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Abstract
We present algorithms for the computation of ε-coresets for k-median clustering of point sequences
in Rd under the p-dynamic time warping (DTW) distance. Coresets under DTW have not been
investigated before, and the analysis is not directly accessible to existing methods as DTW is not a
metric. The three main ingredients that allow our construction of coresets are the adaptation of
the ε-coreset framework of sensitivity sampling, bounds on the VC dimension of approximations
to the range spaces of balls under DTW, and new approximation algorithms for the k-median
problem under DTW. We achieve our results by investigating approximations of DTW that provide
a trade-off between the provided accuracy and amenability to known techniques. In particular, we
observe that given n curves under DTW, one can directly construct a metric that approximates
DTW on this set, permitting the use of the wealth of results on metric spaces for clustering purposes.
The resulting approximations are the first with polynomial running time and achieve a very similar
approximation factor as state-of-the-art techniques. We apply our results to produce a practical
algorithm approximating (k, ℓ)-median clustering under DTW.
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1 Introduction

One of the core challenges of contemporary data analysis is the handling of massive data
sets. A powerful approach to clustering problems involving such sets is data reduction, and
ε-coresets offer a popular approach that has received substantial attention. An ε-coreset is a
problem-specific condensate of the given input set of reduced size which captures its core
properties towards the problem at hand and can be used as a proxy to run an algorithm on,
producing a solution with a relative error of (1± ε).

Clustering and especially k-median represent fundamental tasks in classification problems,
where they have been extensively studied for various spaces. With the growing availability
of e.g. geospatial tracking data, clustering problems for time series or curves have received
growing attention both from a theoretical and applied perspective. In practice, time series
classification largely relies on the dynamic time warping (DTW) distance and is widely used
in the area of data mining. Simple nearest neighbor classifiers under DTW are considered
hard to beat [26, 38] and much effort has been put into making classification using DTW
computationally efficient [25, 30, 31, 34]. In contrast to its cousin the Fréchet distance, DTW
is less sensitive to outliers, but its algorithmic properties are also less well understood, owing
to the fact that it is not a metric. In particular, the wealth of research surrounding k-median
clustering for metric spaces does not directly apply to clustering problems under DTW.

For time series and curves, k-median takes the shape of the (k, ℓ)-median problem, where
the sought-for center curves are restricted to have a complexity (number of vertices) of at
most ℓ, with a two-fold motivation. First, the otherwise NP-hard problem becomes tractable,
and second, it suppresses overfitting.

The construction of ε-coresets for the (k, ℓ)-median problem for DTW is precisely what
this paper will address. To this end, we adapt the framework of sensitivity sampling by
Feldman and Landberg [22] to our setting, derive bounds on the VC dimension of approximate
range spaces of balls under DTW, develop fast approximation algorithms solving (k, ℓ)-median
clustering, and use coresets to improve existing (k, ℓ)-median algorithms, for curves under
DTW. We rely on approximations of nearly all objects involved in our inquiry, thereby
improving the bounds we obtain for the VC dimension of the range spaces in question and
broadening the scope of our approach.

Our analysis of the VC dimension is possibly of independent interest. The VC dimension
exhibits a near-linear dependency on the complexity of the sequences used as centers of
the ranges, yet it depends only logarithmically on the size of the curves within the ground
set. This distinction holds significant implications in the analysis of real datasets, where
queries may involve simple, short sequences, but the dataset itself may consist of complex,
lengthy sequences. Note that our results hold for range spaces that are defined by small
perturbations of DTW distances. This means that for any given set of input sequences
requiring DTW-based analysis, there is slight perturbation of DTW with associated range
space of bounded VC dimension. This is sufficient to enable a broad array of algorithmic
techniques that leverage the VC dimension, particularly in scenarios where approximate
computations are allowed.

Related Work. Among different practical approaches for solving the k-median problem,
a very influential heuristic is the DTW Barycentric Average (DBA) method [32]. While it
has seen much success in practice [1, 23, 33], it does not have any theoretical guarantees
and indeed may converge to a local configuration that is arbitrarily far from the optimum.
Recently, theoretical results for average series problems under DTW have been obtained. The
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problem is NP-hard for rational-valued time series and W[1]-hard in the number of input time
series [10, 18]. Furthermore, it can not be solved in time O(f(n)) ·mo(n) for any computable
function f unless the Exponential Time Hypothesis (ETH) fails. There is an exponential
time exact algorithm for rational-valued time series [8] and polynomial time exact algorithms
for binary time series [8, 36]. There is an exact algorithm for the related problem of finding
a single mean curve of given complexity for time series over Qd, minimizing the sum of
squares of DTW distances to input curves, which runs in polynomial time if the number of
points of the average series is constant [16]. Furthermore, approximation algorithms were
recently developed [16], and some of these can be slightly modified to work within the median
clustering approximation framework of [13, 15]. Unfortunately, known median clustering
approximation algorithms either have running time exponential in the length of the average
series, or a very large approximation factor.

Approximation Algorithms for Series Clustering. In the last decade, the problems of
(k, ℓ)-median and (k, ℓ)-center clustering for time series in Rd under the Fréchet distance
have gained significant attention. The problem is NP-hard [9, 11, 21], even if k = 1 and d = 1
(in these works, time series are real-valued sequences), and the (k, ℓ)-center problem is even
NP-hard to approximate within a factor of (2.25− ε) for d ≥ 2 [9] ((1.5− ε), if d = 1). For
the (k, ℓ)-median problem, all presently known (1 + ε)-approximation algorithms are based
on an approximation scheme [14, 20, 21] which has been generalized several times [2, 15, 27].
The most recent version of this scheme [15, Theorem 7.2] can be utilized to approximate
any k-median type problem in an arbitrary space X with a distance function. All that it
needs is a plugin-algorithm that, when given a set T of elements from some (problem-specific)
subset Y ⊆ X, returns a set of candidates C that contains, for any set T ′ ⊆ T with roughly
|T ′| ≥ |T |/k, with a previously fixed probability, an approximate median. The resulting
approximation quality and running time depend on the approximation factor of the plugin
and |C|, respectively, with a factor of O(|C|k) in the running time.

For the Fréchet distance, plugin-algorithms exist that yield (1+ε)-approximations [14, 20].
For DTW however, the best plugin-algorithm [16] has runing time exponential in k – roughly
with a dependency of Õ((32k2ε−1)k+2n) – and approximation guarantee of (8 + ε)(mℓ)1/p

with constant success probability. Here, the Õ notation hides polylogarithmic factors. In
principle, some of the ideas from plugins for the Fréchet distance could be adapted, but the
more involved plugins, i.e., the ones yielding (1 + ε)-approximations, crucially make use of
the metric properties of the distance function.

In practice, an adaption of Gonzalez algorithm for (k, ℓ)-center clustering under the
Fréchet distance performs well [12]. Similar ideas have also been used for clustering under (a
continuous variant of) DTW [5], but there are no approximation guarantees, and the usual
analysis is based on repetitive use of the triangle inequality. To the best of our knowledge,
all (k, ℓ)-median (1 + ε)-approximation algorithms for Fréchet and DTW are impractical due
to large constants and an exponential dependency on ℓ in the running time.

For the Fréchet distance, ε-coresets can be constructed [6, 17] that help facilitate the
practicability of available algorithms. Using ε-coresets, a (5 + ε)-approximation algorithm for
the 1-median problem was recently analyzed [17], yielding a running time of roughly nmO(1) +
(m/ε)O(ℓ), in contrast to a running time of n(m/ε)O(ℓ) without the use of coresets [15].

For DTW, no coreset construction is known to this point. This is at least partially due to
prominent coreset frameworks assuming a normed or at least a metric space [22, 28]. Also,
recently a coreset construction relying solely on uniform sampling was developed that greatly
simplifies existing coreset constructions [7], including the aforementioned coresets under the
Fréchet distance. Unfortunately, the construction again relies on different incarnations of the
triangle inequality, limiting its use for DTW.

SoCG 2024
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Figure 1 Example of a traversal between the red and blue curve realizing the dynamic time
warping distance. The sum of the black distances is minimized.

Results. To construct ε-coresets, we use approximations of the range space defined by
balls under p-DTW and bound their VC dimension. Assuming that the input is a set of n
curves of complexity at most m, we present an approximation algorithm (Theorem 35) for
k-median with running time in O(n) (hiding other factors), that improves upon existing work
in terms of running time, with comparable approximation guarantees. Our approach relies on
curve simplifications and approximating p-DTW by a path metric. This allows us to apply
state-of-the-art k-median techniques in this nearby path metric space, circumventing the use
of heavy k-median machinery in non-metric spaces which would incur exponential dependence
on k and the success probability. Our main ingredient is a new insight into the notion of
relaxed triangle inequalities for p-DTW (Lemma 18). We then construct a coreset based on
the approximation algorithm. For this, we bound the so-called sensitivity of the elements of
the given data set, as well as their sum. The sensitivities are a measure of the data elements’
importance and determine the sample probabilities in the coreset construction. We construct
an ε-coreset for (k, ℓ)-median clustering of size quadratic in 1/ε and k, logarithmic in n, and
depending on (mℓ)1/p and ℓ (Corollary 37). We achieve this by upper bounding the VC
dimension of the approximate range space with logarithmic dependence on m (Theorem 17).

2 Preliminaries

We think of a sequence (p1, . . . , pm) ∈
(
Rd
)m of points in Rd as a (polygonal) curve, with

complexity m. We denote by Xd
=m the space of curves in Rd with complexity exactly m and

by Xd
m the space of curves with complexity at most m.

▶ Definition 1 (p-Dynamic Time Warping). For given m, ℓ > 0 we define the space Tm,ℓ of
(m, ℓ)-traversals as the set of sequences ((a1, b1), (a2, b2), . . . , (al, bl)), such that

a1 = 1 and b1 = 1; and al = m and bl = ℓ,
for all i ∈ [l−1] := {1, . . . , l−1} it holds that (ai+1, bi+1)− (ai, bi) ∈ {(1, 0), (0, 1), (1, 1)}.

For p ∈ [1,∞) and two curves σ = (σ1, . . . , σm) ∈ Xd
=m, τ = (τ1, . . . , τℓ) ∈ Xd

=ℓ the
(p-)Dynamic Time Warping distance (p-DTW) is defined as

dtwp(σ, τ) = min
T ∈Tm,ℓ

 ∑
(i,j)∈T

∥σi − τj∥p
2

1/p

.

The central focus of the paper is the following clustering problem.

▶ Definition 2 (Problem definition). The (k, ℓ)-median problem for Xd
m and k ∈ N is the

following: Given a set of n ∈ N input curves T = {τ1, . . . , τn} ⊂ Xd
m, identify k center curves

C = {c1, . . . , ck} ⊂ Xd
ℓ that minimize cost(T,C) =

∑
τ∈T minc∈C dtw(τ, c).
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X1

X2

X3

Figure 2 Illustration of a coreset (red), i.e. a weighted sparse representation of the original set of
curves (in red and black). The weights in this case are w(X1) = 3, w(X2) = 2 and w(X3) = 1.

An influential approach to solving k-median problems is to construct a point set that acts as
proxy on which to run computationally more expensive algorithms that yield solutions with
approximation guarantees. The condensed input set is known as a coreset.

▶ Definition 3 (ε-coreset). Let T ⊂ Xd
m be a finite set and ε ∈ (0, 1). Then a weighted

multiset S ⊂ Xd
m with weight function w : S → R>0 is a weighted ε-coreset for (k, ℓ)-median

clustering of T under dtwp if for all C ⊂ Xd
ℓ with |C| = k

(1− ε) cost(T,C) ≤
∑
s∈S

w(s) min
c∈C

dtwp(s, c) ≤ (1 + ε) cost(T,C).

▶ Definition 4 ((α, β)-approximation). Let a set of n ∈ N input curves T = {τ1, . . . , τn} ⊂ Xd
m

be given. A set Ĉ ⊂ Xd
ℓ is called an (α, β)-approximation of (k, ℓ)-median, if |Ĉ| ≤ βk and∑

τ∈T minc∈Ĉ dtw(τ, c) ≤ α
∑

τ∈T minc∈C dtw(τ, c) for any C ⊂ Xd
ℓ of size k.

Relaxing the problem to (α, β)-approximations allows us to pass through so called
simplifications of the input curves.

▶ Definition 5 ((1 + ε)-approximate ℓ-simplifications). Let σ ∈ Xd
m, ℓ ∈ N and ε > 0. We call

σ∗ ∈ Xd
ℓ an (1 + ε)-approximate ℓ-simplification if

inf
σℓ∈Xd

ℓ

dtwp(σℓ, σ) ≤ dtwp(σ∗, σ) ≤ (1 + ε) inf
σℓ∈Xd

ℓ

dtwp(σℓ, σ).

A range space is defined as a pair of sets (X,R), where X is the ground set and R is
the range set which is a natural subset of the power set P(X) = {X ′|X ′ ⊂ X}. Let (X,R)
be a range space. For Y ⊆ X, we denote: R|Y = {R ∩ Y | R ∈ R}. If R|Y = P(Y ), then
Y is shattered by R. A key property of range spaces is the so called Vapnik-Chernovenkis
dimension [35, 37, 39] (VC dimension) which for a range space (X,R) is the maximum
cardinality of a shattered subset of X.

We are interested in range spaces defined by balls by the p-DTW distance: We define
the (p-)DTW ball, of given complexity m ∈ N and radius r ≥ 0, of a curve σ ∈ Xd

ℓ as
Bp

r,m(σ) = {τ ∈ Xd
m | dtwp(σ, τ) ≤ r}. Define the range set of p-DTW balls as Rp

m,ℓ =
{Bp

r,m(σ) | σ ∈ Xd
ℓ , r > 0}. The p-DTW range space is the range space Xm,ℓ =

(
Xd

m,R
p
m,ℓ

)
.

3 VC Dimension of DTW

In this section, we derive bounds on the VC dimension of a range space that approximates
the DTW range space. Our reasoning exclusively relies on establishing the prerequisites of
Theorem 7 below. Missing proofs of this section can be found in the full version.

SoCG 2024
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▶ Definition 6 ([3]). Let H be a class of {0, 1}-valued functions defined on a set X, and F
a class of real-valued functions defined on Rd ×X. We say that H is a k-combination of
sign(F ) if there is a function g : {−1, 1}k → {0, 1} and functions f1, . . . , fk ∈ F so that for
all h ∈ H there is a parameter vector α ∈ Rd such that for all x in X,

h(x) = g(sign(f1(α, x)), . . . , sign(fk(α, x))).

The definition for the sign function we use is that sign(x) = 1 for R ∋ x ≥ 0 and sign(x) = −1
for x < 0. Observe that the class H of functions corresponds to a system of subsets of X.

▶ Theorem 7 (Theorem 8.3 [3]). Let F be a class of maps from Rs ×X to R, so that for all
x ∈ X and f ∈ F , the function α 7→ f(α, x) is a polynomial on Rs of degree δ. Let H be a
κ-combination of sign(F ). Then the VC dimension of H is less than 2s log2(12δκ).

Theorem 7 implies a bound of O(dℓ2 log(mp)) on the VC dimension of range spaces defined by
p-DTW for even values of p, as the decision of whether p-DTW exceeds a given threshold can
be formulated as a |Tm,ℓ|-combination of signs of polynomial functions; each one realizing the
cost of a traversal. A detailed proof can be found in the full version. The situation becomes
more intriguing in the general case, since for any odd p, the cost of each traversal is no longer
a polynomial. To overcome this, we investigate range spaces defined by approximate p-DTW
balls and show that we can get bounds that do not depend on p.

The following lemma shows that one can determine (approximately) the p-DTW between
two sequences, based solely on the signs of certain polynomials, that are designed to provide
a sketchy view of all point-wise distances.

▶ Lemma 8. Let τ ∈ Xd
=ℓ, σ ∈ Xd

=m, r > 0 and ε ∈ (0, 1]. For each i ∈ [ℓ], j ∈ [m] and
z ∈ [⌊ε−1 + 1⌋] define

fi,j,z(τ, r, σ) = ∥τi − σj∥2 − (z · εr)2.

There is an algorithm that, given as input the values of sign(fi,j,z(τ, r, σ)), for all i ∈ [ℓ], j ∈
[m] and z ∈ [⌊ε−1 + 1⌋], outputs a value in {0, 1} such that:

if dtwp(τ, σ) ≤ r then it outputs 1,
if dtwp(τ, σ) > (1 + (m+ ℓ)1/pε)r then it outputs 0.

The algorithm of Lemma 8 essentially defines a function that implements approximate
p-DTW balls membership, and satisfies the requirements set by Theorem 7.

▶ Lemma 9. Let ε ∈ (0, 1], and let m, ℓ ∈ N be given. There are injective functions
πℓ : Xd

ℓ → R(d+1)ℓ and πm : Xd
m → R(d+1)m and a class of functions Fε mapping from(

R(d+1)ℓ × R
)
× R(d+1)m to R, such that for any f ∈ Fε, the function α 7→ f(α, x) is a

polynomial function of degree 2. Furthermore, there is a function g : {−1, 1}k → {0, 1} and
functions f1, . . . , fk ∈ Fε, with k = mℓ⌊ε−1 + 1⌋+m+ ℓ, such that for any τ ∈ Xd

ℓ , r > 0
and σ ∈ Xd

m, it holds that if dtwp(σ, τ) ≤ r then g(sign(f1(πℓ(τ), r, πm(σ))), . . .) = 1, and if
dtwp(σ, τ) > (1 + (m+ ℓ)1/pε)r then g(sign(f1(πℓ(τ), r, πm(σ))), . . .) = 0.

We use the previous lemmas to define a distance function d̃twp between elements of Xd
m

and Xd
ℓ , which we will use throughout the paper as an approximate function of dtwp. To get

an estimate of the VC dimension of the range space induced by balls under d̃twp and decide
membership of points to these balls, the approximate distance will only take discrete values.
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▶ Definition 10. Let ε ∈ (0, 1] and define the set of radii Rε = {(1 + ε)z | z ∈ Z}. Lemma 9
defines an approximation of dtwp(σ, τ) for any σ ∈ Xd

ℓ and Xd
m, by virtue of the functions g

and f1, ..., fk for Fε/(m+ℓ)1/p , as

d̃twp(σ, τ) = (1 + ε) · sup{r ∈ Rε | g(sign(f1(πℓ(τ), r, πm(σ))), . . .) = 1}.

Overall, d̃twp corresponds to the first value in Rε, for which the function g of Definition 10
outputs a 0, and for all larger values in Rε the algorithm also outputs 0. Notably, the
function g of Definition 10 outputs 1 for r/(1 + ε). In the following lemma, we formally show
that d̃twp(σ, τ) approximates p-DTW between σ and τ within a factor of 1 + ε.

▶ Lemma 11. Let 0 < ε ≤ 1. For any σ ∈ Xd
m and τ ∈ Xd

ℓ it holds that

dtwp(σ, τ) < d̃twp(σ, τ) ≤ (1 + ε) dtwp(σ, τ).

Proof. Let r = d̃twp(σ, τ) ∈ Rε. By definition the function g of Definition 10 outputs 1 with
σ, τ and r/(1 + ε). Thus dtwp(σ, τ) ≤ (1 + ε)r/(1 + ε) = r. As the algorithm outputs 0 for
σ, τ and r it follows that dtwp(σ, τ) > r/(1 + ε) implying the claim. ◀

Moreover from the definition of d̃twp, we conclude that g serves as a membership predicate
for balls defined by d̃twp.

▶ Lemma 12. Let ε ∈ (0, 1], τ ∈ Xd
ℓ and r ∈ Rε. For any σ ∈ Xd

m the output of the function
g of Definition 10 with σ, τ and r corresponds to the decision whether the curve σ is in the
r-ball {x ∈ Xd

m | d̃twp(x, τ) ≤ r} centered at τ .

Proof. Let r′ = d̃twp(σ, τ) ∈ Rε. Assume r′ ≤ r which by Lemma 11 implies that
dtwp(σ, τ) ≤ r. Then the function g of Definition 10 with σ, τ and r outputs 1. Now
let r < r′ ∈ Rε. In this case however g with σ, τ and r will by definition of d̃twp out-
put 0. Thus membership to a ball range corresponds to the output of the function g of
Definition 10. ◀

We conclude with the main result of this section, namely an upper bound on the VC
dimension of the range space that approximates the p-DTW range space.

▶ Theorem 13. Let ε ∈ (0, 1] and R̃p
m,ℓ = {{x ∈ Xd

m | d̃twp(x, τ) ≤ r} ⊂ Xd
m | τ ∈ Xd

ℓ , r > 0}
be the range set consisting of all balls centered at elements of Xd

ℓ under d̃twp in Xd
m. The

VC dimension of (Xd
m, R̃

p
m,ℓ) is at most

2(d+ 1)ℓ log2(12ℓm⌊(m+ ℓ)1/pε−1 + 1⌋+ 12m+ 12ℓ) = O(dℓ log(ℓmε−1)).

Proof. This follows from Theorem 7, Lemma 9 and Lemma 12, and the fact that any ball of
radius r > 0 under d̃twp coincides with some ball with radius r̃ ∈ Rε under d̃twp. Finally,
the statement is implied by the injectivity of the functions πm and πℓ. ◀

In this section, we defined a distance function d̃twp between curves in Xd
m and those in

Xd
ℓ that (1 + ε)-approximates dtwp and an upper bound on the VC dimension of the range

space induced by balls of d̃twp, thereby producing an approximation of the p-DTW range
space that we make use of below. We emphasize that the sole purpose of d̃twp is to obtain
bounds on the size of a sample constituting a coreset through the knowledge of the VC
dimension. At no point do we compute d̃twp.

SoCG 2024
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s

t

x

y

1

ε

ε

Figure 3 Violated triangle inequality as dtw(s, t) ≈ 12, but dtw(s, x) ≈ 0 (matching in blue),
dtw(y, t) ≈ 0 (red matching) and dtw(x, y) ≈ 3 (green matching).

4 Sensitivity bounds and coresets for DTW

The proofs in this section are deferred to the full version. To make use of the sensitivity
sampling framework for coresets by Feldman and Langberg [22], we recast the input set
T ⊂ Xd

m as a set of functions. Consider for any y ∈ Xd
m the real valued function fy defined

on (finite) subsets of Xd
ℓ by fy(C) = minc∈C dtwp(y, c) for C ⊂ Xd

ℓ , transforming T into
FT = {fτ | τ ∈ T}. To construct a coreset, one draws elements from T according to a fixed
probability distribution over T , and reweighs each drawn element. Both the weight and
sampling probability are expressed in terms of the sensitivity of the drawn element t, which
describes the maximum possible relative contribution of t to the cost of any query evaluation.
In our case, as we restrict a solution to a size of k, it turns out that it suffices to analyze the
sensitivity with respect to inputs of size k.

▶ Definition 14 (sensitivity). Let F be a finite set of functions from P(Xd
ℓ ) \ {∅} to R. For

any f ∈ F define the sensitivity

s(f, F ) = sup
C={c1,...,ck}⊂Z:

∑
g∈F

g(C)>0

f(C)∑
g∈F g(C) .

The total sensitivity S(F ) of F is defined as
∑

f∈F s(f, F ).

A crucial step in our approach is to show that any (α, β)-approximation for (k, ℓ)-median
under dtwp can be used to obtain a bound on the total sensitivity associated to approximate
distances. This is facilitated by the following lemma, that is a weaker version of the triangle
inequality, as in general dtwp is not a metric (see Figure 3).

▶ Lemma 15 (weak triangle inequality [29]). For two curves x and z of complexity m > 0 and
any curve y of complexity ℓ > 0 it holds that dtwp(x, z) ≤ m1/p(dtwp(x, y) + dtwp(y, z)).

Note that the distance function in question is not dtwp, but the (1 + ε)-approximation
d̃twp of DTW from before. For any y ∈ Xd

m and ε > 0, let f̃y : P(Xd
ℓ ) \ {∅} → R with

f̃y(C) = minc∈C d̃twp(y, c). Similarly, let F̃T be the set {f̃τ | τ ∈ T} for any T ⊂ Xd
m.

▶ Lemma 16. Let 0 < ε ≤ 1 and let T ⊂ Xd
m be the input of size n for (k, ℓ)-median and

let Ĉ = {ĉ1, . . . , ĉk̂} ⊂ Xd
ℓ be an (α, β)-approximation to the (k, ℓ)-median problem on T

with cost ∆̂ =
∑

τ∈T minĉ∈Ĉ dtwp(τ, ĉ), of size k̂ ≤ βk. For any i ∈ [k̂] let V̂i = {τ ∈ T |
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dtwp(τ, ĉi) = minĉ∈Ĉ dtwp(τ, ĉ)} be the Voronoi region of ĉi, the set of which (breaking ties
arbitrarily) partitions T . Let ∆̂i =

∑
τ∈V̂i

dtwp(τ, ĉi) be the cost of V̂i. For all τ ∈ V̂i let

γ(f̃τ ) := (mℓ)1/p

(
2α dtwp(τ, ĉi)

∆̂
+ 4
|V̂i|

+ 8α∆̂i

∆̂|V̂i|

)
.

Then s(f̃τ , F̃T ) ≤ γ(f̃τ ) for any τ ∈ T , and S(F̃T ) ≤
∑

τ∈T γ(f̃τ ) ≤ (mℓ)1/p(4k̂ + 10α).

▶ Theorem 17. For f̃ ∈ F̃ , let λ(f̃) = 2⌈log(γ(f̃))⌉, with γ(f̃) the sensitivity bound of
Lemma 16, associated to an α-approximation consisting of k̂ curves, for (k, ℓ)-median for
curves in Xd

m under dtwp, Λ =
∑

f̃∈F̃
λ(f̃), ψ(f̃) = λ(f̃)

Λ and δ, ε ∈ (0, 1). A sample S of

Θ
(
ε−2αk̂(mℓ)1/p

(
(dℓ log(ℓmε−1))k log(k) log(αn) log(αk̂(mℓ)1/p) + log(1/δ)

))
elements τi ∈ T , drawn independently with replacement with probability ψ(f̃i) and weighted
by w(f̃i) = Λ

|S|λ(f̃i)
is a weighted ε-coreset for (k, ℓ)-median clustering of T under dtwp with

probability at least 1− δ.

We remark that in the limit p→∞, the constructed coreset has a very similar size as a
recent construction for coresets for the Fréchet distance [17].

5 Linear time (O((mℓ)1/p), 1)-approximation algorithm for
(k, ℓ)-median

In this section, we develop approximation algorithms for (k, ℓ)-median for a set T ⊂ Xd
m

of n curves. For this, we approximate DTW on T by a metric using a new inequality for
DTW (Lemma 18). This allows the use of any approximation algorithm for k-median in
metric spaces, leading to a first approximation algorithm of the original problem. However,
computing the whole metric space would take O(n3) time. We circumvent this by in turn using
the DTW distance to approximate the metric space. Combined with a k-median algorithm
in metric spaces [24], we obtain a linear time (O((mℓ)1/p), 1)-approximation algorithm.

5.1 Dynamic time warping approximating metric
We begin with the following more general triangle inequality for dtwp, which motivates
analysing the metric closure of the input set. While dtwp does not satisfy the triangle
inequality (see Figure 3), the inequality shows it is never “too far off”. Remarkably, the
inequality does not depend on the complexity of the curves “visited”. The missing proofs in
this section are deferred to the full version. Lemma 18 is illustrated in Figure 4.

▶ Lemma 18 (Iterated triangle inequality). Let s ∈ Xd
ℓ , t ∈ Xd

ℓ′ and X = (x1, . . . , xr) be an
arbitrary ordered set of curves in Xd

m. Then

dtwp(s, t) ≤ (ℓ+ ℓ′)1/p

(
dtwp(s, x1) +

∑
i<r

dtwp(xi, xi+1) + dtwp(xr, t)
)
.

▶ Definition 19 (metric closure). Let (X,ϕ) be a finite set endowed with a distance function
ϕ : X ×X → R. The metric closure ϕ of ϕ is the function

ϕ : X ×X → R, (s, t) 7→ min
r≥2,{τ1,...,τr}⊂X

s=τ1,t=τr

∑
i<r

ϕ(τi, τi+1).

SoCG 2024
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Figure 4 Illustration of how the optimal traversals Wsx, Wxy and Wyt of visited curves can be
“composed” to yield a set W that induces a traversal W̃ (in red) of s and t. Any single matched pair
of vertices in Wsx, Wxy or Wyt is at most |W | ≤ ℓ + ℓ′ times a part of W .

The metric closure of any distance function is a semimetric and can be extended to a metric
by removing duplicates or small (symbolic) perturbations. Note that the metric closure of
dtwp can be strictly smaller than dtwp because DTW may violate the triangle inequality
(see Figure 3).

▶ Observation 20. Let X be a finite set with distance function ϕ. Let Y ⊂ X. Then for
any σ, τ ∈ Y it holds that ϕ(σ, τ) ≤ ϕ|Y (σ, τ) ≤ ϕ(σ, τ).

By Lemma 18 and Observation 20, dtwp on any finite set of curves in Xd
m is approximated

by its metric closure, with approximation constant depending on m.

▶ Lemma 21. For any set of curves X and two curves σ, τ ∈ X of complexity at most m it
holds that dtwp(σ, τ) ≤ (2m)1/pdtwp |X(σ, τ) ≤ (2m)1/p dtwp(σ, τ).

▶ Lemma 22. Let X ⊂ Xd
m be a set of n curves and k and ℓ be given. Let X∗ = {τ∗ |

τ ∈ X}, where τ∗ is a (1 + ε)-approximate ℓ-simplification of τ . Let C ⊂ X∗ be an (α, β)-
approximation of the k-median problem of X∗ in the metric space (X∗,dtwp |X∗). Then C is
a
(
(4mℓ)1/p ((4 + 2ε)α+ 1 + ε) , β

)
-approximation of the (k, ℓ)-median problem on X.

The idea of Lemma 22 is to consider a Voronoi decomposition of X induced by an optimal
solution, together with standard arguments using the triangle inequality in the metric closure
to bound distances, as illustrated in Figure 6.

▶ Lemma 23. Let X ⊂ Xd
ℓ be a set of n curves. The metric closure dtwp |X for all pairs of

curves in X can be computed in O(n2ℓ2d+ n3) time.

▶ Theorem 24 ([19]). Given a set P of n points in a metric space, for 0 < ε < 1, one can
compute a (10 + ε)-approximate k-median clustering of P in O(nk+ k7ε−5 log5 n) time, with
constant probability of success.
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Figure 5 Illustration of the metric closure. On the left a distance function on five points
represented as a graph. In the middle the shortest path tree rooted at x inducing all values of the
metric closure of the distance function from some element to x. On the right the metric closure.

▶ Theorem 25. Let X be a set of curves of complexity at most m. Let k and ℓ be given.
Let X∗ = {τ∗ | τ ∈ X} be a set of (1 + ε)-approximate optimal ℓ-simplifications. There is
an algorithm with input X∗, which computes a (10 + ε, 1)-approximation to the k-median
problem of X∗ in (X∗,dtwp |X∗) in O(n2ℓ2d+ n3 + nk + k7ε−5 log5 n) time.

Proof. This is a direct consequence of Lemma 23 and Theorem 24. ◀

We next show how to combine our ideas with Indyk’s sampling technique for bicriteria
k-median approximation [24] to achieve linear dependence on n.

5.2 Linear time algorithm
With Theorem 25 we have ran into the following predicament: We would like to apply linear
time algorithms to the metric closure of dtwp. However, constructing the metric closure
takes cubic time. We circumvent this by applying the following algorithm, which reduces a
k-median instance with n points to two k-median instances with O(

√
n) points, simply by

sampling. More precisely, we will apply this technique twice, so that we will compute the
metric closure only on sampled subsets of size O(n1/4). In this section we want to analyse
the problem of computing a k-median of a set X in the metric space (X,ϕ), where ϕ is
a distance function on X with the guarantee that there is a constant ζ such that for any
x, y ∈ X it holds that ϕ(x, y) ≤ ζϕ(x, y), with a linear running time, and more precisely,
only a linear number of calls to the distance function ϕ, and no calls to ϕ. By Lemma 21 the
results in this section translate directly to ϕ = dtwp |X with ζ = (m+ ℓ)1/p.

Observe, that similar to Theorem 25, the following lemma holds.

▶ Lemma 26. Let X be a set of n points, equipped with a distance function ϕ that can be
computed in time Tϕ. There is a (10+ε, 1)-approximate algorithm for k-median of X in (X,ϕ)
that has constant probability of success and has running time O(n2Tϕ +n3 +nk+k7ε−5 log5 n).

▶ Lemma 27. Let X be a set of n points, equipped with a distance function ϕ, such that
ϕ ≤ ζϕ for some ζ > 0, and Y ⊂ X. A (α, β)-approximation for the k-median problem for
Y in (Y, ϕ|Y ) is a (αζ, β)-approximation for the k-median problem for Y in (Y, ϕ|Y ).

Lemma 27 is a straightforward consequence of Observation 20, as thereby any good
solution in the metric closure of the restriction of ϕ onto Y incurs at most a multiplicative
loss of ζ with respect to the actual metric closure of ϕ.

▶ Theorem 28 ([24]). Let A be a (α, β)-approximate algorithm for k-median in metric spaces
with constant success probability. Then for any ε > 0 the k-Routine in Algorithm 1 provided
with A is a (3(1 + ε)(2 + α), 2β)-approximate algorithm for k-median in metric spaces with
constant success probability.

SoCG 2024
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copti

coptj

Vi Vj

πi

π∗i

τ

τ ∗

Figure 6 Illustration to Proof of Lemma 22: Assigning τ∗ (the (1 + ε)-simplification of τ which
lies inside the Voronoi cell Vi of copt

i ) to π∗
i (the (1 + ε)-simplification of the closest element πi in Vi

to copt
i ) under dtwp |X∗ is at most 4 + 2ε times as bad as assigning τ to copt

i under dtwp.

Algorithm 1 k-median framework.

procedure k-Routine((X,ϕ), ε,A) ▷ A is (α, β)-approximate metric k-median
a← Θ(ε−1

√
log(ε−1)), b← Θ(a2) ▷ Determine the success probabilities.

s← a
√
kn log k

Choose a set S of s points sampled without replacement from X

C ′ ← A((S, ϕ|S))
Select the set M of points x with the bkn log k

s largest values of minc′∈C′ ϕ(x, c′)
return C = C ′ ∪ A((M,ϕ|M ))

end procedure
procedure k-Median((X,ϕ), ε,A) ▷ A is (α, β)-approximate metric k-median

a← Θ(ε−1
√

log(ε−1)), b← Θ(a2) ▷ Determine the success probabilities.
s← a

√
kn log k

Choose a set S of s points sampled without replacement from X

C ′ ← k-Routine((S, ϕ|S), ε,A)
Select the set M of points x with the bkn log k

s largest values of minc′∈C′ ϕ(x, c′)
return C = C ′ ∪ k-Routine((M,ϕ|M ), ε,A)

end procedure

▶ Lemma 29. Let X be a set of n points, and let ϕ be a distance function that can be
computed in Tϕ time for any x, y ∈ X. Let TA(n) be the running time of the (α, β)-
approximate algorithm for k-median on n elements. Then k-Routine has a running time of
O(n2Tϕ + TA(min(n, ε−1

√
kn log(k) log(ε−1)))).

▶ Lemma 30. Let X be a set of n points, and let ϕ be a distance function on X, which can
be computed in time Tϕ, and further there is a constant ζ such that ϕ ≤ ζϕ. Let Y ⊂ X. Let
ε > 0 and let A be the (10 + ε, 1)-approximation for metric k-median of Lemma 26. Then
k-Routine returns a (3(1 + ε)ζ(12 + ε), 2)-approximation of k-median in the metric space
(Y, ϕ|Y ) in time O(|Y |2Tϕ + |Y |2k log(k)ε−2 log(ε−1) + k7ε−5 log5(|Y |))).

Proof. The running time bound follows by Lemma 29 and Lemma 26, together with the fact,
that min(|Y |, ε−1

√
k|Y | log(k) log(ε−1))3 ≤ |Y |2k log(k)ε−2 log(ε−1). The approximation

guarantee follows by Theorem 28, Lemma 27 and Lemma 26. ◀

By combining the presented subroutines, we obtain our two main results of the section.
The first is Theorem 31, which provides a linear time approximation algorithm for k-median
in metric closures, assuming the underlying distance is reasonably well approximated by its
metric closure. The second is Corollary 33, combining Theorem 31 with Lemma 22 to yield
an approximation algorithm for p-DTW with an unoptimized approximation guarantee.
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▶ Theorem 31. Let X be a set of points and let ϕ be a distance function on X with ϕ ≤ ζϕ.
Let ε > 0 and let A be the (10 + ε, 1)-approximation for metric k-median of Theorem 25.
Then k-Median returns a (11ζ2(1 + ε)2(12 + ε), 4)-approximation of k-median of X in the
metric space (X,ϕ) in time O(nk log(k)Tϕ + nk2 log2 k + k7ε−5 log5(n)).

We briefly discuss simplification schemes for curves under p-DTW (for more details refer
to the full version). We reduce the problem of finding an (1 + ε)-approximate simplification
to finding a (1 + ε)-approximation of a center point for a set of ≤ m points, where the
objective is to minimize the sum of the individual distances to the center point raised to the
pth power. Note that for p =∞, the problem is that of finding a minimum enclosing ball,
and for p = 2, the problem can be reduced to that of finding the center of gravity of the set
of discrete points, which can both be solved exactly. Furthermore, we show (Proposition 32)
that for all dtwp, there is a deterministic 2-approximation that is a crucial ingredient for our
approximation algorithms of (k, ℓ)-median under p-DTW.

▶ Proposition 32. For σ = (σ1, . . . , σm) ∈ Xd
m and integer ℓ > 0, one can compute in

O(m2(d+ ℓ+m)) time a curve σ∗ ∈ Xd
ℓ such that

inf
σℓ∈Xd

ℓ

dtwp(σℓ, σ) ≤ dtwp(σ∗, σ) ≤ 2 inf
σℓ∈Xd

ℓ

dtwp(σℓ, σ).

▶ Corollary 33. For any ε > 0 the procedure k-Median from Algorithm 1 can be used to com-
pute a (72(1+ε)2(12+ε)(16mℓ3)1/p, 4)-approximation for (k, ℓ)-median for an input set X of n
curves of complexity m under dtwp in time O(nm3d+nk log(k)ℓ2d+nk2 log2(k)ε−4 log2(ε−1)+
k7ε−5 log5(n)).

Proof. Let X∗ = {τ∗ | τ ∈ X} be a set of 2-approximate optimal ℓ-simplifications of X under
dtwp. By Proposition 32, X∗ can be computed in O(nm3d) time. We now apply Theorem 31
and Lemma 21 to obtain a (12(2ℓ)2/p(1 + ε)2(12 + ε), 4)-approximation of k-median of X∗

in (X∗,dtwp |X∗) in time O(nk log(k)ℓ2d + nk2 log2(k)ε−4 log2(ε−1) + k7ε−5 log5(n)). By
Lemma 22, the computed set is a (6(4mℓ)1/p12(2ℓ)2/p(1 + ε)2(12 + ε), 4)-approximation for
(k, ℓ)-median for X under dtwp. ◀

6 Coreset Application

The theoretical derivations of the previous sections culminate in an approximation algorithm
(Theorem 35) to (k, ℓ)-median that is particularly useful in the big data setting, where n≫ m.
Our strategy is to first compute an efficient but not very accurate approximation(Corollary 33)
of (k, ℓ)-median. Subsequently, we use the approximation to construct a coreset. The coreset
is then investigated using its metric closure, where by virtue of the size reduction we can
greatly reduce the running time of slower more accurate algorithms metric approximation
algorithms, yielding a better approximation.

▶ Theorem 34 ([4, 19]). Given a set X of n points in a metric space, one can compute a
(5 + ε)-approximate k-median clustering of X in O(ε−1n2k3 logn) time. If P is a weighted
point set, with total weight W , then the time required is in O(ε−1n2k3 logW ).

▶ Theorem 35. Let 0 < ε ≤ 1. The algorithm (k, ℓ)-Median in Algorithm 2 is a ((32 +
ε)(4mℓ)1/p, 1)-approximate algorithm of constant success probability for (k, ℓ)-median on
curves under dtwp with a running time of Õ

(
n(m3d+ k2 + kℓ2d) + ε−6d3ℓ3k7 p

√
m6ℓ12

)
,

where Õ hides polylogarithmic factors in n, m, ℓ, k and ε−1.

SoCG 2024
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Algorithm 2 ((32 + ε)(4mℓ)1/p)-approximate (k, ℓ)-median.

procedure (k, ℓ)-Median(X ⊂ Xd
m, p, ε)

ε′ ← ε/46
Compute (O((16mℓ3)1/p), 4)-approximation C ′ (Corollary 33)
Compute bound of sensitivity for each curve x ∈ X from C ′ (Lemma 16)
Compute sample size s← O(ε−2dℓk2(m2ℓ4)1/p log3(mℓ) log2(k) log(ε−1) log(n))
Sample and weigh ε′-coreset S of X of size s (Theorem 17)
Compute a 2-simplification for every s ∈ S resulting in the set S∗ (Proposition 32)
Compute metric closure values ϕ = dtwp |S∗ (Lemma 23)
Return (5 + ε′, 1)-approximation of weighted k-median in (S∗, ϕ) (Theorem 34)

end procedure

Combining the computed ε-coreset with the (k, ℓ)-median algorithm from [16, Theorem 35]
instead, we achieve a matching approximation guarantee and improve the dependency on n.
The improved approximation guarantee from Corollary 36 compared to Theorem 35 comes
at the cost of an exponential dependency in k, as is also present in their results.

▶ Corollary 36. Let 0 < ε ≤ 1 and 0 < δ ≤ 1. There is an ((8 + ε)(mℓ)1/p, 1)-approximation
for (k, ℓ)-median with Θ(1− δ) success probability and running time in

Õ
(
n(m3d+ k2 + kℓ2) + k7 +

(
32k2ε−1 log(1/δ)

)k+2
md
(
m3 + ε−2dℓk2 p

√
m2ℓ4

))
,

where Õ hides polylogarithmic factors in n, m, ℓ, k and ε−1.

Finally, combining Theorem 35 with Theorem 17 yields the following result.

▶ Corollary 37. The algorithm (k, ℓ)-Median in Algorithm 2 can be used to construct an
ε-coreset for (k, ℓ)-median in time Õ

(
n(m3d+ k2 + kℓ2d) + ε−6d3ℓ3k7 p

√
m6ℓ12

)
of size

O(ε−2dℓk2(m2ℓ2)1/p log3(mℓ) log2(k) log(ε−1) log(n)).

7 Conclusion

Our first contribution involves investigating the VC dimension of range spaces characterized by
arbitrarily small perturbations of DTW distances. While our results hold for a relaxed variant
of the range spaces in question, they establish a robust link between numerous sampling
results dependent on the VC dimension and DTW distances. Indeed, our first algorithmic
contribution is the construction of coresets for (k, ℓ)-median through the sensitivity sampling
framework by Feldman and Langberg [22]. Apart from the VC dimension, the crux of
adapting the sensitivity sampling framework to our (non-metric) setting was to use an
already known weak version of the triangle inequality satisfied by DTW. This inequality
prompted us to further explore approximation algorithms by approximating DTW with a
metric. By reducing to the metric case and plugging in our coresets, we designed an algorithm
for the (k, ℓ)-median problem, with running time linear in the number of the input sequences,
and an approximation factor predominantly determined by the weak triangle inequality.

Although our primary motivation lies in constructing coresets, there are additional direct
consequences through sampling bounds that establish a connection between the sample size
and the VC dimension. For instance, suppose that we have a large set of time series, following
some unknown distribution, and we want to estimate the probability that a new time series
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falls within a given DTW ball b. Suppose that we also allow for small perturbations of the
distances, i.e., we only want to guarantee that the estimated probability is realized by some
small perturbations of the distances. This probability can be approximated within a constant
additive error, by considering a random sample of size depending solely on the VC dimension
and the probability of success (over the random sampling) and measuring its intersection
with b. Such an estimation can be used for example in anomaly detection, where one aims to
detect time series with a small chance of occurring, or in time series segmentation, where
diverse patterns may emerge throughout the series.
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