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Abstract
Let Γ be a finite set of Jordan curves in the plane. For any curve γ ∈ Γ, we denote the bounded
region enclosed by γ as γ̃. We say that Γ is a non-piercing family if for any two curves α, β ∈ Γ, α̃ \ β̃

is a connected region. A non-piercing family of curves generalizes a family of 2-intersecting curves in
which each pair of curves intersect in at most two points. Snoeyink and Hershberger (“Sweeping
Arrangements of Curves”, SoCG ’89) proved that if we are given a family Γ of 2-intersecting curves
and a sweep curve γ ∈ Γ, then the arrangement can be swept by γ while always maintaining the
2-intersecting property of the curves. We generalize the result of Snoeyink and Hershberger to the
setting of non-piercing curves. We show that given an arrangement of non-piercing curves Γ, and a
sweep curve γ ∈ Γ, the arrangement can be swept by γ so that the arrangement remains non-piercing
throughout the process. We also give a shorter and simpler proof of the result of Snoeyink and
Hershberger, and give an eclectic set of applications.
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1 Introduction

A fundamental algorithmic design technique in Computational Geometry introduced by
Bentley and Ottmann [4] is line sweep. In the original context the technique was invented,
namely reporting all intersections among n line segments in the plane. The basic idea is to
move a vertical line from x = −∞ to x = +∞, stopping at event points (like end-points of
segments or intersections of two segments) where updates are made. Since then, the line
sweep technique has found a wide variety of applications in Computational Geometry including
polygon triangulation, computing Voronoi diagrams and its dual Delaunay triangulations,
and computing the volume of a union of regions to name a few. The method can also
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45:2 Sweeping Arrangements of Non-Piercing Regions in the Plane

be generalized to higher dimensions. See the classic books on Computational Geometry
[10, 17, 11] for more applications. Besides applications in Computational Geometry, it is
also a useful tool in combinatorial proofs. For a simple example, a one dimensional sweep
can be used to show that the clique cover number and maximum independent set size in
interval graphs are equal. Several other examples appear in Section 3 of this paper. In most
applications, the sweep line moves continuously and covers the plane so that each point in
the plane is on the sweep line exactly once. There are also applications where instead of
sweeping with a line, we sweep with a closed curve like a circle. For instance we can start
with an infinite radius circle and shrink it continuously to its center.

Edelsbrunner and Guibas [12] introduced the topological sweep technique and showed the
advantage of sweeping with a topological line, i.e., curve that at any point intersects each
segment at most once rather than a rigid straight line. They obtained better algorithms to
report all intersection points between lines, which by duality improved results known at that
time for many problems on point configurations. Chazelle and Edelsbrunner [8] were also
able to adapt the topological sweep “in 20 easy pieces” to report the k intersections of n

given lines segments in O(n log n + k) time.
Thus, we can generalize the sweeping technique to sweep a set of pseudolines1 with

a pseudoline. We can generalize further, and do topological sweep with a closed curve.
Generalizing from a set of circles in the plane, where any pair of circles intersect in at most
two points, a collection of simple closed curves is called an arrangement of pseudocircles iff
any pair of curves intersect in at most two points. Note that for any two disks defined by
circles or pseudocircles, D1, D2, the difference D1 \ D2, is a path-connected set.

Showing that it is possible to sweep a collection of pseudolines with one of the pseudolines,
and a set of pseudocircles with one of the pseudocircles is much more challenging than
sweeping with a line or circle. Snoeyink and Hershberger [21] showed in a celebrated paper
that we can sweep an arrangement of 2-intersecting curves with any curve in the family. The
result of Snoeyink and Hershberger has found several applications both in Computational
Geometry as well as in combinatorial proofs. See for example, [13, 2, 5, 1, 9, 3, 20] and
references therein.

It is natural to attempt to generalize the result of Snoeyink and Hershberger to k-
intersecting curves for k > 2, i.e., sweep a set of k-intersecting curves with a sweep curve
that maintains the invariant that the arrangement is k-intersecting throughout the sweep.
Unfortunately, Snoeyink and Hershberger [21] show that this is not possible for k > 3, and
ask at the end of their paper what intersection property the sweep satisfies if we sweep an
arrangement of k-intersecting curves. While we do not fully answer their question, we extend
their result to show that we can maintain a more general property than 2-intersection while
sweeping. Specifically, we show that if the input curves satisfy a topological condition of
being non-piercing, then we can sweep with a curve so that the arrangement satisfies this
property throughout the sweep. For a Jordan curve γ, let γ̃ denote the bounded region
defined by γ. Two Jordan curves α, β are said to be non-piercing if α̃ \ β̃ is a path connected
region, and a family of curves is non-piercing if they are non-piercing pairwise. The main
theorem we prove in this paper is the following.

▶ Theorem 1 (Sweeping non-piercing arrangements). Let Γ be a finite non-piercing family of
curves. Given any γ ∈ Γ and a point P ∈ γ̃, we can sweep Γ with γ so that at any point of
time during the sweep, the curves remain non-piercing and P remains within γ̃.

1 A set L of bi-infinite curves in the plane is a collection of pseudolines the curves in L pairwise intersect
at most once.
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We also give an alternative, and somewhat simpler proof of the fundamental result of
Snoeyink and Hershberger. While our result is not significantly simpler, we believe it leads
to a cleaner analysis using two conceptual tools, namely minimal lens bypassing and minimal
triangle bypassing that may help in other settings involving pseudodisks or non-piercing
regions. Further, the proof of Theorem 1 is quite simple compared to the result of Snoeyink
and Hershberger, and even our simpler proof of their result (Theorem 14). Hence, the main
difficulty in sweeping seems to be maintaining the 2-intersection property.

For many algorithmic applications, especially for several packing and covering problems,
the restriction that an arrangement is non-piercing is not harder than the corresponding
problems for pseudodisks. For example, hypergraphs defined by points and non-piercing
regions enjoy a linear shallow-cell complexity [18] and therefore, admit ϵ-nets of linear size
and O(1)-approximation algorithms for covering problems via quasi-uniform sampling [22, 7].
In particular, it is plausible that the non-piercing condition is the most elementary condition
required for which results that work for pseudodisks extend. For example Sariel Har-Peled [14],
and Chan and Grant [6] showed that for several covering problems involving simple geometric
regions that are not non-piercing, several problems that admit a PTAS for non-piercing
regions [18] become APX-hard.

2 Preliminaries

Let S⃗1 denote a circle centered at the origin and oriented counter-clockwise around the origin.
An oriented Jordan curve γ is a continuous injective map from S⃗1 → R2 that respects the
orientation of S⃗1.i.e., the origin is mapped to a point in the region bounded by γ. Unless
otherwise stated, by a curve, we will mean an oriented Jordan curve.

In the following, we represent by Γ a finite set of oriented Jordan curves. For any γ ∈ Γ,
we denote by γ̃, the bounded region defined by γ. Observe that γ̃ is simply-connected2.

A traversal of a curve is a walk starting at an arbitrary point on the curve, walking in
the direction of its orientation and returning to the starting point. Let A(Γ) denote the
arrangement of the curves in Γ. We assume throughout the paper that the curves are in
general position, i.e., no three curves intersect at a point, any pair of curves intersect in a
finite number of points, and they intersect transversally (i.e., they cross) at these points.
The arrangement consists of vertices (0-dimensional faces), where two curves intersect, arcs
(1-dimensional faces) which are segments of curves between vertices and cells (2-dimensional
faces) which are the connected regions of R2 \ Γ. The boundary of a cell thus consists of
vertices and arcs. Each arc is a portion of a curve, and each vertex is the intersection of two
of the curves. The set of curves which contribute one or more arcs to the boundary of a cell
are said to define the cell. If a curve α contributes an arc to the boundary of a cell C, we
say that C lies on α.

A digon is a cell D in the arrangement of any two curves α, β ∈ Γ so that both α and
β contribute one arc to the boundary of D. Note that D is not necessarily a cell in the
arrangement of all curves in Γ. If a cell in A(Γ) is a digon, we call it a digon cell. A digon
defined by curves α and β is called a lens if it is contained in both α̃ and β̃ and it is called a
negative lens if it is not contained in either α̃ or β̃. A triangle is a cell T in the arrangement
of three curves in Γ so that each curve contributes one arc to the boundary of T . A triangle
need not be a cell in A(Γ). If a cell in A(Γ) is a triangle, we call it a triangle cell.

2 A region r ⊆ R2 is said to be simply-connected if any closed loop can be continuously deformed to a
point inside the region.

SoCG 2024
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Given an arrangement of oriented Jordan curves Γ and a sweeping curve γ ∈ Γ, a property
Π satisfied by the curves in Γ, and a point P ∈ γ̃, a sweep is a continuous movement of γ

until the region it bounds shrinks to the point P so that (i) for any two times t > t′, the
curve γ at time t is contained in the bounded region of γ at time t′, (ii) at each point in
time the arrangement of curves satisfies the property Π. In particular, if the property Π
is that the curves are non-piercing, we want to ensure that the curves remain non-piercing
throughout the process.

Pseudocircles and Non-piercing regions. If the curves in Γ intersect pairwise at at most
two points, we call Γ a family of pseudocircles and in this case the set {γ̃ : γ ∈ Γ} is called
a family of pseudodisks. Let α and β be two curves. For k ∈ N, we say that α and β are
k-intersecting if they intersect in at most k points. We say that α and β are non-piercing
if α̃ \ β̃, and β̃ \ α̃ are path-connected. Otherwise, they are said to be piercing. A finite
collection of curves Γ is said to be non-piercing if the curves in Γ are pairwise non-piercing.

3 Applications

In this section, we describe several applications of Theorem 1. We omit the proofs of some
of the theorems in this section since they only require replacing the result of Snoeyink and
Hershberger (Theorem 14) with our result (Theorem 1).

Every arrangement of non-piercing regions contains a “small” non-piercing region. Pin-
chasi [16] proved that an arrangement of pseudodisks Γ contains a pseudodisk γ s.t. γ is
intersected by at most 156 disjoint pseudodisks in Γ \ {γ}. Using Theorem 1, Pinchasi’s
result extends immediately to non-piercing regions.

▶ Theorem 2. Let Γ be an arrangement of non-piercing curves in the plane. Then, there is
a curve γ ∈ Γ s.t. the number of curves in Γ whose regions are disjoint and intersect γ̃ is at
most 156.

Multi-hitting set with non-piercing regions. Raman and Ray [19] studied Hitting set and
Set cover problems with demands for set systems defined by a set of points and set of non-
piercing regions in the plane. Their proofs rely on showing the existence of suitable graphs.
For one of the results they used the result of Snoeyink and Hershberger and consequently it
applied only to pseudodsisks. Using Theorem 1, it can be extended to non-piercing regions.

▶ Theorem 3. Given an instance (P, S) where P is a set of points in the plane and S is
a collection of non-piercing regions in the plane with demands d : S → N, there is a PTAS
for the Multi-hitting set problem, i.e., selecting the smallest size subset Q ⊆ P s.t. ∀S ∈ S,
Q ∩ S ≥ d(S) when the demands are bounded above by a constant, and otherwise there is a
(2 + ϵ)-approximation algorithm.

Number of hyperedges defined by lines and non-piercing regions. Keller et al., [15]
considered the hypergraph (L, D), where the elements of the hypergraph are defined by a set
L of lines in the plane, and each pseudodisk D ∈ D defines a hyperedge consisting of the
lines in L intersecting a pseudodisk. The authors prove that the number of hyperedges in
such a hypergraph is O(|L|3). By using Theorem 1 in place of the result of Snoeyink and
Hershberger (Theorem 14), and following their result, we obtain the same bound for the
hypergraph defined by lines and non-piercing regions.
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▶ Theorem 4. Let (L, D) be a hypergraph defined by a set L, where each hyperedge is defined
by the set of lines intersecting a non-piercing region. Then, the number of hyperedges of size
t in this hypergraph is O(|L|2), and the total number of hyperedges is O(|L|3). Both bounds
are tight already for pseudodisks.

Construction of Supports. Raman and Ray[18] proved the following:

▶ Theorem 5 (Support for non-piercing regions). Let H be a family of non-piercing regions
and let P be any set of points in the plane. There exists a planar graph G = (P, E) s.t. for
any H ∈ H the subgraph of G induced by H ∩ P is connected.

Using Theorem 1, we obtain a significantly simpler proof.

4 Sweeping

Let Γ be a set of curves in the plane and let γ ∈ Γ be one of the curves called the sweep curve.
By “sweeping of A(Γ) by γ”, we mean the process of continuously shrinking γ̃ over a finite
duration of time until there are no intersection points among the curves in Γ in the interior
of γ̃. In general, we want to do this while maintaining some topological invariants during the
sweep. Snoeyink and Hershberger [21] discretized this countinous sweeping process into a set
of discrete operations each of which can be implemented as a continuous deformation of γ

over a unit time interval. We follow their arguments and likewise describe a set of allowable
discrete sweeping operations. Most of our operations are slight variations on their operations,
except one new operation that we introduce. In order to describe the operations, we need
one more definition. We say that a curve α is visible from the sweep curve γ if there is an arc
τ(u, v) (called the visibility arc) joining a point u on γ with a point v on α whose interior lies
in γ̃ and does not intersect any of the curves in Γ. We define the following discrete sweeping
operations:

1. Take a loop: Let α be a curve that does not intersect γ and such that α is visible from γ

via the visibility arc τ(u, v). We define “taking a loop” as the operation that modifies
γ to γ′ as follows: Taking two points u′, u′′ very close to u on either side to u on γ, we
replace the segment of γ between u′ and u′′ by a curve between u′ and u′′ that lies very
close to τ(u, v) and loops around v crossing α twice. See Figure 1. More formally, γ is
modified to γ′ so that γ̃′ = γ̃ \ (τ(u, v) ⊕ Bϵ) where ⊕ denotes Minkowski sum and Bϵ is
a ball of radius ϵ for an arbitrarily small ϵ. In the rest of the paper, we avoid such formal
definitions and resort to figures for ease of exposition. However, our informal definitions
using figures can easily be formalized.

γ

α

u

v

τ (u, v)

α

u

v

τ (u, v)
γ
′

u
′ u

′′

Figure 1 Taking a loop.

2. Bypass a digon cell: Suppose that a curve α and the sweep curve γ form digon cell D

with vertices u and v. Then, we define the operation of “bypassing D” as the modification
of γ to a curve γ′ that goes around the digon cell D as shown in Figure 2.

SoCG 2024
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γ

α

u v

D

γ
′

α

u vu
′

v
′

D

Figure 2 Bypassing a digon cell.

3. Bypass a triangle cell: Let α and β be two curves that along with the sweep curve γ

define a triangle cell T . We define the operation of “bypassing T” as the modification of
γ to a curve γ′ which goes around T as show in Figure 3.

u v

x

α β

γ u v

x

v
′

u
′

α β

γ′

Figure 3 Bypassing a triangle cell.

4. Bypass a visible vertex: Let v be a vertex lying inside γ̃ where the curves α and β intersect.
If there is a visibility arc τ(u, v) from a point u on γ to v whose interior lies in the interior
of α̃ as well as β̃, then by definition, the interior of τ(u, v) also lies in the interior of γ̃.
In this case, we refer to τ(u, v) as the bypassability curve for v. “Bypassing v” is the
modification of γ to a curve γ′ that takes a loop around v as shown in Figure 4. Note
that unlike the previous operations, the orientation of the curves are important here.

γ

v

α β

u

τ (u, v)

(a) Visibility curve τ(u, v) to v.

γ

v

α β

u

τ (u, v)

(b) The curve γ′ after bypassing vertex v.

Figure 4 Bypassing a visible vertex.

The following Lemma summarizes properties of the above operations that are intuitively
obvious from the figures.

▶ Lemma 6. Let Γ be an arrangement of non-piercing curves with sweep curve γ ∈ Γ. The
operations (i) Take a loop, (ii) Bypass a digon cell, (iii) bypass a triangle cell, and (iv) bypass
a visible vertex, leave the arrangement of curves non-piercing but can change the number of
intersections between γ and other curves. Operation (i) increases the number of intersection
points between γ and the curve α we take a loop on by 2. Operation (ii) decreases the number
of intersections between γ and the other curve α defining the digon cell. Operation (iii) does
not change the number of intersections between γ and other curves. Finally, operation (iv)
increases by 2 the number of intersections between γ and each of the curves α, β defining the
vertex being bypassed.
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▶ Corollary 7. Let Γ be an arrangement of 2-intersecting curves with sweep curve γ ∈ Γ.
Then, applying any of the three operations: taking a loop on a curve that does not intersect γ,
bypassing a digon cell, or bypassing a triangle cell leaves the arrangement two-intersecting.

5 Minimal Digons and Triangles

In this section, we describe a basic operation required in our proofs, namely that of bypassing
minimal digons or minimal triangles in an arrangement A(Γ) of a set of non-piercing curves
Γ. Recall that in general digons or triangles are not cells in the arrangement A(Γ). A digon
L formed by curves α and β is minimal if it does not contain another digon. Equivalently,
L is minimal if the intersection of any curve δ with L, consists of disjoint arcs each having
one end-point on α and one end-point on β. Let L be a minimal digon formed by curves α

and β with vertices u and v. The operation of bypassing L modifies the arcs of α and β as
shown in Figure 5. Formally, the bypassing is done in two steps. First we replace the arc of
α between u and v by the arc of β between u and v and vice versa so that u and v are now
points of tangencies between α and β. Next we get rid of the tangencies by moving α and β

slightly apart from each other around u and v. We also add reference points called uα and
uβ arbitrarily close to u so that α passes between u and uα keeping uβ on the same side as
u, and similarly β passes between u and uβ keeping uα on the same side as u. We define
the reference points vα and vβ close to v analogously. Note that the reference points are not
vertices in the modified arrangment. We claim that the if a minimal digon in a non-piercing
family is bypassed, the modified family obtained is still non-piercing.

α

β

u v

x

x
′

x

α

β

u v

x
′

α

β

u v

uβ

uα

vβ

vα

Figure 5 The operation of digon bypassing of curves α and β.

▶ Lemma 8. Let L be a minimal digon formed by α and β in the arrangement A(Γ) as
above. The modified family of curves obtained by bypassing L is non-piercing. Furthermore,
the number of intersections between α and β decreases by 2 and for any other pair of curves
the number of intersections does not change.

The only new/changed cells in the modified arrangement obtained after bypassing L are
those that contain one of the points u, v, uα, uβ , vα or vβ . Note that there may also be cells
that are identical to an old cell but their defining set of curves has changed - α is replaced
by β or vice versa.

▶ Lemma 9. Only the new cells containing one of the reference points uα, uβ, vα or vβ may
be newly created digon/triangle cells on the sweep curve γ in the arrangement obtained after
bypassing L.

Let T be a triangle on the sweep curve γ defined by the curves α, β ∈ Γ along with γ.
We say that T is a “minimal triangle on γ”, or “base γ” if the intersection of any other curve
δ ∈ Γ \ {α, β, γ} with T consists of a set of disjoint arcs each with one end-point on α and
one end-point on β. The operation of bypassing T modifies α and β so that they go around
T and their intersection u on the boundary of T moves outside γ̃ as shown in Figure 6. We
show next, that bypassing T leaves the arrangement non-piercing.

SoCG 2024
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γ

β
α

u

v

x1

x2

x3

x
′

1

x
′

2

x
′

3

w

x1

x2

x3

x
′

1

x
′

2

x
′

3

γ

β
α

u

v

w

u
′

x1

x2

x3

x
′

1

x
′

2

x
′

3

γ

α

v

w

u
′

u

β

Figure 6 The operation of minimal triangle bypassing of curves α and β.

▶ Lemma 10. Let T be a minimal triangle in an arrangement Γ of non-piercing regions
defined by curves α, β and γ. Then, bypassing T yields a non-piercing arrangement. The
number of intersection points between any pair of curves does not change. However, the
number of intersection points in γ̃ decreases by 1. Thus, the number of intersections in γ̃

decreases by 1.

▶ Corollary 11. Let T be a minimal triangle in an arrangement Γ of 2-intersecting defined
by α, β and γ. Then, bypassing T yields a 2-intersecting arrangement.

Let T be a minimal triangle on γ defined by α and β. Let u, v and w be the vertices of T

defined by the pairs (γ, α), (α, β), and (β, γ) respectively. Note that u is a vertex of a unique
lens defined by β and γ. Let us call the other vertex of this lens u′. We define w′ similarly
so that w and w′ are vertices of a lens defined by α and γ.

α
β

δ

u

u
′

w

w
′

v

x y

α
β

δ

u

u
′

w

w
′

v

x y

v
′

vα vβ

Figure 7 The operation of minimal triangle bypassing of curves α and β.

▶ Lemma 12. If there is at least one other curve δ that intersects the minimal triangle T ,
then only the cells containing the reference points vα or vβ may be digon/triangle cells.

6 Sweeping Non-piercing regions

▶ Theorem 1 (Sweeping non-piercing arrangements). Let Γ be a finite non-piercing family of
curves. Given any γ ∈ Γ and a point P ∈ γ̃, we can sweep Γ with γ so that at any point of
time during the sweep, the curves remain non-piercing and P remains within γ̃.

Proof. Let us call a sweeping operation valid if it does not move P out of γ̃. Note that
vertex bypassing operations are always valid since we can implement them in such a way
that P is not moved out of γ̃. The only possible sweeping operations that may move P out
of γ̃ are therefore digon/triangle bypassing.

If we can always find a valid sweeping operation, we can continue applying them eventually
ending up in a situation where no pair of curves intersects in the interior of γ̃. By Lemma 6,
each sweep operation maintains non-piercing. Thus, for contradiction assume that there
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(a) Bypassability curve for xα. (b) Bypassability curve for u.

Figure 8 If a vertex becomes bypassable after we bypass L, the corresponding bypassability curve
can be modified to a bypassability curve for u in the original arrangement.

exists an arrangement of curves so that there are no valid sweep operations. Among such
examples let Γ be the simplest in the following sense: it lexicographically minimizes (m, n)
where m is the number of curves in Γ that lie in the interior of γ̃ and n is the number
of vertices in A(Γ) that lie in γ̃ (including those that lie on γ). If no pair of curves in Γ
intersects more than twice in γ̃, then by the result of Snoeyink et al., (Theorem 14), there is
at least one valid sweeping operation.

The result of Snoeyink et al., can also be applied if some curve α intersects γ in more
than 2 points, but no pair of curves intersects more than twice in γ̃, since we can treat each
segment of α in γ̃ as a distinct curve and apply their result. We may thus assume that
no curve intersects γ in more than 2 points. Since we assumed that no sweep operations
are valid, there must be a pair of curves in Γ \ {γ} that intersect 3 or more times in γ̃ and
therefore form a negative lens inside γ̃. Recall that a negative lens is a digon that is not
contained in regions bounded by the curves defining it. Let L be a minimal negative lens
(i.e., it does not contain another negative lens) in γ̃. We can assume that L visible from γ,
as otherwise we can bypass it to obtain a simpler non-sweepable arrangement. Suppose that
L is defined by the curves α and β. By minimality of Γ, such a lens should exist. Let u and
v be the two intersection points of α and β on the boundary of L so that α is oriented from
u to v and β is oriented from v to u. Suppose now that we bypass L. The vertices u and v

are lost as a result of the bypassing of L. We claim that no vertex becomes bypassable as a
result of bypassing L. The only vertices that can potentially become bypassable are those
that lie in L. Let xα be a vertex on the boundary of L and that becomes bypassable. We
assume without loss of generality that it lies on the modified curve α. Its bypassibility curve
then arrives at xα from the left of the modified curve α (i.e., from the interior of the new
α̃) which means that such a curve must pass arbitrarily close to either u or v. Assume that
it passes close to u (see Figure 8a), the other case being analogous. We can then modify
it to terminate at u (as shown in Figure 8b) so that it arrives at u from the left of both α

and β (i.e., from the interior of both α̃ and β̃) in the original arrangement. This shows that
u was bypassable before we bypassed the lens L - which by assumption was not the case.
Similarly the vertices on the curve β cannot become bypassable as a result of bypassing L.
An analogous argument also shows that vertices lying in the interior of L (in the original
arrangement) cannot become bypassable after L is bypassed.

We now claim that the new cells created as a result of bypassing L cannot be digon/triangle
cells on γ. The only cells that could potentially be digon/triangle cells after bypassing L

are those that contain one of the points u, v, uα, uβ , vα or vβ . The other cells may have α

replaced by β (or vice versa) on their boundary as result of bypassing L but this does not
change their shape or whether they are on γ. Since they were not digon/triangle cells on γ

before, they are not digon/triangle cells after bypassing L.
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45:10 Sweeping Arrangements of Non-Piercing Regions in the Plane

Figure 9 If a cell with uα is a digon/triangle cell, then it was bypassable in L.

The cells containing u or uα cannot be a digon/triangle cell on γ cell since either of
those situations would require that the point p shown in Figure 9 (formally p is the first
intersection point of α and γ that we arrive at if we start at u on the original curve α and
walk along it in the direction opposite to its orientation) is a vertex of the digon/triangle cell.
However, that implies that in the original arrangement, we could construct a bypassability
curve for u as follows: start at a point on γ arbitrarily close to p that lies to the left of α and
follow α closely until u and terminate there - thus arriving at u from the left of both α and β

(see Figure 9). This implies that u was bypassable in the original arrangement contradicting
our assumptions. By symmetry, the cells containing any of the other points uβ , v, vα and vβ

also cannot be digon/triangle cells. This shows that u must have been bypassable before we
bypassed L, contradicting our assumption that this was not the case. ◀

▶ Remark. While our result states that we can sweep by continuously shrinking γ̃ to a
specified point P in γ̃, the proof can be easily modified to show that we can sweep by
expanding γ̃ so that a specified point Q remains outside γ̃. If Q is chosen to be a point at
infinity, then this shows that we can sweep by expanding γ to infinity retaining the property
that the curves are non-piercing. The only change required in the proof is that a vertex q

defined by curves α and β is said to be bypassable if there is a visibility curve τ from a point
on γ to q s.t. the interior of τ lies outside γ̃, α̃, and β̃.

7 A simpler proof of the theorem of Snoeyink and Hershberger

In this section, we give a shorter alternative proof of the result of Snoeyink and Hershberger
stated in Theorem 14. While our proof follows their general framework, we partition into
cases differently and the analysis of the cases is relatively simpler.

Let Γ be an arrangement of 2-intersecting curves with sweep curve γ, and let P be a
specified point in γ̃. Our goal is to sweep the arrangement of Γ with γ so that the arrangement
remains 2-intersecting throughout the process and P remains inside γ̃ until no curve in Γ \ γ

intersects γ̃. We do not use the operation of bypassing a visible vertex, as this violates
the 2-intersecting property of the curves. We restrict ourselves to the remaining sweeping
operations, namely: (i) taking a loop on a curve that lies entirely in γ̃, (ii) bypassing a digon
cell, and (iii) bypassing a triangle cell.

A sweeping operation is said to be valid if it does not move P out of γ̃. A cell in the
arrangement is said to be sweepable if it is a digon/triangle cell on γ that does not contain P .
Otherwise, it is non-sweepable. If at any point in time, there is a sweepable cell, i.e., there is
a valid sweeping operation, we say that the arrangement is sweepable. Otherwise, we say
that it is non-sweepable.

We will show that the arrangement of any set of 2-intersecting curves with a sweep curve
γ and a point P ∈ γ̃ is sweepable. For contradiction, assume that this is not true, and among
arrangements that are non-sweepable consider the simplest one in the following sense: it
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lexicographically minimizes the tuple (c, n, ℓ) where c is the number of curves in Γ lying
entirely in the interior of γ̃, n = |Γ| and ℓ is the number of intersection points (among curves
in Γ) lying in γ̃ (including those on γ).

Broad idea. In the restricted setting where each pair of curves in Γ \ {γ} intersects at
most once inside γ̃, we can show that the arrangement is sweepable. Therefore, a simplest
non-sweepable arrangement must have at least one pair of curves that intersect twice (i.e.,
they form a digon) in γ̃. In this case, we carefully modify the arrangement by bypassing a
minimal digon or a minimal triangle (defined in Section 5) to obtain a simpler non-sweepable
arrangement, thus arriving at a contradiction.

We start with the following definition that is borrowed from the paper of Snoeyink and
Hershberger [21]. Let T be a triangle defined by curves α and β on γ. We say that T is a
half-triangle with edge β if the side of the triangle defined by β does not intersect any curve
in Γ in its interior. Figure 10 shows a half-triangle with edge β.

γ

T

T
′

β

α

Figure 10 The figure shows a half-triangle T with edge β containing a triangle cell T ′.

▶ Lemma 13. Let Γ be a set of 2-intersecting curves with sweep curve γ s.t. all curves in
Γ \ {γ} intersect γ, and any pair of curves in Γ \ {γ} intersect at most once in γ̃. Then,
there is a sweepable cell on γ, i.e., there is either a digon/triangle cell on γ that does not
contain P .

The proof of the main result in this section (Theorem 14) follows the structure of
Theorem 1, i.e., proof for non-piercing regions. Unlike in the non-piercing case however, since
the curves are 2-intersecting, no pair of curves form a negative lens. Let L be a minimal lens
in a simplest non-sweepable arrangement Γ defined by curves α, β ∈ Γ. We split the proof
into two cases: In the first case, there is a curve δ ∈ Γ \ {α, β} intersecting L. In this case, we
show that we can modify the arrangement to obtain a simpler non-sweepable arrangement,
thus arriving at a contradiction. If no curve in Γ \ {α, β} intersects L, then we split the proof
into further sub-cases: Since Γ was assumed to be a simplest non-sweepable arrangement,
bypassing L results in a sweepable arrangement. Thus, there is either a digon/triangle cell
on γ. If the a newly created cell is a digon cell on γ, we show that removing the curve
forming the digon cell results in a simpler non-sweepable arrangement. If we create a triangle
cell, we require a slightly more elaborate modification to obtain a simpler non-sweepable
arrangement. Thus, in all cases, we obtain a contradiction, and hence there is always either
a digon/triangle cell on γ.

▶ Theorem 14 ([21]). Given any family of 2-intersecting curves Γ, a curve γ ∈ Γ and a
point P ∈ γ̃, Γ can be swept by γ using the following operations: i) passing a digon cell, ii)
passing a triangle cell and iii) taking a loop, so that at any point in time during the sweep,
the family of curves remain 2-intersecting, and P lies in the interior of γ̃.
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Proof. Suppose the statement is not true. Consider a simplest non-sweepable family Γ with
sweep curve γ i.e., the simplest family for which the statement does not hold. Every curve
in this family must intersect γ̃ as otherwise we can remove it from Γ to obtain a simpler
non-sweepable family. If there is a curve α lying entirely in γ̃ it cannot be visible from γ,
as otherwise we could take a loop on α (while still keeping P within γ̃) to obtain a simpler
non-sweepable family - since this decreases the number of regions contained in γ. If α is
not visible from γ, Γ′ = Γ \ {α} is a simpler non-sweepable arrangement contradicting the
minimality of Γ. If the curves in Γ \ {γ} pairwise intersect at most once in γ̃, then by
Lemma 13, the arrangement is sweepable.

Therefore, in the arrangement Γ, we can assume that (i) each curve in Γ \ {γ} intersects
γ twice, and there is a pair of curves intersecting twice in γ̃, i.e., they form a digon in γ̃, (ii)
each minimal lens in γ̃ is visible from γ, and (iii) there is either no digon/triangle cell on γ,
or there is exactly one digon/triangle C cell in the arrangement, and C contains the point P .

Let L be a minimal digon contained in γ̃ and suppose that L is defined by the curves
α, β ∈ Γ \ {γ} and has vertices u and v. L must be visible from γ, as otherwise by Lemma 8,
bypassing L results in a simpler non-sweepable arrangement. Let a1 and a2 be the intersection
points of α with γ s.t. the points a1, u, v, a2 lie in cyclic order along α.Similarly, let b1 and
b2 be the intersection points of β and γ so that b1, u, v, b2 appear in cyclic order along β.
See Figure 11. Let uα, uβ , vα and vβ be the reference points for bypassing lens L. We now
split the proof into two cases depending on whether L is non-empty, i.e., there is a curve
δ ∈ Γ \ {α, β, γ} that intersects L, or is empty, i.e., there is no such curve.

u v

a1 a2

b1 b2
x

yα

β

(a) A minimal digon that is non-empty.

u v

a1 a2

b1 b2

α

β

(b) A minimal digon that is empty.

Figure 11 The two cases in the proof. Either L is empty or non-empty.

u v

a1 a2

b1 b2
x

y

uβ

uα

vβ

vα

d2

T
α

β

δ

(a) A triangle T formed on
bypassing L.

u v

a1 a2

b1 b2

x

y

d2

(b) The minimal triangle
shaded.

u v

a1 a2

b1 b2

x

y

d1

d2

β

δ

xα

xδ

(c) Bypassing the minimal
triangle.

Figure 12 The operations when L is non-empty.
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Case 1: L is non-empty. The proof of this case requires the following technical lemma.

▷ Claim 15. There exists a curve δ ∈ Γ that intersects L and such that intersections of any
of the other curves with δ within γ̃ lie in L. In other words, there are no intersection points
on δ that lie in γ̃ but outside L.

Since Γ was not sweepable, all cells on γ excluding the cell containing P have at least 4
vertices. Now, consider the arrangement Γ′ = Γ \ {δ}, where δ is the curve guaranteed by
Claim 15. We claim that Γ′ remains non-sweepable. Note that the arc of δ between d2 and y

separates two cells C1 and C2. Either one of them contains P , or both cells have at least
four vertices. Thus, the new cell created by merging these two cells upon removal of δ is
non-sweepable. An analogous statement holds for the arc of δ between d1 and x. Finally note
that the remaining new cells created as a result of removing the portion of δ between x and
y are not on cells on γ since they lie within the lens L. Thus, Γ′ is a simpler non-sweepable
arrangement contradicting the minimality of Γ.

Case 2. L is empty. In this case again, we obtain a contradiction by finding a simpler non-
sweepable arrangement. Since we assumed that Γ is a simplest non-sweepable arrangement,
bypassing L must create a sweepable cell on γ.

Let Du be the cell in Γ contained in γ̃ with u as a vertex, and has portions of the arcs
[a1, u] and [b1, u] as two sides. Similarly, let Dv be the cell containing vertex v, and portions
of the arcs [a2, v] and [b2, v] as sides. By Lemma 9, the only digon/triangle cells on γ in
the new arrangement can be the cells that contain one of the reference points uα, uβ , vα, or
vβ (See Figure 5). Since L was empty, there is a single cell containing uα and vα. Let Cα

denote this cell. Similarly, let Cβ denote the cell containing the reference points uβ and vβ .
We treat Cα and Cβ independently. Let C denote one of these regions. If C is non-

sweepable, we don’t do anything. If C is a digon cell not containing P , we throw away the
corresponding curve (α or β). If C is a triangle cell not containing P , we do a more elaborate
modification of the arrangement described below.

We first need some terminology. Let R be a digon bounded by the sweep curve γ and
another curve µ with vertices b1 and b2. A proper chord λ of R is an arc of another curve
δ which intersects the boundary of R exactly once on µ and once on γ. We say that a
sequence of proper chords λ1, · · · , λk are parallel if for i = 1, . . . , k − 1, the region of R

between consecutive chords λi and λi+1 is a four-sided cell in the arrangement that does
not contain P . For each i, let δi be the curve containing λi and let ∆µ denote the sequence
∆µ = (δ1, . . . , δk).

▶ Lemma 16. It is possible to modify the curves in ∆µ = (δ1, · · · , δk), possibly discarding
some of them, so that i) the modified arrangement is as simple, or simpler than Γ, ii) the
new digon/triangle cells created in the modified arrangement in γ̃ have either b1 or b2 as a
vertex, and iii) there are no sweepable digon/triangle cells in γ̃ on µ other than those having
b1 or b2 as one of the corners.

Figures 13 show the modification of the curves in ∆µ.
Handling triangle cells Cα and/or Cβ: Suppose that Cα is a triangle cell T that does

not contain P , defined by the curves α, γ and δ1. Let R be the digon defined by α and
γ that contains T . Without loss of generality let a1, c1, d1 denote the three vertices of T ,
where c1 and d1 are the intersection points of δ1 with γ and α, respectively. We first apply
Lemma 16 with µ = α, R, and we let ∆α be a maximal sequence of parallel curves in R

starting with δ1. Let ∆α = (δ′
1, . . . , δ′

ℓ) denote the sequence of parallel curves after the
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b1 b2

γ

δ1 δ2 δ3 δ5δ4

(a) Parallel curves on µ.

b1 b2

γ

δ1 δ2 δ3 δ5δ4

(b) Triangle bypassing on δ2, δ3, and removing δ5.

Figure 13 Parallel curves on µ, and operations to remove triangles and digons on µ.

application of Lemma 16. By Lemma 16, the possible sweepable triangle cells in the new
arrangement are those in γ̃ that contain a1 or a2 as a vertex, i.e., the cells containing reference
points x1, y1, x2 or y2 (See Figure 14a). The cell containing reference point y1 cannot be a
sweepable cell it either contains P , or there is at least one more curve other than γ defining
this cell that does not intersect α in γ̃. Similarly, the cell containing the reference point
x2 cannot be a sweepable cell, as this would imply that the cell in Γ containing x2 was
already sweepable. Therefore, only the cells containing reference points x1 or y2 can be
sweepable triangle cells. Observe that α, γ and δ′

ℓ form a minimal triangle with base δ′
ℓ. By

Corollary 11, bypassing this minimal triangle yields a simpler non-sweepable arrangement of
2-intersecting curves such that the two cells with reference points x1 and y1 merge to create
a non-sweepable cell, and the cell containing reference point y2 becomes a 4-sided cell. See
Figure 14b. Thus, we obtain a simpler non-sweepable arrangement. If Cβ is a triangle cell,
we treat it similarly. Thus, in all cases, we obtain a simpler non-sweepable arrangement,
contradicting the assumption that Γ was a simplest non-sweepable arrangement. Hence, we
can apply one of the sweep operations, and by Corollary 7, each sweep operation preserves
the 2-intersecting property of the curves. ◀

α

a1

y1

x1

y2

x2 a2

∆
′

γ

(a) α is a side of a triangle on bypassing
L. The grey arcs are the parallel arcs.

α

a1

y1

x1

y2

x2 a2

∆
′

γ

(b) Bypass the minimal triangle with base
δ′

ℓ. The curves γ, α intersect outside δ′
ℓ.

Figure 14 Bypassing a minimal triangle.
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