552.

17 P. K. Agarwal and K. Varadarajan, Efficient algorithms for approximating polygonal chains,
Discrete Comput. Geom. 23 (2000), 273-–291.

18 R. Apfelbaum and M. Sharir, Large bipartite graphs in incidence graphs of points and
hyperplanes, SIAM J. Discrete Math. 21 (2007), 707-–725.

19 B. Aronov, E. Ezra and J. Zahl, Constructive polynomial partitioning for algebraic curves in
R3 with applications, SIAM J. Comput. 49 (2020), 1109–1127.

20 B. Aronov and M. Sharir, Cutting circles into pseudo-segments and improved bounds for
incidences, Discrete Comput. Geom. 28 (2002), 475–490.

21 B. Aronov and M. Sharir, Almost tight bounds for eliminating depth cycles in three dimensions,
Discrete Comput. Geom. 59 (2018), 725–741. Also in Arxiv 1512.00358.

22 S. Barone and S. Basu, Refined bounds on the number of connected components of sign
conditions on a variety, Discrete Comput. Geom. 47 (2012), 577–597.

23 S. Basu, R. Pollack, and M.-F. Roy, Algorithms in Real Algebraic Geometry, 2nd Edition,
Springer Verlag, Berlin, 2006.

24 M. de Berg, O. Cheong, M. J. van Kreveld, and M. H. Overmars, Computational Geometry:
Algorithms and Applications, 3rd Edition, Springer Verlag, Berlin, 2008.

25 M. de Berg, K. Dobrindt, and O. Schwarzkopf, On lazy randomized incremental construction,
Discrete Comput. Geom. 14 (1995), 261–286.

26 M. de Berg and O. Schwarzkopf, Cuttings and applications, Internat. J. Comput. Geom. Appls
5 (1995), 343–355.

SoCG 2024

4:14 Semi-Algebraic Off-Line Range Searching and Biclique Partitions

27 P. Brass and Ch. Knauer, On counting point-hyperplane incidences, Comput. Geom. Theory
Appls. 25 (2003), 13–20.

28 H. Brönnimann and M. T. Goodrich, Almost optimal set covers in finite VC-dimension,
Discrete Comput. Geom. 14 (1995), 463–479.

29 S. Cabello, S.-W. Cheng, O. Cheong, and C. Knauer, Geometric matching and bottleneck
problems, Proc. 40th Intl. Sympos. Comput. Geom, 2024, 31:1–31:15. Also in Arxiv 2310.02637,
2023.

30 P. B. Callahan and S. Rao Kosaraju, A decomposition of multidimensional point sets with
applications to k-nearest-neighbors and n-body potential fields, J. ACM 42 (1995), 67–90.

31 P. B. Callahan and S. Rao Kosaraju, Faster algorithms for some geometric graph problems in
higher dimensions, Proc. 4th Annual ACM-SIAM Sympos. Discrete Algorithms, 1993, 291–300.

32 J. Carrier, L. Greengard, and V. Rokhlin, A fast adaptive multipole algorithm for particle
simulations, SIAM J. Sci. Stat. Comput. 9 (1988), 669–686.

33 T. M. Chan, P. Cheng and D. W. Zheng, Semialgebraic range stabbing, ray shooting, and
intersection counting in the plane, Proc. 40th Sympos. Comput. Geom., 2024, 33:1–33:15.

34 B. Chazelle, Cutting hyperplanes for divide-and-conquer, Discrete Comput. Geom. 9 (1993),
145–158.

35 B. Chazelle, H. Edelsbrunner, L. Guibas and M. Sharir, Algorithms for bichromatic line-segment
problems and polyhedral terrains, Algorithmica 11 (1994), 116–132.

36 F. R. K. Chung, P. Erdős, and J. Spencer, On the decomposition of graphs into complete
bipartite subgraphs, in Studies in Mathematics: To the Memory of Paul Turán, (P. Erdős, L.
Alṕar, G. Haĺasz, and A. Sárközy, eds.), Birkhäuser, Basel, 1983, pp. 95–101.

37 K. L. Clarkson, H. Edelsbrunner, L. J. Guibas, M. Sharir and E. Welzl, Combinatorial
complexity bounds for arrangements of curves and spheres, Discrete Comput. Geom. 5 (1990),
99–160.

38 K. L. Clarkson and Peter W. Shor, Application of random sampling in computational geometry,
II. Discrete Comput. Geom. 4 (1989), 387–421.

39 T. Do, Representation complexities of semialgebraic graphs, SIAM J. Discrete Math. 33 (2019),
1864–1877.

40 T. Feder and R. Motwani, Clique partitions, graph compression, and speeding-up algorithms,
J. Comput. System Sci. 51 (1995), 261–272.

41 J. Fox, J. Pach, A. Sheffer, A. Suk, and J. Zahl, A semi-algebraic version of Zarankiewicz’s
problem, J. Eur. Math. Soc. 19 (2017), 1785–1810.

42 J. Fox, J. Pach, and A. Suk, A polynomial regularity lemma for semialgebraic hypergraphs
and its applications in geometry and property testing, SIAM J. Comput. 45 (2016), 2199–2223.

43 J. Fox, J. Pach, and A. Suk, Density and regularity theorems for semi-algebraic hypergraphs,
Proc. 26th ACM-SIAM Sympos. Discrete Algorithms, 2015, 1517–1530.

44 J. E. Goodman, Proof of a conjecture of Burr, Grünbaum, and Sloane, Discrete Math. 32 (1980),
27–35.

45 L. Guth and N. H. Katz, On the Erdős distinct distances problem in the plane, Annals Math.
181 (2015), 155–190.

46 M. J. Katz and M. Sharir, An expander-based approach to geometric optimization, SIAM J.
Comput. 26 (1997), 1384–1408.

47 J. Matoušek, Geometric range searching, ACM Comput. Surv. 26(4) (1994), 421–461.
48 J. Matoušek, Randomized optimal algorithm for slope selection, Inf. Process. Lett. 39(4) (1991),

183–187.
49 J. Matoušek and Z. Patáková, Multilevel polynomial partitioning and simplified range searching,

Discrete Comput. Geom. 54 (2015), 22–41.
50 J. Pach and M. Sharir, On the number of incidences between points and curves, Combinat.

Probab. Comput. 7 (1998), 121–127.
51 J. Pach and M. Sharir, Geometric incidences, in Towards a Theory of Geometric Graphs (J.

Pach, editor), Contemp. Math. 342, AMS Press, Providence, 2004, pp. 185–223.

P. K. Agarwal, E. Ezra, and M. Sharir 4:15

52 M. Sharir and P. K. Agarwal, Davenport-Schinzel Sequences and Their Geometric Applications,
Cambridge University Press, Cambridge-New York-Melbourne, 1995.

53 M. Sharir and J. Zahl, Cutting algebraic curves into pseudo-segments and applications, J.
Combinat. Theory Ser. A 150 (2017), 1–35.

54 A. Sheffer, Polynomial Methods and Incidence Theory, Cambridge University Press, Cambridge,
2022.

55 L. Székely, Crossing numbers and hard Erdős problems in discrete geometry, Combinat. Probab.
Comput. 6 (1997), 353–358.

56 E. Szemer’edi and W. T. Trotter, Extremal problems in discrete geometry, Combinatorica
3 (1983), 381–392.

57 Z. Tuza, Covering of graphs by complete bipartite subgraphs; complexity of 0–1 matrices,
Combinatorica 4 (1984), 111–116.

SoCG 2024

	1 Introduction
	2 Bicliques Using Pseudo-Line Duality: The First Step
	2.1 Overview of the algorithm
	2.2 Biclique partition for Phi^uparrow
	2.3 Putting it all together

	3 Bicliques Using Cuttings: The Second Step
	4 Bicliques in Query Space: The Final Step

