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paths in ordered hypergraphs. In contrast to the geometric setting, we show that this abstract
saturation number is always equal to the corresponding Ramsey number.
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1 Introduction

Two types of problems are of central significance in extremal combinatorics. Turán-type
problems originate from the work of Turán [19] (and earlier Mantel [14]) that determines the
maximum number of edges in a graph without a k-clique. Ramsey-type problems begin with
the work of Ramsey [16] which states that any large enough graph must contain either a
k-clique or a k-independent set.

In 1964, Erdős, Hajnal, and Moon [4] investigated a variation of Turán’s theorem, called
the saturation problem, where one aims to minimize the number of edges in a graph that does
not contain a k-clique, but the addition of any edge to this graph yields a k-clique. More
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46:2 Saturation Results Around the Erdős–Szekeres Problem

generally, saturation problems can be considered in various settings, see our incomplete list
[9, 13, 10, 7, 2]. Typically, an object that is maximal with respect to certain property is
said to be saturated. While the classical extremal problems such as Turán-type problems or
Ramsey-type problems ask for certain maximum quantity possibly achieved, their saturation
versions aim at the corresponding minimum quantity possibly achieved by saturated objects.

The Erdős–Szekeres problem is a classical extremal problem in combinatorial geometry
proposed in the seminal paper [5] back to 1935. It asks for the maximum size of a planar
point set that does not contain k points in convex position. In this paper, we consider the
saturation version of the Erdős–Szekeres problem, as well as the saturation versions of the
related Ramsey-type results in [5] and some later graph-theoretic generalizations.

1.1 The Erdős–Szekeres lemma on monotone sequences
Let rams(k, ℓ) be the maximum length of a sequence of distinct real numbers that is (k, ℓ)-
seq.-free (i.e. containing no increasing subsequence of length k or decreasing subsequence of
length ℓ). The first result in [5], later known as the Erdős-Szekeres lemma, states that

rams(k, ℓ) = (k − 1)(ℓ− 1). (1)

Like most problems considered in this paper, this extremal quantity can be considered as
Ramsey-type where the edge coloring is whether each pair is increasing or decreasing.

In [2], the authors studied the saturation version of (1). In their setting, a sequence is
called (k, ℓ)-seq.-saturated if it is (k, ℓ)-seq.-free and the insertion of any distinct real number
anywhere into this sequence yields such a monotone subsequence. The saturation number
sats(k, ℓ) is the minimum length of a sequence that is (k, ℓ)-seq.-saturated. It is obvious that
sats(k, ℓ) ≤ rams(k, ℓ). Interestingly, the saturation number and the Ramsey number are
equal in this setting.

▶ Theorem 1 (Damásdi et al. [2]). For any integers k, ℓ ≥ 1, we have sats(k, ℓ) = rams(k, ℓ).

For a new proof of Theorem 1 see the full version of the paper [1]. Our proof leads to a
hypergraph variation of this result, see Theorem 5.

1.2 The Erdős–Szekeres theorem on cups-versus-caps
The main objects we consider in this paper are planar point sets. To simplify our discussion,
a planar point set is said to be generic if it is in general position (meaning without three
collinear points throughout this paper) and its members have distinct x-coordinates. A point
p is said to be generic with respect to a set P if P ∪ {p} is a generic point set.

For a sequence of generic points p1, . . . , pn ordered increasingly with respect to x-
coordinates, we say that p1, . . . , pn form a cup (resp. cap) if the slopes of the lines pipi+1
(for 1 ≤ i < k) form an increasing (resp. decreasing) sequence. Moreover, a k-cup refers to a
cup of size k and an ℓ-cap refers to a cap of size ℓ. Let ramc(k, ℓ) denote the maximum size
of a generic planar point set that is (k, ℓ)-cup-cap-free (i.e. containing neither a k-cup nor an
ℓ-cap). The second result in [5], later known as the Erdős–Szekeres theorem, states that

ramc(k, ℓ) =
(

k + ℓ− 4
k − 2

)
. (2)

In this paper, we study the saturation version of (2). A generic planar point set is said
to be (k, ℓ)-cup-cap-saturated if it is (k, ℓ)-cup-cap-free and the addition of any generic point
with respect to the set yields a k-cup or an ℓ-cap. The saturation number satc(k, ℓ) is defined
as the minimum size of a point set that is (k, ℓ)-cup-cap-saturated. In contrast to Theorem 1,
we will show that satc(k, ℓ) is in general significantly smaller than ramc(k, ℓ).
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▶ Theorem 2. For all integers k, ℓ ≥ 4, we have

2k + 2ℓ− 14 ≤ satc(k, ℓ) ≤
(

k + ℓ− 4
k − 2

)
− 2

(
k + ℓ− 8

k − 4

)
.

Here, we use the conventions
(−1

0
)

= 0 and
(0

0
)

= 1. In Section 3 where this theorem
is proven, we also determine satc(k, ℓ) for small values of the pair (k, ℓ). For example, we
establish that satc(4, 5) = 8 < 10 = ramc(4, 5), which is the lexicographically smallest case
where “satc(k, ℓ) < ramc(k, ℓ)” happens.

1.3 The Erdős–Szekeres problem on convex polygons
Another landmark in the paper [5] of Erdős and Szekeres is the following famous conjecture.

▶ Conjecture 3. Every set of 2n−2 + 1 points in the plane that are in general position
contains n points in convex position, and this bound is tight in the worst case.

Denote by ramg(n) the maximum size of a planar point set in general position that is
n-gon-free (i.e. containing no n points in convex position). The Erdős–Szekeres conjecture
can be phrased as

Is it true that ramg(n) = 2n−2 for all n ≥ 2?

In a subsequent paper [6] from 1961, Erdős and Szekeres constructed a generic point set of
size 2n−2 that is n-gon-free for all integers n ≥ 2. Thus, for any integer n ≥ 2, we have

ramg(n) ≥ 2n−2. (3)

Notice that ramg(n) ≤ ramc(n, n), since any n-cup or n-cap is an n-gon. Hence, (2) implies
that ramg(n) ≤

(2n−4
n−2

)
= 4n−o(n). There have been only small improvements of this upper

bound, until Suk [17] made a breakthrough in 2017 by proving that ramg(n) ≤ 2n+o(n) (see
also [11]). The Erdős–Szekeres conjecture has been verified for n ≤ 6 in [18].

We consider the saturation version of the Erdős–Szekeres problem. A planar point set is
n-gon-saturated if it is n-gon-free while any q /∈ P with P ∪ {q} being in general position is
part of an n-gon in P ∪ {q}. Denote by satg(n) the smallest size of an n-gon-saturated set.
The main result of our paper is that satg(n) is significantly smaller than ramg(n) in general.

▶ Theorem 4. For any integer n ≥ 7, we have satg(n) ≤ 7
8 · 2

n−2 ≤ 7
8 · ramg(n).

We prove this theorem by modifying the original construction of [6], replacing the sub-
structures in their point set with smaller ones we found in Theorem 2. The proof also shows
that the original Erdős–Szekeres construction in [6] is indeed saturated. As far as we know,
this is widely believed (for otherwise the Erdős–Szekeres conjecture would be disproved
immediately) but never been verified in the literature since its existence from 1961.

1.4 Graph-theoretic generalizations
The increasing or decreasing sequences and cups or caps can be generalized to monotone
paths in a graph-theoretic setting. Inside any r-uniform complete hypergraph H with a linear-
ordered vertex set V (H), a monotone path of length k (or a monotone k-path) is a subgraph of
H with vertices being v1 < v2 < · · · < vk+r−1 and (hyper)edges being {vi, vi+1, . . . , vi+r−1}
for i = 1, . . . , k. Here we define the length of a monotone path as the number of its edges
rather than its vertices.

SoCG 2024
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Let ram(r)
p (k, ℓ) be the maximum size of an r-uniform vertex-ordered complete hypergraph

H that is (k, ℓ)-path-free (i.e. each edge is colored by one of red and blue such that H contains
neither a red monotone k-path nor a blue monotone ℓ-path). The determination of ram(r)

p (k, ℓ)
is a Ramsey-type problem that connects to the Erdős–Szekeres results in the following way:
Given a generic planar point set P , we can create a 3-uniform complete hypergraph HP

whose vertices are P ordered by their x-coordinates. Color each triple of HP red or blue
based on whether it is a cup or a cap. Then a monochromatic monotone ℓ-path in HP

corresponds to an (ℓ + 2)-cup or cap. So, ram(3)
p (k, ℓ) ≥ ramc(k + 2, ℓ + 2). Similarly,

ram(2)
p (k, ℓ) ≥ rams(k + 1, ℓ + 1). The Ramsey numbers ram(r)

p (k, ℓ) are extensively studied,
and their bounds are considered as abstract generalizations of (1) and (2). See [3, 8, 15] for
more details.

Another major question investigated in this paper is the saturation problem for monotone
paths. We say that a 2-colored vertex-ordered complete hypergraph H is (k, ℓ)-path-saturated
if H contains neither red monotone k-path nor blue monotone ℓ-path, and any H+ properly
containing H contains either a red monotone k-path or a blue monotone ℓ-path. Here,
H+ is again a 2-colored vertex-ordered complete hypergraph such that the containment
preserves both the ordering and the coloring. The saturation number sat(r)

p (k, ℓ) is defined
to be the minimum size of an r-uniform 2-colored ordered complete hypergraph that is
(k, ℓ)-path-saturated. In contrast to the geometric setting of Theorems 2 and 4, we show that
this abstract saturation number is always equal to the Ramsey number.

▶ Theorem 5. For any integers r ≥ 2 and k, ℓ ≥ 1, we have sat(r)
p (k, ℓ) = ram(r)

p (k, ℓ).

The rest of this paper is organized as follows: In Section 2, we use a labeling technique of
Moshkovitz and Shapira [15] to prove Theorem 5 completely. Section 3 is devoted to the
saturation problem for cups-versus-caps. In particular, we prove Theorem 2 there. Section 4
is devoted to the proof of Theorem 4. Finally, we include remarks and open problems in
Section 5. In the arxiv version of this paper [1] we also show a new proof of Theorem 1 using
the labeling technique.

2 Monotone paths in ordered hypergraphs

In this section, we prove Theorem 5. Our proof is based on an enumerative result of
Moshkovitz and Shapira [15]. For ease of notation, we only establish the result for monotone
paths of the same lengths in 2-colored hypergraphs (i.e. k = ℓ = n), our proof is easily
generalizable to the cases when the desired monotone paths have different lengths for different
(possibly even more than two) colors.

Set P2(n) def= [n]2. With an abuse of notations, for any x = (x1, x2), y = (y1, y2) ∈ P2(n),
write x ⊆ y if x1 ≤ y1 and x2 ≤ y2. Inductively, we define Pk(n) for k = 3, 4, . . . as follows:

A subset F ⊆ Pk−1(n) is in Pk(n) if S ∈ F implies S′ ∈ F for any S′ ⊆ S.
In other words, Pk(n) contains those subsets of Pk−1(n) that are closed under taking subsets.
If we consider the Pk−1(n)-s as a poset with respect to ⊆, then Pk(n) is the family of
down-sets of Pk−1(n). We refer to this defining condition of Pk(n) as the hereditary property.

Given any red-blue colored r-uniform complete ordered hypergraph H on the vertex
set [N ] containing no monochromatic monotone path of length n, we assign labels to each
k-tuple with 1 ≤ k ≤ r − 1 in V (H) as follows:

For every (r − 1)-tuple of vertices v1 < · · · < vr−1, set L(v1, . . . , vr−1) def= (1 + ℓr, 1 + ℓb),
where ℓr (ℓb) is the length of the longest red (blue) monotone path ending at v1, . . . , vr−1.
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For k = r − 2, r − 3, . . . , 1 and every k-tuple of vertices v1 < · · · < vk, recursively define

L(v1, . . . , vk) def= {S ∈ Pr−k(n) : S ⊆ L(v0, v1, . . . , vk) for some v0 < v1}.

Obviously, the labels of k-tuples are elements in Pr+1−k(n) for 1 ≤ k ≤ r − 1. The following
result, albeit not specifically stated, was proved by Moshkovitz and Shapira (Lemma 3.2
in [15]). Its proof essentially relies on the hereditary property of P.

▶ Lemma 6. For each 1 ≤ k ≤ r − 1 and every v1 < v2 < · · · < vk+1 in V (H), we have

L(v1, . . . , vk) ̸⊇ L(v2, . . . , vk+1).

In particular, u ̸= v implies L(u) ̸= L(v), and so ram(r)
p (n) ≤ |Pr(n)|.

We use abbreviated notations ram(r)
p (n) def= ram(r)

p (n, n) and sat(r)
p (n) def= sat(r)

p (n, n).
Moshkovitz and Shapira also provided constructions (Lemma 3.4 in [15]) to prove that

ram(r)
p (n) = |Pr(n)|. (4)

Now we are ready to state the following result. Together with (4) it implies Theorem 5.

▶ Theorem 7. For any integers r ≥ 2 and n ≥ 1, we have sat(r)
p (n) = |Pr(n)|.

If we have less than |Pr(n)| vertices, then after creating the vertex labeling, one of the
possible labels is missing. We will extend the hypergraph and its coloring so that the new
vertex receives one of the missing labels while the labels of other vertices do not change.

Proof of Theorem 7. Let H be a red-blue colored r-uniform complete ordered hypergraph
H on the vertex set V (H) = [N ] containing no monochromatic monotone path of length n.
Suppose N < |Pr(n)|. Our goal is to show that H is not saturated. Let L be the labeling
for H as described earlier in this section. Since N < |Pr(n)|, there exists a missing label
M ∈ Pr(n) with M ̸= L(v) for each vertex v ∈ V (H).

Picking the position. Let w be the largest vertex in V (H) such that L(w) ⊆M . Such a w

exists because L(1) takes the minimum value of Pr(n) with respect to “⊆”. We construct
a new r-uniform complete ordered hypergraph H+ by adding a new vertex v+ into V (H)
right after w and keeping the colors of the edges originally in H. If suffices to show that we
can color the additional edges of H+ without creating monochromatic monotone paths of
length n.

Coloring the edges. We begin with assigning potential labels for the hypergraph H+.
For each 1 ≤ k ≤ r − 1 and k-tuple v1 < · · · < vk in V (H+), assign a potential label
L̃(v1, . . . , vk) ∈ Pr+1−k(n) with

(i) L̃(v1, . . . , vk) ̸⊇ L̃(v2, . . . , vk+1) for all v1 < · · · < vk+1 in V (H+), and
(ii) L̃(v1, . . . , vk) = L(v1, . . . , vk) for all v1 < · · · < vk from the original V (H).

Define L̃(v+) def= M , the missing label, and L̃(v) def= L(v) for all v ∈ V (H). By Lemma 6 and
our construction of H+, the conditions (i) and (ii) are satisfied for k = 1.

Inductively, suppose the potential labels for all (k − 1)-tuples have been assigned, and
we are in the position to define L̃(v1, . . . , vk) for every v1 < · · · < vk in V (H+). Due to
(ii), we have to set L̃(v1, . . . , vk) def= L(v1, . . . , vk) if this k-tuple comes from V (H). For

SoCG 2024



46:6 Saturation Results Around the Erdős–Szekeres Problem

other k-tuples containing v+, we define L̃(v1, . . . , vk) as an arbitrary fixed element from
L̃(v2, . . . , vk) \ L̃(v1, . . . , vk−1). Since condition (i) is satisfied for k − 1, such an element
always exists. In fact, for any v1 < · · · < vk in V (H), we also have

L̃(v1, . . . , vk) ∈ L̃(v2, . . . , vk) \ L̃(v1, . . . , vk−1).

Indeed, due to L̃ = L on V (H), the only thing we need to check is that L(v1, . . . , vk) ̸∈
L(v1, . . . , vk−1). And this follows from the definition of L and Lemma 6.

We need to check that condition (i) is satisfied for k. Suppose for the sake of contradiction
that L̃(v2, . . . , vk+1) ⊆ L̃(v1, . . . , vk) for v1 < · · · < vk+1. Then by hereditary property,

L̃(v1, . . . , vk) ∈ L̃(v2, . . . , vk) =⇒ L̃(v2, . . . , vk+1) ∈ L̃(v2, . . . , vk),

which contradicts the fact that L̃(v2, . . . , vk+1) ∈ L̃(v3, . . . , vk+1)\L̃(v2, . . . , vk). So, (i) holds.
We conclude that the potential labels L̃ can be recursively assigned.

Now, we can color the new edges using L̃, the potential labels. For any edge v1 · · · vr ∈
E(H+) with v+ ∈ {v1, . . . , vr}, the condition (i) implies that L̃(v1, . . . , vr−1) ̸⊇ L̃(v2, . . . , vr)
as elements in P2(n) = [n]2. So, at least one coordinate of L̃(v2, . . . , vr) is larger than that
of L̃(v1, . . . , vr−1). Color v1 · · · vr red if the first coordinate is larger, and blue if the second
coordinate is larger. For edges that are both red and blue, we arbitrarily assign a color.

Finishing the proof. We show that H+ contains no monochromatic monotone path of length
n. For every (r − 1)-tuple v1 < · · · < vr−1 in V (H+), set L+(v1, . . . , vr−1) def= (1 + ℓr, 1 + ℓb)
where ℓr (resp. ℓb) is the length of the longest red (resp. blue) monotone path in H+ ending
at v1, . . . , vr−1. We shall prove that

L+(v1, . . . , vr−1) ⊆ L̃(v1, . . . , vr−1) for all v1 < · · · < vr−1 in V (H+). (5)

Since L̃(v1, . . . , vr−1) takes its value in P2(n) = [n]2, Theorem 7 follows from (5).
For a contradiction, suppose (5) is violated by some (r − 1)-tuple in V (H+). Let

v1 < · · · < vr−1 be the smallest such tuple under the lexicographic order. According to the
definition of L+, this violation is witnessed by a monochromatic (say red) monotone path
P ending at v1, . . . , vr−1. Let e

def= v0v1 · · · vr−1 be the last edge and ℓ be the length of this
red path. Then 1 + ℓ is larger than the first coordinate of L̃(v1, . . . , vr−1). The minimum
assumption on v1, . . . , vr−1 implies that

L+(v0, . . . , vr−2) ⊆ L̃(v0, . . . , vr−2). (6)

We then separate our indirect proof into two cases:
If v+ ∈ e, then L̃(v1, . . . , vr−1) has a larger first coordinate than L̃(v0, . . . , vr−2) since e

is red, and so ℓ is larger than the first coordinate of L̃(v0, . . . , vr−2). On the other hand,
notice that P \ {e} is a red monotone path of length ℓ− 1 ending at v0, v1, . . . , vr−2. This
means the first coordinate of L+(v0, . . . , vr−2) is at least ℓ, a contradiction to (6).
If v+ /∈ e, then the vertices v0, v1 . . . , vr−1 are all in V (H). From condition (ii) of the
potential labeling and (6) we obtain L(v0, . . . , vr−2) = L̃(v0, . . . , vr−2) ⊇ L+(v0, . . . , vr−2).
Again, the path P \ {e} implies that the first coordinate of L+(v0, . . . , vr−2) is at least ℓ,
and so there is a red monotone path in H ending at v0, . . . , vr−2 of length at least ℓ− 1.
Together with e, we have a red monotone path in H ending at v1, . . . , vr−1 of length at
least ℓ. It follows that the first coordinate of L(v1, . . . , vr−1) is at least 1 + ℓ, which is
larger than the first coordinate of L̃(v1, . . . , vr−1). This contradicts condition (ii) of the
potential labeling. ◀
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3 Saturation for cups-versus-caps

In this section, we study the saturation problem for cups and caps. Recall that the definitions
directly imply satc(k, ℓ) ≤ ramc(k, ℓ) for any integers k, ℓ. By reflecting over any horizontal
line, it is easily seen that satc(k, ℓ) = satc(ℓ, k).

The study begins with a basic property of (k, ℓ)-cup-cap-saturated sets.

▶ Proposition 8. Let k, ℓ ≥ 2 be integers. If P is a (k, ℓ)-cup-cap-saturated set, then
there exist k − 1 points of P that form a (k − 1)-cup, and
there exist ℓ− 1 points of P that form an (ℓ− 1)-cap.

Proof. Due to the symmetry, it suffices to prove the first statement. Assume, for the sake of
contradiction, that P ⊂ R2 is a (k, ℓ)-cup-cap-saturated set without any (k − 1)-cup subset.
Choose an arbitrary point q such that

the x-coordinate of q is bigger than every point from P , and
the y-coordinate of q is big enough so that q is above every line spanned by P .

Then P ∪ {q} is generic and p1, p2, q form a 3-cup for any choice of p1, p2 ∈ P . This implies
that P ∪ {q} is (k, ℓ)-cup-cap-free, which contradicts the saturation property of P . ◀

We work out some values of satc(k, ℓ) where at least one of k and ℓ is small.

▶ Proposition 9. Let ℓ be a positive integer.
satc(1, ℓ) = 0 = ramc(1, ℓ) for any ℓ ≥ 1.
satc(2, ℓ) = 1 = ramc(2, ℓ) for any ℓ ≥ 2.
satc(3, ℓ) = ℓ− 1 = ramc(3, ℓ) for any ℓ ≥ 3.
satc(4, 4) = 6 = ramc(4, 4).

Proof. The facts satc(1, ℓ) = 0 and satc(2, ℓ) = 1 are strightforward corollaries of the
definitions. From Proposition 8 we deduce that ramc(3, ℓ) = ℓ − 1 ≤ satc(3, ℓ), and so
satc(3, ℓ) = ℓ− 1.

Obviously, satc(4, 4) ≥ 3. Let P = {(x1, y1), . . . , (xm, ym)} be a generic (4, 4)-cup-cap-free
set with x1 < · · · < xm and 3 ≤ m ≤ 5. Consider q

def= ( x2+x3
2 , y) such that P ∪{q} is generic.

If q is very high up (i.e. above any line formed by two points of P ) and P ∪ {q} is not
(4, 4)-cup-cap-free, then the only case to make this happen is that (x3, y3), (x4, y4), (x5, y5)
form a 3-cup. Indeed, q has to be part of some 4-cup or 4-cap in P ∪ {q}, yet it cannot
make a 4-cap since the x-coordinate of q is between x2 and x3. It follows that P ∪ {q} is
(4, 4)-cup-cap-free if y is chosen to make q very low below (i.e. below any line formed by two
points of P ). We conclude that satc(4, 4) ≥ 6 = ramc(4, 4), and so satc(4, 4) = 6. ◀

The following result gives the first example with satc(k, ℓ) < ramc(k, ℓ), which is crucial
for our proof of the upper bound in Theorem 2.

▶ Theorem 10. We have satc(4, 5) = 8 < 10 = ramc(4, 5).

Before proving Theorem 10, we need some preparation. For any point p = (a, b) in
the plane, set x(p) def= a. When denote by p1 · · · pm an m-cup or cap, we implicitly assume
x(p1) < · · · < x(pm). For any m-cup or cap p1 · · · pm, we define its shadow as the open
interval

(
x(p1), x(pm)

)
in R.

▶ Lemma 11. Let P ⊂ R2 be a (k, ℓ)-cup-cap-saturated set with k ≥ 4 and ℓ ≥ 4. Then P

contains two (k − 1)-cups with disjoint shadows and two (ℓ− 1)-caps with disjoint shadows.
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Proof. We show the existence of two (k− 1)-cups with disjoint shadows, and there exist two
such (ℓ− 1)-caps for similar reasons. For a contradiction, suppose there are no (k − 1)-cups
with disjoint shadows. Then the intersection of all shadows from (k − 1)-cups in P is
nonempty, and so there exists some x∗ ∈ R in this intersection with x(p) ̸= x∗ for all p ∈ P .
Consider a generic point q

def= (x∗, y), where y is some sufficiently large number such that,
together with q,

every pi, pj ∈ P with x(pi) < x(pj) < x(q) or x(q) < x(pi) < x(pj) form a 3-cup, and
every pi, pj ∈ P with x(pi) < x(q) < x(pj) form a 3-cap.

We argue that P ∪ {q} is (k, ℓ)-cup-cap-free, a contradiction to the hypothesis that P is
saturated. Indeed, the construction shows that q cannot be part of any 4-cap in P ∪ {q},
and so P ∪ {q} contains no ℓ-cap. If q is part of some k-cup a1 · · · asqb1 · · · bt in P ∪ {q},
then s ≥ 1 and t ≥ 1, for otherwise x∗ would lie outside the shadow of the (k − 1)-cup
a1 · · · asb1 · · · bt. However, this contradicts the fact that a1qb1 is a 3-cap, and so P ∪ {q}
contains no k-cup. ◀

Proof of Theorem 10. First, we show that satc(4, 5) ≤ 8. It suffices to construct a generic
8-point set that is (4, 5)-cup-cap-saturated. Consider the following 8 points as P :

(−60, 40), (−40, 20), (−20, 16), (0, 10), (5,−50), (15,−40), (25,−40), (125,−230).

It is straightforward to verify that P is (4, 5)-cup-cap-free. We use a computer program to
check the saturation property. This program first computes all the lines generated by pairs
in P and the vertical lines through every point of P and works out all the regions of R2

enclosed by these lines. Then the program picks a point from each region, adds it to the
point set P , and verifies that the new set contains a 4-cup or a 5-cap. See the full version [1]
for our supplementary code.

Next, we prove that satc(4, 5) ≥ 8. Let P be a (4, 5)-cup-cap-saturated point set, we
argue that |P | ≥ 8. By Lemma 11, we can find two 4-caps in P , p1p2p3p4 and p5p6p7p8 with
x(p4) ≤ x(p5), whose shadows are disjoint. If p4 ̸= p5, then |P | ≥ 8 and the proof done.
Assume p4 = p5 = p. Then the shadow of any 3-cup within P−

def= {p1, p2, p3, p, p6, p7, p8}
must contain x(p). By Lemma 11, there are two 3-cups with disjoint shadows in P . So, at
least one point from P does not belong to P−, and hence |P | ≥ 8. ◀

We shall use Theorem 10 to upper bound satc(k, ℓ). It follows from the next lemma.

▶ Lemma 12. For any k, ℓ ≥ 3, we have satc(k, ℓ) ≤ satc(k − 1, ℓ) + satc(k, ℓ− 1).

Proof. Suppose Pk−1,ℓ ⊂ R2 and Pk,ℓ−1 ⊂ R2 are (k− 1, ℓ)- and (k, ℓ− 1)-cup-cap-saturated,
respectively. We construct P with |P | = |Pk−1,ℓ|+ |Pk,ℓ−1| that is (k, ℓ)-cup-cap-saturated.

We begin with a fixed vertical line h. Put a translated copy A of Pk−1,ℓ to the left of h,
and a translated copy B of Pk,ℓ−1 to the right of h. Vertically shift B to somewhere very
high so that every point in A is below all lines spanned by B, and every point in B is above
all lines spanned by A. This implies that

any one point from A and two points from B form a 3-cap, and
any two points from A and one point from B form a 3-cup.

These conditions guarantee that P
def= A ∪B is (k, ℓ)-cup-cap-free.

We claim that P is (k, ℓ)-saturated. It suffices to disprove that some point q /∈ P makes
a generic P ∪ {q} that is (k, ℓ)-cup-cap-free. Without loss of generality, assume that q lies to
the left of h (possibly on h). Since A is (k− 1, ℓ)-cup-cap-saturated and P ∪ {q} is (k, ℓ)-cup-
cap-free, the point q has to be part of a (k − 1)-cup C1 = a1 . . . ak−1 in A ∪ {q}, where ak−1
(possibly be q) lies to the left of h (possibly on h). Since B is (k, ℓ−1)-cup-cap-saturated and
P ∪ {q} is (k, ℓ)-cup-cap-free, the point ak−1 has to be part of an (ℓ− 1)-cap C2 = b1 . . . bℓ−1
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where b1 = ak−1. Now the cup C1 and the cap C2 share ak−1 = b1, and it follows that either
C1 can be extended by b2 or C2 can be extended by ak−2, which contradicts the fact that
P ∪ {q} is (k, ℓ)-cup-cap-free. This completes the proof. ◀

Proof of Theorem 2. The upper bound follows from solving (for k, ℓ ≥ 1) the recursion

satc(k, ℓ) ≤ satc(k − 1, ℓ) + satc(k, ℓ− 1)

from Lemma 12, with initial values given by Proposition 9 and Theorem 10.
Notice that any two cups (resp. caps) with disjoint shadows share no more than one point.

Since any cup and any cap share no more than two points, from Lemma 11 we deduce that

satc(k, ℓ) ≥ 2(k − 1) + 2(ℓ− 1)− 1− 1− 2− 2− 2− 2 = 2k + 2ℓ− 14. ◀

4 Saturation for convex polygons

This section is devoted to the proof of Theorem 4. Recall that Erdős and Szekeres proved
ramg(n) ≥ 2n−2 by taking a union of (i + 1, n + 1− i)-cup-cap-free sets appropriately along a
convex curve. Roughly speaking, we shall establish the lower bound on satg(n) via replacing
each (i + 1, n + 1− i)-cup-cap-free set before by an (i + 1, n + 1− i)-cup-cap-saturated set.

For a technical issue in Lemma 14, we need the following notion: a planar point set is
called very generic if it is in general position, and its members together with the intersection
points of the lines spanned by it all have distinct x-coordinates. The main result of this
section is the following proposition.

▶ Proposition 13. For any positive integer n ≥ 3, suppose that Pi is a very generic planar
point set that is (i + 1, n + 1− i)-cup-cap-saturated for each 1 ≤ i < n, then there exists an
n-gon-saturated set P such that |P | =

∑n−1
i=1 |Pi|.

We point out that our upper bounds in previous sections, Proposition 9, Theorems 2
and 10, all give us (k, ℓ)-cup-cap-saturated sets that have the claimed size and are very
generic, although the very generic property is not stated. Together with Proposition 13 and
(3), these upper bounds imply that for every n ≥ 7,

satg(n) ≤
n−1∑
i=1

(
n− 2
i− 1

)
− 2

n−1∑
i=1

(
n− 6
i− 3

)
= 2n−2 − 2n−5 = 7

8 · 2
n−2 ≤ 7

8 ramg(n).

This concludes the proof of Theorem 4.
In Proposition 13, the n = 3 and n = 4 cases are easy. Indeed, every 2-point set is

3-gon-saturated, and every 4-point set not in convex position is 4-gon saturated. For the
rest of this section, we implicitly assume n ≥ 5. To prove Proposition 13, our strategy is to
place an appropriate copy of a (i + 1, n + 1− i)-cup-cap-saturated set around the point (i, i2)
for i = 1, . . . , n. This is motivated by the original Erdős–Szekeres construction [6] showing
ramg(n) ≥ 2n−2. We remark that a (k, ℓ)-cup-cap-free point set of size ramc(k, ℓ) is always
(k, ℓ)-cup-cap-saturated. Furthermore, a small rotation can be applied such that it becomes
very generic. In this way, our Proposition 13 implies that the construction of Erdős and
Szekeres is also n-gon-saturated.

We begin with some preparation. For two points p, q ∈ R2 with x(p) ̸= x(q), denote by
line(p) the vertical line through p,
line(p, q) the unique line through p and q,
ray(p, q) the ray emanating from p through q,
slope(p, q) the slope of line(p, q).
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We say that a point set P is (k, ℓ; φ)-cup-cap-saturated if P will be (k, ℓ)-cup-cap-saturated
after a rotation of any angle θ ∈ (−φ, φ) with arbitrary center. The next result captures
the idea that, given φ, if we flatten a (k, ℓ)-cup-cap-saturated set enough, then it becomes
(k, ℓ; φ)-cup-cap-saturated. The proof of this lemma can be fund in the full version [1].

▶ Lemma 14. For a very generic (k, ℓ)-cup-cap-saturated set P0 and a positive real number
φ < π/2, there exists some sufficiently small δ > 0 such that the “flattening” map σ : (x, y) 7→
(x, δy) produces a set P

def= σ(P0) which is (k, ℓ; φ)-cup-cap-saturated.

We shall deduce the existence of a large convex polygon by combining a lower cup and a
higher cap in many situations. The following combination lemmas will be quite useful (see
Figure 1). We omit their easy proofs. Recall that when we denote by p1 · · · pm an m-cup or
cap, we implicitly assume x(p1) < · · · < x(pm).

Figure 1 Three different ways of combining cups and caps.

▶ Observation 15. Let C− = sp1 · · · pkt be a cup and C+ = sq1 · · · qℓt be a cap with k, ℓ ≥ 0.
Then s, p1, . . . , pk, t, ql, . . . , q1 form a convex (k + ℓ + 2)-gon with vertices in this order.

▶ Observation 16. Let C− = p1 · · · pk be a cup and C+ = q1 · · · qℓ be a cap with k, ℓ ≥ 2. If
line(pi, pj) is below C+ for every 1 ≤ i < j ≤ k, and
line(qi, qj) is above C− for every 1 ≤ i < j ≤ ℓ,

then p1, . . . , pk, qℓ, . . . , q1 form a convex (k + ℓ)-gon with vertices in this order.

▶ Observation 17. Suppose p1, . . . , pk, qℓ, . . . , q1 form a convex (k + ℓ)-gon with vertices in
this order, where k ≥ 2, ℓ ≥ 2. If t is a point such that C− = p1 · · · pkt is a (k + 1)-cup and
C+ = q1 · · · qℓt is a (ℓ + 1)-cap, then p1, . . . , pk, t, qℓ, . . . , q1 form a convex (k + ℓ + 1)-gon
with vertices in this order.

We are ready to construct an n-gon-saturated set of small size. Let pi
def= (i, i2) and

ε ≫ δ > 0 be some sufficiently small constants depending on n that will be fixed later.
For each i we will place a “small and flat” (i + 1, n + 1 − i)-cup-cap-saturated set in an
δ-neighborhood of pi. To be precise, for any fixed ε we can pick δ and Pi such that

I) Pi is a (i + 1, n + 1− i; π/3)-cup-cap-saturated set;
II) Pi ⊂ B(pi, δ), where B(x, r) denotes the open disk of radius r around x;

III) |slope(x, y)| < ε holds for any distinct x, y ∈ Pi;
IV) line(x, y) is below Pj and line(z, w) is above Pi for any distinct x, y ∈ Pi and any distinct

z, w ∈ Pj with i < j;
V) line(x, y) and line(z, w) intersect in B(pi, ε) for any (x, y, z, w) ∈ Pi×Pi+1×Pi+1×Pi+2.

For any ε and δ properties I), II), III), IV) can be achieved by sufficient scaling and
flattening of an arbitrary very generic (i + 1, n + 1− i)-cup-cap-saturated set. In particular, I)
follows from the very generic property and Lemma 14. Finally, by picking δ small enough
with respect to ε, V) follows from II). We will refer to the property IV) as the height hierarchy
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of P . We want one more property which needs some explanation. Suppose we have a cup
(cap) C of size at least 3 in some Pi. Consider where a point x in the plane might lie such
that x extends C to a bigger cup (cap) but x is not the first or the last point in the extended
cup (cap). Since the size of the cup (cap) is at least 3, the possible positions of x are bounded
regions in the plane. Therefore, by further flattening the sets P1, . . . , Pn−1 we may assume
that this bounded region is in B(pi, δ).

VI) For any Pi and cup (cap) C with |C| ≥ 3 within Pi, all the points of the plane that
extend C not at the ends lie in B(pi, δ).

According to Proposition 9, P1 and Pn−1 contains a single point. Hence, we pick P1 = {p1}
and Pn−1 = {pn−1} for convenience. Note that the angle between any vertical line and any
line(pi, pi+1) is less than π/3. Set P

def=
⋃n−1

i=1 Pi. Our aim is to show that P is n-gon-saturated.
For this purpose, we will need three different arguments based on the position of the

point q. The first case is when q is close to one of the P2, . . . , Pn−2. Denote by Di
def= B(pi, ε)

for i = 2, . . . , n− 2. We will refer to them as disks, and we have n− 3 disks in total. Recall
that a point q is generic (with respect to P ) if P ∪ {q} is generic, and we call q good if q is
part of an n-gon in P ∪ {q}.

▶ Proposition 18. For i = 2, 3, . . . , n− 2, every generic point q ∈ Di is good.

Proof. Let a ∈ Pi−1 be the counterclockwise next vertex on the boundary of conv(Pi−1∪{q})
after q, and b ∈ Pi+1 be the clockwise next vertex on the boundary of conv(Pi+1 ∪ {q}) after
q. Then ℓ−

def= line(a, q) and ℓ+
def= line(b, q) partition the disk Di into four open regions,

denote them as R1,R2,R3, and R4 according to Figure 2. If some point p ∈ Pi is in R1∪R3,
then any sequence of points qi ∈ Pi for i ∈ {1, 2, . . . , i − 2, i + 2, i + 3, . . . , n − 1} together
with a, p, q, b form a convex n-gon. To see this note that if ε is small enough, so q is very
close to p and therefore we only need that a and b lie on the same side of line(p, q). This
holds exactly when p is in R1 ∪R3.

Assume that Pi lies entirely in R2 ∪R4 then. In this case, we are going to find an n-gon
from Pi−1 ∪ Pi ∪ Pi+1 ∪ {q} using the saturation properties of these sets. The idea is simple,
q is part of either a large cup or a large cap in Pi, and we try to combine that with either a
cup from Pi−1 or a cap from Pi+1. To make the idea work, we start with a careful rotation
of the point set P .

Let τ denote a rotation around q with angle θ. For any S ⊂ R2, denote by S′ the image
of S under τ . We will show that θ can be chosen such that the following properties hold:
(a) |θ| < π

3 .
(b) x(q) = x(τ(q)) > x(τ(p)) holds for all p ∈ Pi−1 ∪ Pi+1.
(c) P ′

i−1, P ′
i , P ′

i+1 obey the same height hierarchy as Pi−1, Pi, Pi+1.
(d) P ′ ∪ {q} is generic.
Since ε is sufficiently small, our definition of Pi implies that θ can be chosen to meet (a) and
(b). (c) is ensured by III), (a), and ε being sufficiently small, as no line from those sets passes
through a vertical state during the rotation. Finally, (d) is easy as it only forbids finitely
many values for θ. From (b) it follows that for any point p ∈ R2 ∪R4, in particular for any
p ∈ P ′

i , line(q, p) is above P ′
i−1 and below P ′

i+1. This is the crucial advantage of applying the
rotation τ (see the second part of Figure 2).

From (a) and I) we deduce that P ′
i is (i+1, n+1− i)-cup-cap-saturated, hence (d) implies

that the point q = q′ is part of some (i + 1)-cup or (n + 1 − i)-cap in P ′
i ∪ {q}. Assume

without loss of generality that C+ is such a cap. Since P ′
i−1 is (i, n + 2− i)-cup-cap-saturated

by I), from Proposition 8 it follows that there exists an (i− 1)-cup C− in P ′
i−1. We claim

that C+ and C− together form a convex n-gon. From Observation 16 we know that it is
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46:12 Saturation Results Around the Erdős–Szekeres Problem

enough to check that all lines spanned by C+ run above C− and all lines spanned by C− run
below C+. This follows from (c) for almost all the cases, except for the lines line(q, p) with
p ∈ C+. We have seen that line(q, p) is above P ′

i−1 for all p ∈ P ′
i , hence these cases are also

satisfied. We conclude that C+ ∪ C− forms a convex n-gon, and the proof is complete. ◀

R1 R2

R3R4
p

Pi+1

b

Pi−1

a

R′
4 R′

2

q

q

R′
1

R′
3

P ′
i+1

P ′
i−1

Figure 2 Pi−1, Pi and Pi+1 before and after the rotation.

The next case is when the new point q lies roughly between Pi and Pi+1. Define

Ti
def= conv(Pi ∪ Pi+1) \ (Di ∪Di+1)

for i = 1, . . . , n− 2. These regions are called tubes. However, we need two more unbounded
tube regions for technical reasons. From Proposition 9 we know that the set P2 itself is an
(n − 2)-cap, and the set Pn−2 itself is an (n − 2)-cup. Suppose P2 is p1

2 · · · p
n−2
2 , Pn−2 is

p1
n−2 · · · p

n−2
n−2, and let

T0 denote the region enclosed by ray(p1
2, p1), ray(pn−2

2 , p1) with apex p1,
Tn−1 denote the region enclosed by ray(p1

n−2, pn−1), ray(pn−2
n−2, pn−1) with apex pn−1.

Note that we have defined n tubes T0, . . . , Tn−1 in total.

▶ Proposition 19. For i = 0, 1, . . . , n− 1, every generic point q ∈ Ti is good.

The proof of this proposition is can be found in the full version [1].
Our third case deals with any new point that is not in disks or tubes. Recall that P2 is

an (n− 2)-cap p1
2 · · · p

n−2
2 and Pn−2 is an (n− 2)-cup p1

n−2 · · · p
n−2
n−2. For indices i = 2 and

n− 2, we define ←→Ci as the piecewise linear curve that consists of ray(p2
i , p1

i ), the line segment
p2

i pn−3
i , and ray(pn−3

i , pn−2
i ). Denote by O the points of the plane that lie outside all disks

D def=
⋃n−2

i=2 Di and all tubes
⋃n−1

i=0 Ti. Then ←→C2 and ←−→Cn−2 partition O into six connected
regions OUL, OUR, ODL, ODR, OL, OR, where the indices suggest their relative positions
(such as upper-left, lower-right, and so on). Figure 3 illustrates the n = 5 case.

▶ Proposition 20. Every generic point of O is good.

The proof of this proposition can be found in the full version [1].
Finally, we are ready to finish the proof and hence conclude this section.
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P1

P2

P3

P4OUL OUR

OROL

ODRODL

Figure 3 Regions around the construction.

Proof of Proposition 13. Let P be as described in this section. By its construction, we
clearly have |P | =

∑n−1
i=1 |Pi|. It then suffices to argue that P is n-gon-saturated.

First, we show that P is n-gon-free. This is parallel to the original Erdős–Szekeres proof
of their construction. Suppose that G ⊂ P is in convex position. G cannot be contained in a
single Pi because any n-gon contains either a (i + 1)-cup or an (n + 1− i)-cap. So, we can
assume that G intersects at least two of P1, . . . , Pn−1. It follows from the height hierarchy
that any four points q1 ∈ Pi, q2, q3 ∈ Pj , q4 ∈ Pk with i < j < k are not in convex position.
Thus, there are at most two of P1, . . . , Pn−1 containing more than one point of G, and the
other points of G are between these two groups. So, there exist 1 ≤ i1 < i2 ≤ n − 1 such
that |Pj ∩G| ≤ 1 for j = i1 + 1, . . . , i2 − 1 and |Pj ∩G| = 0 for j < i1 and j > i2. Since G is
not contained in a single group, Pi1 ∩G must be a cup and Pi2 ∩G must be a cap. From the
saturation properties of Pi1 , Pi2 we obtain

|G| ≤ i1 + (i2 − i1 − 1) · 1 + (n− i2) = n− 1.

We then argue that any q /∈ P is part of an n-gon as long as P ∪{q} is in general position.
Consider all lines spanned by P . These lines cut the plane into polygonal cells and since
P ∪ {q} is in general position q lies in the interior of a cell. If any other point in its cell is
part of a convex n-gon, then q is part of a convex n-gon with the same n− 1 other vertices
from P . Hence, if needed, we can move q within its cell such that P ∪ {q} becomes generic.
Then, by putting Propositions 18–20 together, the proof is complete. ◀

5 Final remarks

Our current upper bounds on satc(k, ℓ) and satg(n) are exponential, while the lower bounds
are linear (satg(n) ≥ n− 1 is trivial). The obvious problem is to obtain better bounds.

▶ Problem 21. What is the correct asymptotics for satc(k, ℓ) and satg(n)?
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It is known that the Ramsey number equals to
(

k+ℓ−4
k−2

)
for monotone paths in 3-uniform

complete ordered hypergraphs with transitive 2-colorings, see e.g. [15].

▶ Problem 22. Is the saturation number equal to
(

k+ℓ−4
k−2

)
again for monotone paths in

3-uniform complete ordered hypergraphs with transitive 2-colorings?

Inside a generic planar point set P , a subset S is called an n-hole if S forms an n-gon
whose convex hull contains no points of P in its interior. A construction due to Horton [12]
shows that there are arbitrarily large point sets without n-holes for every n ≥ 7.

▶ Problem 23. For n ≥ 7, is the saturation number for n-holes bounded (i.e. finite)?
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