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Abstract
The fundamental theorem for toric geometry states a toric manifold is encoded by a complete
non-singular fan, whose combinatorial structure is the one of a PL sphere together with the set of
generators of its rays. The wedge operation on a PL sphere increases its dimension without changing
its Picard number. The seeds are the PL spheres that are not wedges. A PL sphere is toric colorable
if it comes from a complete rational fan. A result of Choi and Park tells us that the set of toric
seeds with a fixed Picard number p is finite. In fact, a toric PL sphere needs its facets to be bases of
some binary matroids of corank p with neither coloops, nor cocircuits of size 2. We present and
use a GPU-friendly and computationally efficient algorithm to enumerate this set of seeds, up to
simplicial isomorphism. Explicitly, it allows us to obtain this set of seeds for Picard number 4 which
is of main importance in toric topology for the characterization of toric manifolds with small Picard
number. This follows the work of Kleinschmidt (1988) and Batyrev (1991) who fully classified toric
manifolds with Picard number ≤ 3.
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1 Introduction

Our interest is located at the intersection of discrete mathematics, with the enumeration of
PL spheres, and geometry, with the classification of non-singular complete toric varieties.
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41:2 Toric Colorable PL Spheres of Picard Number 4

State-of-the-art known PL spheres. A PL sphere is a pure simplicial complex possessing
a subdivision piecewise linearly homeomorphic to the boundary of a standard simplex. A
PL sphere is said to be polytopal if it is isomorphic to the boundary complex of a simplicial
polytope. Let us fix a dimension n− 1 ∈ Z>0 of a PL sphere K, and its number of vertices
m = n + p. We call the number p the Picard number of K. Starting from the end of the 19th
century, the first direction for enumerating (polytopal) PL spheres was to focus on small
dimensions n, namely n ≤ 4:

n m Polytopal PL sphere General PL sphere

2 m ≥ 3 Characterization: m-gon

3 Characterization: Steinitz theorem, equivalent to 3-connected planar graphs,
1922
Enumeration:

m ≤ 13 Brückner by hand, 1897-1931 [9, 10]
m = 11 Corrected by Grace, 1965 [18]
m = 12 Corrected by Bowen and Fisk, 1967 [6]
m = 13 Corrected by Royle, program plantri by Brinkmann and McKay, 1999 [8]
m ≤ 23 Brinkmann, also using plantri, 2007 [7]

4 Characterization: unknown Characterization: unknown
Enumeration: Enumeration:

m = 8 Brückner, 1909 [11], Grünbaum and
Sreedharan, 1967 [21]

Non-polytopal sphere by Barnette, 1969
[5], Altshuler and Steinberg, 1985 [3]

m = 9 Altshuler and Bokowski and Steinberg,
1980 [1]

Altshuler and Steinberg, 1976 [2]

m = 10, 11 Miyata and Padrol, 2015 [27], (neigh-
bourly polytopes), using oriented
matroids

Sulanke and Lutz, 2008-2009 [24, 30],
using lexicographic enumeration

Notice that for n ≤ 3, all PL spheres are polytopal.

Around the same period, the complete characterization of PL spheres with small p, namely
p ≤ 3, was computed. To any polytopal PL sphere K, one can associate a configuration of
(p − 1)-dimensional vectors which stores the combinatorial structure of K and is called a
Gale diagram. We know that if p ≤ 3, then all PL spheres are polytopal ([25]) and they are
thus characterized by their Gale diagram (see [20] for details):

p Polytopal PL spheres

1 Characterization: The boundary of an n-simplex

2 Characterization: Repeated pyramid over a free sum of two simplices, Grünbaum [20]

3 Characterization: Regular n-gonal Gale diagram, with n odd, Perles [20]

However, for p = 4, Grünbaum and Sreedharan [21] gave an example of non-polytopal PL
sphere with p = 4. Characterizing or enumerating PL spheres is important in toric geometry
since they are among the cornerstone combinatorial objects for this theory. In this article, we
use the same base point as in [24, 30] which is that PL spheres are weak pseudo-manifolds,
which are simplicial complexes whose structure is easier to recognize.
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State-of-the-art known toric varieties. A toric variety of complex dimension n is a normal
algebraic variety over the field of complex numbers C which admits an effective algebraic
action of (C∗)n having a dense orbit. The fundamental theorem for toric geometry states that
the classification of toric varieties of complex dimension n is equivalent to the one of fans in
Rn. In particular, compact smooth toric varieties correspond to complete non-singular fans.
A complete non-singular fan Σ in Rn having m rays can be described by a pair (K, λ), where:

K is the underlying simplicial complex of Σ which is an (n− 1)-dimensional PL sphere
on [m] = {1, . . . , m}, and
λ : [m]→ Zn is a non-singular fan-giving map that is bijectively assigning a vertex of K

to the primitive generator of a ray of Σ.

A non-singular fan-giving map λ should satisfy the following condition, known as the
non-singularity condition over K; for any simplex {i1, . . . , in} in K, {λ(i1), . . . , λ(in)} is
unimodular. A map λ : [m] → Zn is called a characteristic map over K if it satisfies the
non-singularity condition over K. We call a PL sphere toric colorable if it supports a
characteristic map. The following fundamental question appears.

▶ Question 1. Which pairs (K, λ) are complete non-singular fans?

Firstly, the simplicial complex K has to be a PL sphere. However, not all PL spheres
are toric colorable. It is well-known that all PL spheres of Picard number ≤ 2 are toric
colorable while also supporting non-singular complete toric varieties, see [23]. The ones of
Picard number 3 may not be toric colorable; a PL sphere whose Gale-diagram is a regular
(2k+1)-gon is toric colorable if and only if k ≤ 3 [15], and it supports a non-singular complete
toric variety if and only if k ≤ 2 [19]. There did not exist any characterization for higher
Picard numbers since there lacks a combinatorial description in such cases. Moreover, brute
force algorithms for obtaining the list of PL spheres for big n and p ≥ 4 have too high
complexity making their use worthless.

One noticeable step for solving Question 1 is the work of Choi and Park [14] by translating
this problem into a finite one. The wedge of K at a vertex v is the simplicial complex given
by wedv(K) := (I ∗LkK(v))∪ (∂I ∗K \ {v}), where I is an interval (the details will be given
in Section 3). A seed is a PL sphere that is not the wedge (at some vertex) of any lower
dimensional PL sphere. The wedge operation keeps the property of being a toric colorable
PL sphere, see [16], and the Picard number. As a consequence, if we fix a Picard number p,
then the complete characterization of PL spheres of Picard number p is principally given by
the seeds of Picard number p. The result of Choi and Park [14] is that there are only finitely
many toric colorable seeds of Picard number p whereas there are infinitely many seeds of
Picard number p ≥ 3. More precisely, Statement 2. of Theorem 10 says that the facets of
these seeds must be the bases of a binary matroid without coloops nor cocircuits of size 2.
Statement 3. states if an (n− 1)-dimensional toric colorable seed is of Picard number p ≥ 3,
then p and n must satisfy the inequality

n + p ≤ 2p − 1.

In particular, if an (n− 1)-dimensional seed of Picard number 4 is toric colorable, then
n ≤ 11.

After the full classification of non-singular complete toric varieties of Picard number p =
1, 2, 3, we take one more step here and complete the characterization problem for toric
colorable PL spheres of Picard number 4.

SoCG 2024
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The goal of the paper. The essential part of this characterization problem is to find PL
spheres satisfying specific conditions up to n = 11. To check up all possible candidates of
n = 11, we have to consider approximately 2(15

11) ≈ 10410 cases, that is not computable in
reasonable time, and we additionally have to check their isomorphism classes. To obtain the
complete list, we aggressively use the finiteness of the problem and construct an algorithm
profiting from parallel computing and GPUs whose performances are skyrocketing from their
increasing development in the last decade, mainly from the popularity of machine learning
requiring a lot of linear algebra computation. The use of GPU is not new in discrete geometry,
its main use is for speeding up sequential algorithms such as in topological data analysis,
see [32], or in computing applied to molecular structural biology, see [26]. In Section 2, we
provide a GPU-friendly algorithm (Algorithm 2) for obtaining all weak pseudo-manifolds
whose facets are all in an input set of facets satisfying given conditions written in terms of
affine functions.

A PL sphere is Zn
2 -colorable if there is a map λR : [m]→ Zn

2 such that for any simplex
{i1, . . . , in} in K, λR(i1), . . . , λR(in) is linearly independent over Z2. The map λR is called
a mod 2 characteristic map. To find all Zn

2 -colorable seeds, one naive strategy is to find
all seeds up to n ≤ 11, and pick all Zn

2 -colorable ones up. However, just like counting PL
spheres, counting seeds still requires heavy computing powers. Therefore, we have to use
the Zn

2 -colorability to obtain the candidates using Algorithm 2. Section 3 and Section 4 are
devoted to explain how we use Algorithm 2 for our purpose. More precisely, in Section 4, we
consider a binary matroid from a mod 2 characteristic map, whose set of bases is input of
Algorithm 2 to obtain all weak pseudo-manifolds supporting the mod 2 characteristic map,
from which we select all seeds. Our algorithm enables us to finish the enumeration within a
reasonable time for n ≤ 10. See the full version [12] for the case n = 11. The main result is
as follows.

▶ Theorem 2. Up to simplicial isomorphisms, the number of Zn
2 -colorable seeds of dimension

n− 1 and Picard number p ≤ 4 is as follows:

p\ n 1 2 3 4 5 6 7 8 9 10 11 > 11 total

1 1 1
2 1 1
3 1 1 1 3
4 1 3 + 1 20 + 1 141 + 1 733 1190 776 243 39 4 3153

with the empty slots displaying zero, and the “+1” representing the suspension of the three
Zn

2 -colorable seeds of Picard number 3.

▶ Remark 3. We checked that each of the 3153 Picard number 4 seed actually supports at
least one characteristic map by replacing some 1 entries to −1 in their mod 2 characteristic
map, this yields they all are toric colorable.

We also obtain this corollary of Theorem 2.

▶ Corollary 4. The toric (or Zn
2 -)colorable PL spheres of dimension n − 1 and Picard

number p ≤ 4 are exactly the ones obtained after consecutive wedge operations on the toric
(or Zn

2 -)colorable seeds (of Theorem 2).

In short, the set of toric (or Zn
2 -)colorable PL spheres of dimension n − 1 and Picard

number p ≤ 4 is finitely generated from using multiple wedge operations on the explicit
1 + 1 + 3 + 3153 seeds of Theorem 2.
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One of the long-standing open problems in toric geometry is to characterize non-singular
complete toric varieties and the present characterization of toric colorable seeds of Picard
number 4 provides the pathway for the case of Picard number 4.

2 Classification of weak pseudo-manifolds by GPU computing

In this section, we provide a general approach to how to use GPU parallel computing
capability for classifying weak pseudo-manifolds with given properties.

Let K be a pure simplicial complex of dimension n−1 on the vertex set [m] = {1, 2, . . . , m}.
A facet of K is an element of size n of K, and a ridge is an element of size n− 1 of K. We
denote by F(K) and R(K) the sets of facets and ridges of K, respectively. Also, we will
often say a facet and a ridge without specifying a simplicial complex to refer to a subset of
size n and a subset of size n− 1 of [m]. We provide an algorithm as follows:

Inputs: A set F ⊆
([m]

n

)
, and a collection G of affine functions on the subsets of F , called

properties.
Output: The set of weak pseudo-manifolds K such that F(K) ⊂ F and g(F(K)) > 0
for all g ∈ G, namely, K satisfies all the properties.

2.1 Enumerating weak pseudo-manifolds
In this subsection, we give some computational results which allow us to provide an algorithmic
description of how to enumerate weak pseudo-manifolds.

Provided any set of facets F = {F1, . . . , FM}, we can compute the set R = {r1, . . . , rN}
of all ridges which come from these facets. We then construct the ridge-facet incidence matrix
A(F) = (ai,j) of size N ×M as follows:

ai,j =
{

1 ri ⊂ Fj

0 otherwise
,

for i = 1, . . . , N and j = 1, . . . , M . A simplicial complex K whose facets are all in some set of
facets F = {F1, . . . , FM} can be regarded as a characteristic vector K = (k1, . . . , kM )t ∈ ZM

with

kj =
{

1 Fj ∈ K

0 Fj /∈ K
,

for j = 1, . . . , M . The pure simplicial complex K is a weak pseudo-manifold if any ridge of
K is in exactly two facets of K. That reflects in the following property:

▶ Proposition 5. Let F be a set of facets, A = A(F) the ridge-facet incidence matrix of F ,
and K a pure simplicial complex whose facets are all in F . Then K is a weak pseudo-manifold
if and only if the coordinates of the product AK are all in {0, 2}.

From that, the characteristic vectors in ZM
2 of weak pseudo-manifolds are all included in

the Z2-kernel of the matrix A seen as a linear map A : ZM
2 → ZN

2 .
Let B =

[
K1 · · · Ks

]
be a matrix whose columns form a Z2-basis of kerZ2 A. Every

weak pseudo-manifold K is uniquely expressed as one of the 2s possible Z2-linear combin-
ations of K1, . . . , Ks, namely K =

∑s
i=1 xiKi (mod 2) = BX, for X = (x1, . . . , xs)t ∈ Zs

2.
Restricting the set of facets F well enough, we are hoping that s will be small. Furthermore,
we also can find a suitable basis K̃1, . . . , K̃s to reduce the number of cases to compute.

SoCG 2024



41:6 Toric Colorable PL Spheres of Picard Number 4

We first explain how to construct this basis when the set F contains all possible facets of
[m] and R all the ridges. There are

(
m
n

)
facets and

(
m

n−1
)

ridges. For a ridge r, we will write as
(AK)r the coordinate of AK corresponding to r. Let us denote by P(r) := {j ∈ [M ] : r ⊂ Fj}
the set of the indexes in F of the facets containing r, called the parents of r, which are the
only facets contributing to (AK)r. In this first case, any ridge has m− n + 1 parents. For a
kernel matrix B whose row are indexed by F , let us denote by BP(r) the matrix whose rows
are the ones of B taken at indexes P(r). For every r ∈ R, for every t = 1, . . . , s, the tth
column of BP(r) has an even number of ones since the basis element Kt has an even number
of facets containing r. Performing a mod 2 Gaussian elimination on the columns of BP(r)
yields a matrix of the following form

BP(r)E =
[
Zm−n 0

]
,

with the (k + 1)× k-matrix

Zk =



1 0 · · · 0

0 1
. . .

...
...

. . . . . . 0
0 · · · 0 1
1 · · · 1 1

 ,

for some integer k, and E ∈ GL(s,Z2) corresponding to the operations performed in the
Gaussian elimination. The columns of the new matrix BE corresponds to another basis
of the Z2-kernel of A with a convenient description for which facets containing the ridge
r each generator possesses. Only the first m − n ones have facets contributing to (AK)r.
Moreover, one can see that taking the mod 2 linear combination of strictly more than two of
them would lead to (AK)r being strictly greater than 2, which is a case we want to avoid
computing since we focus on weak pseudo-manifolds, see Proposition 5. Thus this decreases
the number of mod 2 combinations containing the first m− n new generators that we need
to compute from 2m−n to

(
m−n

0
)

+
(

m−n
1

)
+

(
m−n

2
)

= 1 + (m− n) +
(

m−n
2

)
.

By writing r1 := r and E1 := E, one can inductively repeat the latter process by taking
care at step k + 1 of:

Choosing each time a new ridge rk+1 such that for all i = 1, . . . , k,P(ri) ∩ P(rk+1) = ∅,
Starting the Gaussian pivot at columns index k(m− n) + 1 so that the structure of the
generators of previous columns is not lost.

This process terminates at some step kmax whenever one of the former conditions cannot be
satisfied. We obtain a final matrix, whose columns are the new basis elements K̃1, . . . , K̃s,
and, up to reordering, whose rows are according to the sets P(r1), . . . ,P(rkmax) looks as
follows:

BE1 · · ·Ekmax =



Zm−n 0 . . . . . . 0

0 Zm−n
. . .

...
...

. . . . . . . . .
...

0 . . . 0 Zm−n 0
⋆ ⋆ ⋆ ⋆ ⋆


=

[
K̃1 · · · K̃s

]
.

In this case, we decrease the total number of mod 2 combinations from 2s to (1 + (m− n) +(
m−n

2
)
)kmax2s−kmax(m−n) since we should take at most 2 basis elements for each block Zm−n

and since there remains s− kmax(m− n) generators K̃i.
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As for the general case, there may be ridges having less than m − n + 1 parents. In
this case, we try to wisely choose some ridges r1, . . . , rkmax such that the blocks Zk are of
the maximum possible size so we minimize the number of mod 2 combinations BX of the
generators we need to compute. That provides a partition I1, . . . , Il of {1, . . . , s} such that if
we are to sum more than two basis elements with indexes in Ik, for k = 1, . . . , l, we are sure
not to obtain a weak pseudo-manifold. We can split the vector X in the mod 2 combinations
BX as blocks according to this partition: X =

∑l
k=1 Xk, with Xk representing the part of

X whose only nonzero coordinates are in Ik. Let us denote by Xk the set of all such possible
Xk, for k = 1, . . . , l.

If we recap our process, given a set of facets F , we constructed
The ridge-facet incidence matrix A whose Z2-kernel contains all weak pseudo-manifolds,
A matrix B whose columns form a convenient basis K̃1, . . . , K̃s of kerZ2(A),
A partition I1, . . . , Il of {1, . . . , s},
Sets X1, . . . ,Xl of partitions of the vectors of Zs

2 such that for all k = 1, . . . , l, Xk ∈ Xk

has a maximum of two nonzero coordinates which are all in Ik ,
such that any weak pseudo-manifold whose facets are in F is of the form K = BX, with
X =

∑l
k=1 Xk for some (X1, . . . , Xl) ∈ X1×· · ·×Xl, satisfying thatsatisfying that the entries

of AK corresponding to the chosed ridges are in {0, 2}. Moreover, given any affine function
K 7→ g(K), it is easy to check using computer programming that g(K) > 0 is verified. We
provide in the next subsection some concepts about GPU programming.

2.2 Generalities about GPU programming
In this article, we used Nvidia CUDA [28] whose syntax and vocabulary may differ from
other GPU languages. The general idea behind GPU computing is that it allows parallelizing
tasks with two layers of parallel programming without needing a supercomputer. Parallel
programming takes several forms, and the two we will use are the following:

Data parallelism: one has a list of elements X and wants to apply the same function g to
every element X ∈ X . In this case, each call of the function g is independent.
Task parallelism: one has an element X and wants to apply a set of similar functions
g1, . . . , gk on X in order to obtain the result as a list (g1(X), . . . , gk(X)). The simplest
example is a matrix product AX, and if each row of A is denoted by ai, then the functions
gi are the inner products with the ais.

In all that follows, a thread (of execution) will be a processing unit that computes machine
operations linearly, and a GPU will be a two-layered structure of threads. Namely, a GPU
will be a set of p grids, and each grid will be a set of q threads. Therefore a GPU can be
seen as p× q threads organized for parallel programming, as in Figure 1. The number p× q

of GPU threads that can run simultaneously is roughly the number of CUDA cores (if we
consider Nvidia GPUs) and is around eighteen thousand for the current architectures (as of
2023). Thus a single GPU would be approximately equivalent to at least a thousand CPU
threads. In CUDA programming we use this two-layered structure as follows:

First layer (blocks): Let X = {X1, . . . , XN} be the set of data on which we want to
apply the same function g, called the kernel. We create some list of N blocks indexed by
an integer i. Each block embodies the function call g(Xi). A block has three possible
states: on hold, active, and completed. In the beginning, every block is on hold. Then the
p grids of the GPU are filled with some blocks which will be running, these are active,
and the rest are waiting to be launched on the grid and remain on hold. Whenever some
active block has completed, the GPU replaces it with a block on hold. The program
terminates when all blocks are “completed”.

SoCG 2024



41:8 Toric Colorable PL Spheres of Picard Number 4

Second layer (threads): Whenever we send a block to a grid, the operations made in
the block are split into threads using task parallelism, and we distribute any procedures in
g into q functions which will run simultaneously on all q threads of the grid. Notice that
we need every thread to finish its tasks to obtain the result. We can explicitly require
this condition by synchronizing the threads.

· · ·

q threads per grid

· · ·

...

· · ·

p grids

Figure 1 The two layered parallel structure of a GPU.

In all that follows, we will use such notations:
A set X will be denoted as a list list_X,
A matrix A = [ai,j ] will be represented as an array whose coefficient at index i, j is
A[i][j],
A binary vector X ∈ Zk

2 will be represented as a binary variable x on k bits.
We will use the following processor instructions on binary variables [28]:

The and operation x&y, 64 operations per cycle,
The exclusive or operation xˆy, 64 operations per cycle,
The population count operation popcount(x) which counts the number of “1” bits in the
value of x, 16-32 operations per cycle.
Atomic operations, that we use to avoid memory access errors when many threads may
want to write at the same memory location concurrently. The processor scheduler creates
a queue of all atomic operation calls.

A cycle is the shortest time interval considered in a processor unit that it performs at its
frequency f : if the frequency is 1GHz the processor realizes 109 cycles per second. The
thread synchronization allows us to manage how the threads behave in parallel as follows:

The syncthreads() command asks all the threads to wait for all of them to come across
the same line in the algorithm code of the kernel.
For a local thread variable t, the syncthreads_and(t) and syncthreads_or(t) com-
mands allows us to manage the and and the or operation between all of the t variables
existing in each thread of a grid. For example, if a thread encounters a condition that
should stop the current case in a loop, then all the threads should stop at once since it is
useless to compute this case.

2.3 The GPU algorithm for classifying weak pseudo-manifolds
To simplify our explanations, we suppose that the number of generators s = 64 and that we
can write the product X1 × · · · × Xl as Xa × Xb such that Xa and Xb describe the 32 first
or last generators, respectively. We thus decompose K as Ka + Kb, with Ka = BXa and
Kb = BXb for every (Xa, Xb) ∈ Xa ×Xb. Both vectors Xa and Xb are binary vectors whose
nonzero coordinates are in the 32 first or last coordinates, respectively, which we store as 32
bits variables xa and xb, more precisely as unsigned integers.
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The dot product in Z of the binary forms of two integers x, y is the number of active
bits in the & operation: |x&y|. Its mod 2 reduction is the value of its least significant bit:
|x&y|&1.

The main idea of the algorithm is to use M threads to compute each coordinate of
K ∈ ZM

2 , with M being the number of facets in F , as provided in Algorithm 2 whose GPU
kernel is given in Algorithm 1.

Algorithm 1 The GPU kernel of Algorithm 2.

Shared memory: Integer array r of size N , such that r[k] stores the kth coefficient
of the product AK.

Global variable: The list list_K in which we store the weak pseudo-manifolds.
Function Kernel(xa,Ka ):

Let i be the local thread index
b←list_b[i]
ka←list_Ka[i]
for xb in list_Xb do

skip←False
Ki←(popcount(b&xb)ˆka)&1
syncthreads()
for g in list_G do

compute g(K) using the thread values Ki
if g(K) ≤ 0 then

skip←True
break

if syncthreads_or(skip) then
continue to the next xb

Reinitialize each value of r to 0 using the threads
if Ki=1 then

for k= 1, . . . , n do
increment r[A[k][i]] using the atomic add operation
if r[A[k][i]] ≥ 3 then

skip←True
break

if syncthreads_or(skip) then
continue to the next xb

Add K to the list of results list_K

▶ Remark 6. When we say using the threads, we mean we evenly distribute the operations to
perform among the threads. For example, to reinitialize the array r, we use the fact that we
have q threads that can set to zero q coordinates simultaneously until all coordinates reset.
Thus, it requires ⌈N

q ⌉ iteration, for N the number of ridges. We use a similar process for
calculating the image by the affine functions g ∈ G.

▶ Remark 7. We use the atomic add operation for incrementing values in r since many
threads may write at the same memory location r[k].

SoCG 2024



41:10 Toric Colorable PL Spheres of Picard Number 4

Algorithm 2 The algorithm for classifying weak pseudo-manifolds whose facets are in a
facet set F .

Input : The list list_F, corresponding to the set of facets F , and the list list_G,
corresponding to the set of affine functions G.

Output : The list list_K of weak pseudo-manifolds K with facets in list_F and which
satisfy g(K)>0 for every g in list_G.

Initialization:
Compute the ridge-facet incidence matrix A = A(F) ∈ ZN×M

2 and store it in A, a
column sparse matrix: A[k][i] represents the index of the kth nonzero coordinate
of the ith column of A.

Compute B =
[
K̃1 · · · K̃64

]
=

 a1 b1
...

...
aM bM

 and store it as two lists list_a and

list_b of integers, where list_a[k] and list_b[k] represent the binary value of
the row vectors ak and bk, respectively.

Enumerate Xa and Xb, and store them as two lists list_Xa and list_Xb.
Create a list list_Ka of all the Kas:
for xa in list_Xa do

for k = 1, . . . , M do
Ka[k]←popcount(a[k]&xa)&1

main : Launch the |Xa| blocks which correspond to all the pairs (xa,Ka) on the
Kernel (Algorithm 1).

The global complexity of this algorithm is:

O
(
|Xa|

p
× |Xb| ×

N

q
× (α|G|+ 1)

)
= O

(
|Xa ×Xb| ×N × (α|G|+ 1)

pq

)
,

with α representing the average complexity of the atomic operation when called multiple
times for a given g ∈ G.

3 Preparation for applying the algorithm

We refer the reader to the full version of the article for the proofs in this section.

3.1 Finiteness of the problem
Let K be an (n− 1)-dimensional simplicial complex on [m] = {1, 2, . . . , m}. The join K ∗ L

of two simplicial complexes K and L is the simplicial complex {σ ∪ τ | σ ∈ K, τ ∈ L}. The
link LkK(σ) of a face σ in K is the simplicial complex {τ \ σ | σ ⊂ τ ∈ K}. For the sake of
simplicity, we denote the simplicial complex consisting of a single maximal simplex σ by just
σ. The (simplicial) wedge wedv(K) of K at a vertex v is (I ∗ LkK(v)) ∪ (∂I ∗K \ v), where
I is a 1-simplex, and K \ v is the simplicial complex consisting of the facets of K which do
not contain v. We call K a seed if K is not a wedge of L for some simplicial complex L. The
suspension of K is K ∗ ∂I for I some 1-simplex. We can also define it as the wedge of K

at some ghost vertex, however we distinguish both here. Therefore, wedging preserves the
Picard number while suspending does not.
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A PL manifold is a simplicial complex such that the link of each of its vertices is a PL
sphere. A PL sphere is a PL manifold ([22, Lemma 1.17]). By the definition of a wedge,
wedv(K) contains an isomorphic copy of K as the link of both new vertices. This observation
implies that if wedv(K) is a PL sphere, so is K. The converse is also true.

▶ Proposition 8. Let K be a PL sphere and v a vertex of K. Then wedv(K) is a PL sphere.

A characteristic map over K is a map λ : [m] −→ Zn satisfying that for each facet σ of
K, the set of integer vectors λ(σ) is a unimodular, that is the determinant of the associated
square matrix is ±1. A simplicial complex K is toric colorable if K admits a characteristic
map. One can consider its mod 2 analogue as well. A mod 2 characteristic map over K is a
map λ : [m] −→ Zn

2 such that λ(σ) is a mod 2 independent set. Similarly, K is Zn
2 -colorable

if K admits a mod 2 characteristic map.

▶ Proposition 9 ([16], [13]). Let K be a PL sphere and v a vertex of K. Then K is toric
colorable if and only if so is wedv(K). In addition, K is Zn

2 -colorable if and only if wedv(K)
is Zn+1

2 -colorable.

Notice that the composition of a characteristic map over K and mod 2 reduction Zn → Zn
2

becomes a mod 2 characteristic map over K. As a consequence, we can focus firstly on
Zn

2 -colorable seeds.
We often see a mod 2 characteristic map λ as a matrix

[
λ(1) λ(2) · · · λ(m)

]
. Up

to simplicial isomorphisms, we may assume that the facet {1, 2, . . . , n} is in K. With this
assumption, to check Zn

2 -colorability, it is enough to consider characteristic maps of the form
λ =

[
In A

]
since the non-singularity on its facets is preserved by the left multiplication of

an element of GL(n,Z2).
Let us define dual characteristic maps (DCM) over K. For λ =

[
In A

]
, the DCM

associated with λ is a map λ̄ : [m] −→ Zm−n
2 such that λ̄ =

[
λ̄(1) λ̄(2) · · · λ̄(m)

]t =[
A

Im−n

]
. We shorten the term injective DCM to IDCM.

▶ Theorem 10 ([14]). Let K be an (n− 1)-dimensional PL sphere with m vertices and v, w

distinct vertices of K. Then the following are true.
1. If every facet of K contains v or w, then K is a wedge or a suspension with respect to v

and w.
2. If K is a seed that is not a suspension, then every DCM over K must be an IDCM.
Statements (2) and (3) imply:
resume If K is a seed and m− n ≥ 3 then m ≤ 2m−n − 1.

We will call a seed that is not a suspension a regular seed. We conclude from Statement 3.
of Theorem 10 that there are only finitely many Zn

2 -colorable seeds to enumerate for a fixed
integer p := m− n, that we match here with the Picard number of K written Pic(K). For
p ≤ 3, it is known that PL spheres all are boundaries of polytopes [25] and were already
completely enumerated by Perles [20]. We easily check the Zn

2 -colorability by an algorithm
described in [17], and verify the seedness with the following lemma.

▶ Lemma 11 (seedness). A PL sphere K is a seed if and only if it has no edge {v, w} such
that every facet of K has either v or w.

We now focus on the case p = 4. By Statement 3. of Theorem 10, we have n ≤ 11,
implying that it is enough to enumerate PL spheres of dimension up to 10 (n = 11). Since
PL spheres of Picard number ≥ 4 are not necessarily polytopal [5], we cannot make use of
the Gale diagram. We thus need to put our concern on checking PL sphereness.
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3.2 Collecting PL spheres among weak pseudo-manifolds
We first have a compelling criterion for a PL manifold to be a PL sphere when its Picard
number is small enough.

▶ Theorem 12 ([4]). Let K be a PL manifold with Pic(K) ≤ 7. If K is a Z2-homology
sphere, then K is a PL sphere.

By using the above theorem, we obtain the following lemma.

▶ Lemma 13 (PL sphereness). A weak pseudo-manifold K with Pic(K) ≤ 7 is a PL sphere
if and only if the link of any face (possibly the empty face) of K is a Z2-homology sphere.

We now have the tools for checking:
The PL sphereness of a weak pseudo-manifold of Picard number 4 with Lemma 13
The seedness of a PL sphere with Lemma 11.

4 Toric colorable PL spheres of Picard number 4

We devote this section to enumerate all (n− 1)-dimensional toric colorable seeds of Picard
number 4. One could intuitively try to input Algorithm 2 with all n subsets of [m], check
PL sphereness, Zn

2 -colorability, and seedness. However, it is hopeless when we consider high
dimensions. Indeed, we manage to obtain results up to n = 6, but the program takes too
long to finish with n = 7. On the other hand, Theorem 10 states that there are only two
kinds of Zn

2 -colorable seeds: regular or suspended. At first, we consider how to enumerate
the regular seeds which only supports IDCM.

We recall here some definitions from matroid theory. A matroid M is a simplicial complex
with the so-called augmentation property: for any τ, σ ∈ M with |τ | < |σ|, there exists
x ∈ σ \ τ such that τ ∪ {x} ∈M . Although the facets of a matroid are called the bases, we
will keep the simplicial complex terminology here and call them facets. The dual matroid
M of a matroid M is the matroid on the same vertex set as M and whose facets are the
complement of each facet of M , called cofacets of M . For an n ×m matrix λ over Z2 of
full row rank n, the simplicial complex Mλ whose facets are the sets of column indexes of n

independent columns of λ is a matroid, called the binary matroid associated to λ. Then we
can rephrase that a pure simplicial complex K supports a mod 2 characteristic map λ as K

is in the binary matroid associated to λ. By linear Gale duality [16], the dual Mλ is equal to
Mλ̄t . We effortlessly verify the following proposition by the definition of Mλ and Mλ̄t .

▶ Proposition 14. Let K be an (n − 1)-dimensional simplicial complex on [m] and λ̄ an
m× (m− n) matrix over Z2 of rank m− n. Then K supports λ̄ as a DCM if and only if it
is a subcomplex of Mλ̄t = Mλ.

Recall that the more we reduce the number of facets in the input of Algorithm 2, the smaller
the dimension of the mod 2 kernel of the ridge-facet incidence matrix will be, and the faster
the algorithm will run. Proposition 14 gives us what we want: a finer set of facets. In addition,
we take advantage of the upper bound theorem ([29]): the number of facets of a simplicial
sphere is less than or equal to the one of the cyclic n-polytope C(m, n) with m vertices. This
condition is embodied by the following affine function: g(K) = fn−1(C(m, n))− ∥K∥1 + 1.
Fix an injective map λ̄ : [m] −→ Z4

2 and set F(λ) = F(Mλ). Algorithm 2 with inputs being
the set of facets F(λ) and the affine function g outputs the set of all weak pseudo-manifolds
which support λ̄ and satisfy the upper bound theorem.
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At first sight, it seems that we need to run the algorithm on each of the
(11

n

)
× (n!)

injective maps λ̄ even if we fix
[
λ̄(n + 1) λ̄(n + 2) λ̄(n + 3) λ̄(n + 4)

]
= I4. However, we

will drastically reduce this large number of cases to compute by noticing that many injective
maps provide the same outputs up to simplicial isomorphism.

Let Λ(n, p) be the set of all (n + p) × p matrices over Z2 of the form
[

A

Ip

]
such that

each matrix has no repeated rows. Consider the product of two symmetric groups Sn ×Sp.

This group gives a group action on Λ(n, p) by
([

A

Ip

]
, (s, t)

)
7→

[
P t

sAPt

Ip

]
, where Ps and

Pt are column permutation matrices corresponding to s and t. Let us call each element of
Λ(n, p)/Sn ×Sp an IDCM orbit.

▶ Proposition 15. For (s, t) ∈ Sn ×Sp, there is a simplicial isomorphism between binary
matroids associated to λ̄ ∈ Λ(n, p) and λ̄ ◦ (s, t) ∈ Λ(n, p).

Let Λ◦(n, 4) ⊆ Λ(n, 4) be a set containing one representative of each IDCM orbit. By
Proposition 15, it is enough to input Algorithm 2 with F(λ), for all λ ∈ Λ◦(n, 4). Table 1
shows the number of IDCM orbits of Λ(n, 4) and the computation time of Algorithm 2.

Table 1 Data table for Picard number 4 and n = 2, . . . , 11. The time spent refers to by
Algorithm 2 running on an Nvidia Quadro A5000. *Estimated.

n 2 3 4 5 6 7 8 9 10 11

Number of IDCM orbits 7 16 28 35 35 28 16 7 3 1
maxλ̄(dim kerA(F(λ))) 7 13 21 24 28 34 42 48 56 64
maxλ̄ |X (λ̄)| 56 3e3 5e5 1e6 2e7 9e8 1e11 3e12 4.4e14 4.2e16

Time spent for one orbit 1ms 10ms 0.1s 0.6s 1.3s 3m 15m 2h 12d 3y*

We now provide the global strategy for enumerating all Zn
2 -colorable seeds of Picard

number 4 by recapping the case of regular seeds and explaining the one of suspended seeds.
This allows us to obtain Theorem 2.

Strategy.
CASE I: Regular seeds. For every representative λ ∈ Λ◦(n, 4), run Algorithm 2 with
inputs being the set of facets F(λ) and the affine function g(K) = fn−1(C(m, n)) −
∥K∥1 + 1. After reducing isomorphic ones, we obtain the list of Zn

2 -colorable weak
pseudo-manifolds on [m] satisfying the upper bound theorem up to isomorphism. We
then apply Lemma 11 and Lemma 13 to collect the seeds.
CASE II: Suspended seeds. From Theorem 10, a Zn

2 -colorable seed without IDCM
is a suspension. From the definition of a wedge, the suspension of a wedge is again a
wedge, and the suspension operation increases the Picard number by one. Therefore, it is
enough to consider suspensions of seeds of Picard number 3.
Let L = ∂[v, w] ∗ K for an (n − 2)-dimensional simplicial complex K, and λ a char-
acteristic map over L. Without loss of generality, we may assume v = 1 so that
λ(v) =

[
1 0 · · · 0

]t. Then for any facet {v} ∪ {v1, . . . , vn−1} of L, the (1, 1) minor of
the matrix

[
λ(v) λ(v1) · · · λ(vn−1)

]
is equal to 1. This implies that LkL(1) = K is

Zn−1
2 -colorable.

We know there are three Zn
2 -colorable seeds of the Picard number 3; 5-gon, 3-cube, and

the cyclic polytope C(7, 4). The suspension of the 3-cube does not support any IDCM
but does support a DCM, while the suspensions of the others support IDCM.
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