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Abstract
While the problem of computing the genus of a knot is now fairly well understood, no algorithm
is known for its four-dimensional variants, both in the smooth and in the topological locally flat
category. In this article, we investigate a class of knots and links called Hopf arborescent links,
which are obtained as the boundaries of some iterated plumbings of Hopf bands. We show that for
such links, computing the genus defects, which measure how much the four-dimensional genera differ
from the classical genus, is decidable. Our proof is non-constructive, and is obtained by proving
that Seifert surfaces of Hopf arborescent links under a relation of minors defined by containment of
their Seifert surfaces form a well-quasi-order.
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1 Introduction

A (tame) knot is a polygonal embedding of the circle S1 into R3, or equivalently, S3, and a
link is a disjoint union of knots. Knot theory is both an old and very active mathematical
field, yet from an algorithmic perspective, many problems arising naturally in knot theory
are still shrouded in mystery. This can be illustrated with arguably the most fundamental
algorithmic question in knot theory: in the Knot Equivalence problem, we are given two
knots K1 and K2 and are tasked with deciding whether they are equivalent, that is, whether
one can deform one into the other continuously without creating self-intersections. The best
algorithm for this problem, due to Kuperberg, is elementary recursive [22], yet the problem is
not even known to be NP-hard (see for example [24, Conclusion]). We refer to Lackenby [25]
for a survey on algorithmic problems in knot theory.

Given how seemingly hard testing the equivalence of knots is, a huge body of research
has been devoted to designing and studying knot invariants in order to tell them apart. A
classical invariant of a knot is its genus: this is the smallest possible genus of an embedded
oriented surface, called a Seifert surface, having the knot as its boundary. Computing
the genus of a knot turns out to be significantly more tractable: celebrated works of Hass,
Lagarias and Pippenger [19] and Agol, Hass and Thurston [1], building on the normal surface
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theory of Haken [18], have shown that deciding if a knot has genus at most g is in NP, while
Lackenby has proved that it is also in co-NP [26]. These algorithms run also well in practice
within the software Regina [9].

There are, however, different notions of genus that are much less understood: consider-
ing S3 as the boundary of the 4-dimensional ball B4, the 4-genus of a knot g4(K) is roughly
the smallest possible genus of a surface in B4 having the knot as its boundary. This comes
in two flavours that are known to not be equivalent: the topological locally flat 4-genus
and the smooth 4-genus depending on the regularity of the surface. We refer to the
preliminaries for precise definitions. A knot is (topologically or smoothly) slice if it bounds a
disc in B4, i.e., has 4-genus zero. One of the motivations for the study of such 4-dimensional
invariants comes from algebraic geometry, as such surfaces arise naturally around singularities
of algebraic curves in C2 [20, 38]. Another motivation is the slice-ribbon conjecture [13]
which states that a knot is smoothly slice if and only if it is ribbon, i.e., it bounds an
immersed disc with only ribbon-type singularities in S3. Unfortunately, no algorithmic
framework at all is known to attack topological problems in 4-dimensional topology, and
indeed many of these problems are known to be undecidable, e.g., the homeomorphism of
4-manifolds [29]. For some other problems, the decidability is a well-known open problem:
this is the case for 4-sphere recognition [42] or embeddability of 2-dimensional complexes
in R4 [30]. Similarly, no algorithm is known to decide the 4-genus of a knot or even to
decide whether it is slice. To illustrate how hard these problems are, it is only in a recent
breakthrough of Picirillo [36] that it was proved that the Conway knot is not smoothly slice,
although it only has 11 crossings. From the perspective of lower bounds, recent work of de
Mesmay, Rieck, Sedgwick and Tancer [11] has proved that an analogue of the 4-genus for
links, the 4-ball Euler characteristic, is NP-hard to compute, but it is also not known to be
decidable.

Our results. The goal of this paper is to investigate the structure of a particular class of
links, which we call Hopf arborescent links, in order to prove the decidability of some
of their 4-dimensional invariants. This family of links is informally defined as follows (we
refer to Section 2 for more precise definitions). A Hopf band is the surface pictured in
Figure 1 (top left), it can be either positive or negative depending on how it twists. If they
are unlinked, i.e., there exists a sphere separating them, two Hopf bands can be plumbed
together by identifying a square in one to a square in the other, as pictured in Figure 1
(top). The class of Hopf arborescent links is the class of links arising as the boundary
of some iterated tree-like sequence of plumbings of Hopf bands. Hopf arborescent links can
naturally be described using labelled trees, see Figure 1 (bottom), and are a subfamily of
the more general arborescent links [7, 15]. The (topological or smooth) genus defect of a
knot is defined as ∆g(K) = g(K) − g4(K). It measures how much its 4-genus differs from its
classical genus, and this definition can be extended to oriented links by considering surfaces
having that oriented link as their boundary. Our main result is the following:

▶ Theorem 1. For any fixed k, deciding whether an Hopf arborescent link L has genus defect
at most k is decidable. This holds both in the topological and smooth categories.

The proof of Theorem 1 is not constructive. It is obtained as a corollary of another result,
which establishes a well-behaved minor theory for Hopf arborescent links. A subsurface Σ′ ⊆ Σ
of a Seifert surface Σ is incompressible if the complement Σ\Σ′ has no open disc component.
Given two Seifert surfaces Σ1 and Σ2 in R3, we say that Σ1 is a surface-minor of Σ2 (or
minor for short), denoted by Σ1 ≼ Σ2, if Σ1 is isotopic to an incompressible subsurface
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Figure 1 Top: A positive Hopf band and a plumbing. Bottom: An Hopf arborescent link and an
associated planar tree.

of Σ2. This minor relation was introduced by Baader [2] (see also [3, 4]) with the goal of
characterizing those links that are closure of positive braids and whose signature is equal to
twice their genus. The underlying question, still open today, is whether the canonical Seifert
surfaces associated to positive braid closures form a well-quasi-order. A particularity of Hopf
arborescent links is that they are fibred (see the definition in Section 2), which implies
that to each link is associated a canonical Seifert surface, that we call a Hopf arborescent
surface. The notion of surface-minor naturally implies a minor relation for Hopf arborescent
links. Our second result proves that Hopf arborescent surfaces are well-quasi-ordered under
surface-minors.

▶ Theorem 2. The minor relation ≼ is a well-quasi-order for the set of Hopf arborescent
surfaces, that is, for any infinite sequence (Σn)n∈N of Hopf arborescent surfaces, there exists
i < j in N such that Σi ≼ Σj.

The idea behind the proof of Theorem 2 is to study a specific subset of the possible
surface-minors that interacts nicely with an encoding of Hopf arborescent surfaces via labelled
plane trees. We can then leverage the celebrated Kruskal tree theorem [21] to prove that the
minor relation is a well-quasi-order. The connection from Theorem 2 to Theorem 1 follows
from the fact the genus defect is minor-monotone, i.e., if Σ1 ≼ Σ2 are Seifert surfaces of
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minimal genus for links K1 and K2, then ∆g(K1) ≤ ∆g(K2). This is not a new observation
(see [5, Lemma 6]), we provide a proof in Proposition 12 for completeness. Therefore, for
Hopf arborescent links, having genus defect at most k is characterized by a finite number of
forbidden minors, and the algorithm of Theorem 1 proceeds by checking those. However,
testing whether a surface is a minor of another one seems to be a very hard problem: even
testing whether two tori are isotopic is already as hard a knot equivalence and an algorithm
for genus two surfaces was only very recently found [6]. This problem is circumvented thanks
to our restriction of the minor relation to one that is well-tailored to the arborescent structure
of our links, which allows us to work entirely at the level of trees. In particular, Theorem 1
does not strictly follow from Theorem 2 but rather from its proof (see Proposition 10).

While the algorithms behind Theorem 1 are not explicit, we would like to offer three
reasons to motivate our results. First, Theorem 1 proves that the corresponding problems
are not undecidable, which is significant in the landscape of 4-dimensional topology. Second,
this kind of existential algorithmic result has been a strong guiding light in algorithm design
in the past decades: for a vast family of graph problems, the fact that an algorithm merely
exists follows from Robertson-Seymour theory, and this has provided a strong impetus to
actually look for explicit algorithms and optimize their complexity. This has been particularly
influential in parameterized algorithms, we refer for example to the discussion in Chapter 6.3
in the book on parameterized algorithms [10], where it is conjectured that a result like our
Theorem 1 precludes W[1]-hardness. Similarly, we are hopeful that our results can inspire
future work aiming at developing explicit algorithms in 4-dimensional topology. Additionally,
our framework directly proves that any property that is stable with respect to our link-minor
relation (see Section 3.3) is decidable on the class of Hopf arborescent links. Finally, while it
is certainly not the case that minor-based approaches can encompass the entirety of knot
theory, it is fruitful to delineate exactly the classes which they can illuminate. In that respect,
we find it interesting that our proof of Theorem 2 strongly relies on the structure of Hopf
bands and does not seem to generalise to the wider family of arborescent knots, even when
one bounds the number of twists in each band (see Remark 11).

Related work. It was observed by Baader and Dehornoy [3] that the natural Seifert surfaces
for another class of knots, the positive braid knots with bounded braid index (we refer to the
papers for the relevant definitions) also form a well-quasi-order. Furthermore, Liechti [27]
proved that even without bounding the braid index, the set of positive braid knots of bounded
genus defect is characterized by a finite number of forbidden minors. Since the minor relation
in that setting simply amounts to removing letters in the braid presentation, this readily yields
decidability as in our Theorem 1. While the two results are incomparable, we emphasize that
our result also applies to links, and also features negative crossings (coming from negative
Hopf bands): this extends the impact of our result to the smooth category, while for strongly
quasipositive knots (and thus positive braid knots), the smooth defect is zero since the
smooth 4-genus and the classical genus coincide [38].

All the knots and links we consider, as well as those considered by various authors in
the context of surface-minor theory, are fibred (see again the definition in Section 2). This
property is important as it brings control on the classical genus of the links. Also it is easy to
construct infinite families of incomparable surfaces when dropping this assumption: the set
(An)n∈Z of those unknotted annuli in S3 with n twists forms an infinite antichain. In this
direction, an optimistic conjecture would be that the collection of all fibred surfaces in S3 is
a well-quasi-ordered set. If true, that would provide a strong generalisation of Theorem 2.
However no strategy of proof is known to the authors for such a statement.
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Also, it follows from a result of Giroux and Goodman [16] that any fibred link can be
obtained from the unknot from a sequence of plumbings and deplumbings (a natural reverse
operation to plumbing) of Hopf bands. While these (de)plumbings might not have the
arborescent structure that characterizes ours, this shows that Hopf bands can be considered
as basic building blocks for a wide class of three-dimensional objects.

Due to line limitations, some parts of the article are deferred to the full version [28]. In
particular, we provide some additional background on Hopf arborescent links, as well as
examples of Hopf arborescent links with non trivial defect.

2 Preliminaries

Knot theory. We only recall the definitions that are critical to this paper, and refer to
the textbooks of Burde and Zieschang [8] or Rolfsen [37] for a more general introduction to
knot theory, and to Teichner [41] for a beginner-friendly introduction to its 4-dimensional
aspects. A knot, respectively a link, is a polygonal embedding of the circle S1, respectively
of a disjoint union of circles, into S3. Every knot and every component of a link inherits
an orientation from the orientation of S1. For algorithmic purposes, we assume that an
input link is given as a link diagram, i.e., a directed plane 4-valent graph with decorations
at vertices indicating which strands are going over and under. Since our article focuses on
decidability problems, switching to a different input (e.g., polygonal curves in R3) makes
no difference. A Seifert surface for a link L is a compact connected oriented surface Σ
embedded in S3 such that the oriented boundary of Σ is L. Throughout this article, we
consider knots, links, and surfaces embedded in S3 up to isotopies (continuous deformations
without self-crossings). The (classical) genus of a link L, denoted by g(L), is the smallest
possible genus of a Seifert surface for L.

The 3-dimensional sphere can be seen as the boundary of the 4-dimensional ball B4. Being
embedded in S3, a knot or a link can also be obtained as the boundary of surfaces embedded
in B4. However, any knot K in S3 can be used as a base that tapers to a point, the apex,
inside B4 to define a cone that bounds K. Hence, any knot in S3 bounds a topological disc
in B4. This motivates the following definition: a surface Σ embedded in B4 is locally flat if
for each point x ∈ Σ, there is a neighbourhood U in Σ and a neighbourhood V in B4 such
that the pair (U, V ) is homeomorphic to the standard (B̊2, B̊4). In the coning construction
above, the latter condition is not satisfied at the apex, where the boundary of a disc is the
knot instead of a standard S1. The topological (respectively smooth) 4-dimensional
genus, or simply 4-genus of a link L, denoted by1 g4(L) is the smallest possible genus of a
compact connected oriented surface that is locally flat (respectively smoothly) embedded
in B4, and that has L as its boundary.

A knot is topologically (resp. smoothly) slice if it bounds a locally flat (resp. a
smooth) disc in B4. The (topological or smooth) defect of a link L is the quantity
∆g(L) = g(L) − g4(L), where g4(L) denotes the topological or smooth 4-genus of L.

A positive, resp. negative, Hopf band is an unknotted annulus with a positive, resp.
negative, full twist, as pictured in Figure 2. A Hopf link is the boundary of a Hopf band.
Note that the two components of a positive Hopf link have linking number +1, while the two
components of a negative Hopf link have linking number −1. A Hopf band naturally retracts
to a trivial knot, which we call its core.

1 Our notation is intentionally ambiguous with respect to smooth or topological genus, because all our
arguments will apply equally well in both categories.
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Figure 2 A negative Hopf band on the left and a positive one on the right with its core in red.

A link is fibred if the complement S3 \ L fibres over S1, that is, if there exists a one-
parameter continuous family of Seifert surfaces (Σt)t∈S1 for L which are disjoint except for
their boundaries, and whose interiors together foliate S3 \ L. These are called fibres or fibre
surfaces (note that they are all isotopic by definition).

A positive, resp. negative, Hopf link is fibred, with fibre the positive, resp. negative, Hopf
band. Indeed, seeing S3 as the unit sphere {(z1, z2) | |z1|2 + |z2|2 = 1} in C2, a positive Hopf
link is given by the equation z1z2 = 0. For every argument θ ∈ S1, the equation arg(z1z2) = θ

describes a Seifert surface bounded by the Hopf link, and the collection of these surfaces
describes the desired fibration.

It is a folklore result that goes back at least to Stallings [40] that a fibre surface of a fibred
link is a Seifert surface of minimal (classical) genus, and moreover this surface is unique up
to isotopy (we provide a proof in the full version [28, Theorem 2.1]). So, for fibred links
(and all links in this paper will be fibred), it makes sense to speak of the canonical Seifert
surface, by which we mean the unique (up to isotopy) fibre surface for that link.

Well-quasi-orders. We refer to Diestel [12, Chapter 12] for an introduction to well-quasi-
orders and graph minor theory. An order ≼ on a set X is said to be a well-quasi-order
if for every infinite sequence (xn)n∈N there exist i, j ∈ N such that i < j and xi ≼ xj .
Equivalently, ≼ is a well-quasi-order if it is well-founded and has no infinite antichain that
is, no infinite sequence (xn)n∈N such that no two elements of (xn) are comparable for ≼. A
property P is said to be stable for an order ≼ if for any x satisfying P and y ≼ x, then y

satisfies P . It is well-known that if ≼ is a well-quasi-order and P is a property that is stable
for ≼, then there exists a finite family F of elements of X such that x ∈ X satisfies P if and
only if there is no f in F such that f ≼ x. The family F is called a family of excluded
minors for the property P . Therefore, if a parameter p : X → N is monotone with respect
to ≼, i.e. x ≼ y implies p(x) ≤ p(y), then for each k ∈ N the property p(·) < k is stable for
≼ and hence is characterized by such finite family of excluded minors for X.

In this paper, a plane tree is a rooted tree where each vertex v has a label ℓ(v) from an
alphabet A, and the tree is provided with the combinatorial data of an embedding in the
plane: each vertex is additionally given a permutation recording the ordering of the edges to
its children. The root induces an orientation on the tree: every edge {u, v} is directed from
u to v, written u → v, when u is closer to the root of the tree than v (i.e., edges go toward
the leaves), we refer to the trees of Figure 4 for examples. In this paper, the alphabet A

is {+, −} endowed with the empty ordering ≤.
A plane tree T1 has a homeomorphic embedding into T2, written T1 ↪→ T2, if T1 can

be obtained from T2 by iteratively (i) removing a leaf and its adjacent edge, (ii) removing a
root with a single child, its adjacent edge and rerooting at that child, (iii) reducing labels
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(with respect to ≤) and (iv) contracting paths into edges while preserving the labels of
the endpoints, where all these operations must be consistent with the plane embedding.
Throughout this paper, the relation ≤ will be trivial, so that (iii) will never apply. Notice
that this definition extends the notion of topological minor on graphs to a setting where
vertices are labelled. In particular, it is more restrictive than the notion of minor, which
allows to contract any edge to a point: in our case we can only contract paths to at least one
edge. This property turns out to be critical in order to make our proofs work. The famous
theorem of Kruskal [21] (see Nash-Williams [34] for a simpler proof) shows that this order is
a well-quasi-order on the set of labelled plane trees.

▶ Theorem 3 ([21, 34]). The homeomorphic embedding on the set of labelled plane trees
labelled by a well-quasi-order forms a well-quasi-order.

3 Hopf arborescent links

Arborescent links are a class of knots and links originally defined and studied by Conway2.
This class has received much attention from knot theorists [7, 15, 39]. In this paper we study
a subclass that we call Hopf arborescent links.

3.1 Hopf plumbing
The links that we investigate in this paper are boundaries of surfaces which are defined
iteratively from Hopf bands using an operation called plumbing.

Let H be a Hopf band and Σ be an oriented surface with boundary, and let us assume
that they are unlinked, that is, that there exists a sphere S in S3 separating them. To
plumb H on Σ, pick an arc α on Σ whose endpoints lie on ∂Σ and which is not boundary
parallel (i.e., α is not isotopic relatively to its endpoints, to an arc in ∂Σ). Let D be a small
neighbourhood of α in Σ that we see as a rectangle with two sides on ∂Σ and two sides in
the interior of Σ. Isotope Σ within S3 \ S so that it intersects S exactly on D, see Figure 3,
left. Then, define similarly D′ a neighbourhood of the unique (up to isotopy) non boundary
parallel arc in H with endpoints in ∂H. The orientations of Σ and H induce an orientation
of the normal direction to the surface (so that concatenating the orientation of the surface
with the positive normal direction gives a positive basis in S3). Finally, isotope H within its
component of S3 \ S, so that D and D′ are identified on S in a way that the sides of D that
are on ∂S are matched with the sides of D′ that are not on ∂H and the orientations of both
rectangles match. The resulting surface is said to be obtained from Σ by Hopf plumbing
H on top of Σ along α, see Figure 3.

Hopf plumbing is a special case of a more general operation called a Murasugi sum,
see [33, 35]. A key property of Murasugi sums, proved by Gabai [14], is that it preserves
fibredness. In the above setting, since Hopf bands are fibred, if Σ is fibred, then the surface
obtained from Σ by Hopf plumbing H on Σ along any arc is also fibred.

3.2 From plane trees to Hopf arborescent surfaces and links
Recall that in this article, a plane tree is a rooted tree that is embedded in the plane and
such that every vertex has a label + or −. If v is a vertex, we denote by ℓ(v) its label.
Let T be a plane tree. The associated surface Σ(T ) we construct is an oriented surface with

2 Conway called them algebraic links, but this denomination is now more used for the links that come
from algebraic curves in C2.

SoCG 2024
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Figure 3 A Hopf plumbing of a Hopf band H on top of a Seifert surface Σ along α.

boundary that retracts on the union of a finite set of oriented simple curves CT parametrized
by the vertices of T , such that every α ∈ CT is the core of a Hopf band embedded on Σ and
whose sign is the label of the corresponding vertex in T . For a vertex v in T , the curve α(v)
intersects another curve α(v′) if and only vv′ is an edge of T , and the two curves intersect
exactly once. Moreover, following α(v) with its given orientation, the cyclic ordering of the
intersection points with the curves α(v′) coincides with the cyclic orderings of the neighbours
of v in the plane tree T .
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▶
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+
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Figure 4 A 3D-view of a Hopf arborescent link and its construction from two different plane trees.
The chosen orientation of the root of each tree is indicated on the coloured core of the matching
Hopf band. The orientation of the plane is counter-clockwise.

We now describe the construction inductively, see Figure 4 for an illustration.

1. Start from a Hopf band H(vr) where vr is the root of T , and whose sign is the label ℓ(vr).
2. For the induction step, assume that the tree T ′ is obtained from T by adding at a leaf v

a finite number of leaves v1, . . . , vk appearing in the plane in this order around v, and
that the surface Σ(T ) is already constructed with its set of core curves CT .
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a. Since v is a leaf in T , the curve α(v) intersects only one curve α(v′): the curve
associated to v′, the parent of v in T .

b. Starting from this intersection point we place k points p1, . . . , pk on α(v) in this order.
Then we draw on Σ(T ) a family of k arcs β1, . . . , βk from ∂S to itself that correspond
to those arcs that retracts on p1, . . . , pk. Each such arc βi intersects the collection CT

exactly at the point pi.
c. For i = 1, . . . , k, perform the Hopf plumbing of a Hopf band H(vi) of sign ℓ(vi) on top

of Σ(T ) along the arc βi. The resulting surface is Σ(T ′).
d. Finally for every i orient the core of H(vi) so that when going from α(v) to α(vi), we

follow this rule: if ℓ(v) is positive, one turns to the left (with respect to the orientation
of Σ(T )), and if ℓ(v) is negative, one turns to the right (once again with respect to the
orientation of Σ(T )), see Figure 5. The set CT ′ is the union of CT with α(v1), . . . , α(vk).

◀
◀

◀

▶

Figure 5 Orientation of the green core when its associated Hopf band (unsigned as it does not
matter for the rule) is plumbed on top of the Hopf band with the red core.

▶ Definition 4. A Hopf arborescent surface is a surface Σ(T ) obtained from a plane
tree T by this construction, see Figure 4 for an example. A Hopf arborescent link is the
boundary of a Hopf arborescent surface.

Since Hopf bands are fibred and this property is preserved under plumbing, Hopf arbores-
cent surfaces are fibres for their boundaries, and are thus of minimal (classical) genus. The
arbitrary-looking rule that we use to orient the cores of the Hopf band in Step 2d is new and
will turn out to be key for our proofs of Theorem 2 and Proposition 5.

3.3 Minors on surfaces, links, and plane trees
Since we focus our investigation on Hopf arborescent links, we define a stronger notion
of minor that is well-tailored to these links. We say that a Hopf arborescent link L1 is a
link-minor of L2 if there exist T1 and T2, two labelled plane trees such that Σ(T1) and
Σ(T2) are canonical Seifert surfaces of L1 and L2 respectively and T1 ↪→ T2. The main result
of this section is the following one, establishing that if L1 is a link-minor of L2 then the
Seifert surface of L1 is a surface-minor of the Seifert surface of L2.

SoCG 2024
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▶ Proposition 5. Let T1 and T2 be two plane trees such that T1 admits a homeomorphic
embedding into T2. Then the Hopf arborescent surface Σ(T1) is an incompressible subsurface
of Σ(T2).

The proof relies on Lemmas 7, 8, and 9, which correspond respectively to the operations
(i), (ii), and (iv) defining homeomorphic embeddings of trees. We first prove:

▶ Lemma 6. Let Σ be surface and γ be an arc that is not boundary-parallel in Σ with both
extremities in ∂Σ. Then cutting Σ along γ yields a surface Σ′ = Σ ∖ γ such that Σ′ ≼ Σ.

Proof. By definition of Σ′, there is a natural map h : Σ′ → Σ that is injective except on
h−1(γ) = γ1 ∪ γ2. Let T be a tubular neighbourhood of γ in Σ. Its boundary can be
decomposed into t1, t2, two arcs isotopic to γ in Σ and two open arcs of ∂Σ. Isotope h

within Σ so that h(γ1) = t1, h(γ2) = t2, and h(Σ′) ∩ T = t1 ∪ t2. It follows that h(Σ′) is a
subsurface of Σ such that Σ ∖ Σ′ is not an open disc since γ is not boundary-parallel. ◀

Lemma 6 essentially states that our surfaces behave well with respect to the surface-minor
relation when cut along any essential arc. An important point is that cutting along an arc
that is the diagonal of a plumbing rectangle merges two bands into one new band with two
extra crossings that are either negative or positive depending on the diagonal, see Figure 6.
So, cutting the plumbing of two positive Hopf bands along the diagonal that produces two
negative crossings yields a positive Hopf band. Symmetrically, one can merge two negative
Hopf bands into one negative by cutting along the other diagonal. Furthermore, when having
a plumbing of two bands with opposite signs, one can merge them into a band with either
sign depending on which cut one chooses.

▶ Lemma 7. Assume that T1 is obtained from T2 by deleting a leaf. Then Σ(T1) is an
incompressible subsurface of Σ(T2).

Proof. Let D be the plumbing rectangle of the Hopf band H associated to the additional
leaf v of T2 compared to T1. By definition, D has two sides γ1, γ2 in ∂Σ(T1). Thus γ1 is
also an arc of Σ(T2) with its extremities in ∂Σ(T2). By Lemma 6, Σ(T2) cut along γ1 is an
incompressible subsurface Σ′ of Σ(T2). Furthermore, the remaining of H is a disc that can
be isotoped into a neighbourhood of γ2 so that Σ(T1) = Σ′ ≼ Σ(T2), see Figure 7. ◀

A very similar proof yields the following lemma.

▶ Lemma 8. Assume that T1 is a plane tree whose root has only one child, T2 is the subtree
rooted at that child. Then Σ(T1) is an incompressible subsurface of Σ(T2).

Proof. The proof is identical to the previous one: in that situation, Σ(T1) is obtained
from Σ(T2) by plumbing a Hopf band, and cutting along one of the boundaries of the
plumbing disc provides the needed incompressible subsurface, as in Figure 7. ◀

▶ Lemma 9. Assume that T2 is a plane tree in which u → v → w are three consecutive
vertices where v has degree 2, and that T1 is obtained from T2 by contracting u → v → w

into a single edge u → w, while preserving the labels of the endpoints. Then Σ(T1) is an
incompressible subsurface of Σ(T2).

Proof. By the construction of Hopf arborescent surfaces, the edge between u and v in T2
corresponds to a plumbing rectangle D. It is important to recall here our orientation
convention: if u is labelled positively, the cores α(u) and α(v) are oriented so that one
turns to the left when going from u to v at the rectangle D, while if v is labelled negatively,
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γ1 Cut along γ1 =

γ2
Cut along γ2 =

γ2

γ1

flat
drawing

R1 R3 R1

R1 R3 R1

Figure 6 Cutting a Hopf plumbing of two positive Hopf bands along the diagonal γ2 (resp. γ1)
induces 2 positive (resp. negative) crossings. The Reidemeister moves are showed to help understand
which crossings are obtained. The top right surface is a Hopf band while the bottom right one is a
band with 3 positive full twists.

one turns to the right, see Figure 5. Now, we consider two diagonal arcs γ1 and γ2 on the
plumbing rectangle D as pictured in Figure 6. When cutting along such a diagonal arc, we
obtain a new surface in which the cores α(u) and α(v) merge into a single core. However,
their orientations might mismatch, depending on whether we cut along γ1 or γ2. We take the
convention that γ1 is the arc the preserves the orientations, while γ2 induces an orientation
mismatch, see Figures 6 and 8.

Now, let us first consider the case where the labels of u and v are the same. In this case,
we consider the subsurface Σ′ of Σ(T2) obtained by cutting along γ1. This has the effect of
merging the core curves α(u) and α(v) in a way that respects their orientations. However, it
might seem that since each curve α(u) and α(v) corresponds to a Hopf band, merging them
like that yields a band that twists too much. But a key observation is that cutting along γ1
adds a twist between these two bands, as pictured in Figure 6, and this twist is negative when
the bands are positive, while it is positive when the bands are negative (indeed, this is the
reason for our orientation convention). Therefore, the resulting surface Σ′ is exactly the same
as the one corresponding to the tree T1, and therefore Σ(T1) is an incompressible subsurface
of Σ(T2) by Lemma 6. See the top and bottom pictures of Figure 8 for an illustration.
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Σ(T2)

H
γ2

γ1

cut
along γ1

Σ′

H
γ2

= Σ(T1)

Figure 7 Deleting a leaf yields a surface-minor.

Now, let us consider the case where the label of u is + while the label of v is −. In that
case, we consider the surface Σ′ of Σ(T2) obtained by cutting along γ2. This has the effect
of merging the core curves α(u) and α(v) but with an orientation mismatch. We take the
convention that the resulting core curve α′ is oriented by α(u), and therefore disagrees with
the orientation of α(v) while it follows it. Since u and v are labelled with opposite signs the
two twists on their Hopf bands cancel out, but cutting along γ2 adds a new positive twist,
therefore we can consider α′ as being the core curve of a positive Hopf band. Now, let us
consider the plumbing rectangle D′ corresponding to the edge between v and w. Due to the
orientation mismatch, arriving at this rectangle from α′, we are oriented in the direction
opposed to the one we would arrive with if we were arriving from α(v). But due to the
orientation convention, when going from α(v) to α(w) in Σ(T2) we turn to the right since v

is negative, while when going from α′ to α(w) in Σ′ we turn to the left since α′ is a positive
band. Therefore, this effect cancels out the orientation mismatch, and Σ′ coincides exactly
with the surface Σ(T1) corresponding to the tree T1. Therefore Σ(T1) is an incompressible
subsurface of Σ(T2) by Lemma 6. See the third picture of Figure 8 for an illustration.

The same cancellation effect happens when the label of u is − and the label of v is +:
when cutting along γ2 we have an orientation mismatch which is cancelled out by the the
fact that the new band is negative, and thus the orientation convention makes it turn in the
opposite direction in the plumbing rectangle between v and w. Therefore, in that case Σ(T1)
is also an incompressible subsurface of Σ(T2) thanks to Lemma 6. This is illustrated in the
second picture of Figure 8. ◀

As a corollary, contracting any path of T1 into an edge whose labels match with the labels
of the extremities of the path produces a tree T2 such that Σ(T1) ≼ Σ(T2).

Proof of Proposition 5. By definition, if T1 admits a homeomorphic embedding into T2, it
can be obtained iteratively from T2 by (i) removing a child leaf, (ii) removing a parent leaf,
(iii) reducing a label or (iv) contracting a path while preserving the labels of the endpoints.
Since no two elements on the alphabet {+, −} are comparable, case (iii) cannot happen. Then
the cases (i), (ii) and (iv) are handled respectively by Lemma 7, Lemma 8 and Lemma 9. ◀

On the other hand, the Kruskal Tree Theorem directly yields the following proposition.

▶ Proposition 10. Hopf arborescent links are well-quasi-ordered under the link-minor relation.

Proof. Take an infinite sequence (Ln)n∈N of Hopf arborescent links, let (Tn)n∈N a sequence
of plane trees such that for all n ∈ N, Σ(Tn) is a Seifert surface of Ln. Then, by Theorem 3,
there exists i < j such that Ti admits a homeomorphic embedding into T2. Hence Li is a
link-minor of Lj . ◀
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Figure 8 All cases of contraction of a 3-path to an edge preserving the labels of the endpoints.
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We can deduce Theorem 2 as a direct corollary of Proposition 5 and Proposition 10.

Proof of Theorem 2. Take an infinite sequence (Σn)n∈N of canonical Seifert surfaces of Hopf
arborescent links. Then by Proposition 10, ∂Σi ↪→ ∂Σj for some i < j. By Proposition 5
we have Σi ≼ Σj , i.e. the surface-minor order is a well-quasi-order on Hopf arborescent
surfaces. ◀

▶ Remark 11. The proof of Proposition 5 highlights that the minor relation on the set of
Hopf arborescent surfaces is more subtle and fragile than one might expect. Indeed, the cuts
involved when taking an incompressible subsurface in the proof of Lemma 9 inevitably merge
Hopf bands and thus one needs to be careful in order to control the number of resulting twists.
In particular, the proof does not seem to generalise to the more general classes of surfaces
obtained by plumbing bands with a bounded number of twists (even though everything works
well at the level of trees).

4 Decidability of the genus defect for Hopf arborescent links

4.1 Monotonicity of the genus defect
Now that we proved that link-minor is a well-quasi-order on the set of Hopf arborescent
links, we want to highlight a property that is stable for this minor relation. Recall that the
genus defect ∆g(L) of an oriented link L is the difference g(L) − g4(L) between its classical
genus and its 4-dimensional genus. The latter can be either in the topological locally flat or
in the smooth category. All statements in this section (and in particular Theorem 1) hold in
both categories. We reprove Lemma 6 of [5] in the form of Proposition 12 using the fact that
link-minor implies that the associated Seifert are surface-minors.

▶ Proposition 12. The genus defect ∆g is monotone on the family of Hopf arborescent links
with respect to the link-minor relation, i.e., if L1 is a link-minor of L2, then ∆g(L1) ≤ ∆g(L2).

We rely on the following lemma that highlights how the 4-genus behaves with respect to
surface-minors. It uses a cut-and-paste construction and an Euler characteristic argument.

▶ Lemma 13. Let Σ be an oriented surface of S3 and Σ′ be a surface-minor of Σ. If we
write L = ∂Σ and L′ = ∂Σ′, then we have g(Σ) − g4(L) ≥ g(Σ′) − g4(L′).

Proof. Seeing S3 as the boundary of the 4-ball B4, consider a surface S′ in B4 such that
∂S′ = L′ and S′ ∩ S3 = L′. Gluing the remaining pieces of Σ ∖ Σ′ to S′ along L′ yields a
surface S in B4 such that ∂S = L, see Figure 9.

L

Σ

L

Σ′

L′

L

L′

S′

L

S

Figure 9 Illustration of the construction of Σ, Σ′, L′, S, and S′. Purple surfaces are in S3 while
blue one are considered to be in B4.
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By definition of g4(L), we have g4(L) ≤ g(S), and thus g(Σ) − g4(L) ≥ g(Σ) − g(S).
Furthermore, the genus of S is given by g(S) = g(Σ) − g(Σ′) + g(S′). Thus one has
g(Σ) − g4(L) ≥ g(Σ′) − g(S′). Now if we assume S′ to minimise the 4-genus over surfaces
bounded by L′, we conclude: g(Σ) − g4(L) ≥ g(Σ′) − g4(L′). ◀

As Hopf arborescent surfaces are of minimal genus for Hopf arborescent links, Lemma 13
can be used to prove Proposition 12.

Proof of Proposition 12. Let L and L′ be two Hopf arborescent links such that L′ is a
link-minor of L. Consider Σ and Σ′ the corresponding canonical Seifert surfaces. Since Hopf
arborescent links are fibred, Σ is a Seifert surface of L of minimal genus, i.e. g(L) = g(Σ)
and similarly, g(Σ′) = g(L′). By Proposition 5 one has Σ ≼ Σ′. Hence, by Lemma 13, one
gets ∆g(L) ≥ ∆g(L′). ◀

4.2 Proof of Theorem 1
We first show that the link-minor relation can be decided using the decidability of link
equivalence. For knots, equivalence can be tested as a combination of an algorithm that
allows to decide whether two 3-manifolds with boundary are homeomorphic [22, 31] and the
Gordon-Luecke Theorem [17] that states that two knots are equivalent if their complements,
which are 3-manifolds with boundaries, are equivalent. In the case of links, we additionally
need to keep track of a longitude of each torus boundary component in the complement of
the link. We refer to the survey of Lackenby [23, Section 2] for a summary of the techniques
that allow to prove the following theorem:

▶ Theorem 14 (Link equivalence). Given two links L1 and L2, the problem of testing
whether L1 is ambient isotopic to L2 is decidable.

Given a Hopf arborescent link L, denote by T (L) the set of plane trees T whose associated
Hopf arborescent surface Σ(T ) has L as oriented boundary. As a corollary, we obtain:

▶ Lemma 15. Given a Hopf arborescent link L, the set T (L) is computable.

Proof. For increasing k ∈ N, we enumerate all plane trees Ti with k vertices labelled by
{−, +} and store the trees Ti such that ∂Σ(Ti) is isotopic to L, where we test isotopy using
Theorem 14. If we find a k for which such a tree exists, we finish the enumeration for this
value and return the stored trees. Indeed, plumbing n Hopf bands produces a surface with
Betti number n. All the trees Ti such that ∂Σ(Ti) = L produce surfaces Σ(Ti) with the same
genus, hence have the same number of vertices. As the entry is a Hopf arborescent link,
there exists a tree T such that ∂Σ(T ) = L. So the algorithm terminates. ◀

Alternatively, and if one wants some control on the complexity of that algorithm, one
can avoid blindly testing for increasing k by first computing the genus of the link [19, 31], or
just computing an upper bound to it using, e.g., Seifert’s algorithm, and then enumerate
only the trees that produce surfaces up to that genus. From Lemma 15, we obtain:

▶ Lemma 16. Given two Hopf arborescent links L1 and L2, testing if L1 is a link-minor
of L2 is decidable.

Proof. Using Lemma 15, we compute T (L1) and T (L2). The trees in T (L1) (resp. T (L2))
all have the same number k1 (resp. k2) of vertices. Then we brute force every possible path
contraction to an edge and iterated leaf deletion on trees of T (L2) such that the result is a
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tree with k1 vertices, and test whether it is equal to a tree of T (L1). If such a test succeeds,
we output yes, otherwise we return no. There is a finite number of trees in both T (L1)
and T (L2) and a finite number of a trees with k1 vertices that homeomorphically embed
into a tree of T (L2). Hence that algorithm eventually terminates. Its correctness follows
directly from the definition of link-minor. ◀

Finally we prove Theorem 1 by using the stability of the genus-defect by link-minor, the
previous algorithms, and the well-quasi-order properties.

Proof of Theorem 1. By Proposition 10, the order defined by link-minors is a well-quasi-
order on the set of Hopf arborescent links. Hence, the set of Hopf arborescent links Hk that
have defect at most k is characterized by a finite family Fk of forbidden minors. It follows,
by Proposition 12 that ∆g(L) ≤ k if and only if for all f in Fk, f is not a link-minor of L.
Using Lemma 16 we test for each f ∈ Fk if f is a link-minor of L. If such a test succeeds,
output no, otherwise the input link has ∆g(L) ≤ k. ◀

As said in the introduction, our proof in not constructive as it relies at its core on the
existence of a set of forbidden minors for having defect at most k. This set of forbidden
minors is not explicit and hard-coded in the algorithm. Furthermore, the sets of excluded
minors will be different for the two different notions of defect (smooth and locally flat). It is
likely that computing them is a topological challenge requiring arguments of different nature.

Theorem 2 provides the existence of a set of forbidden minors for having defect at most
k but for a different and stronger definition of minors on links that relies only on the surface-
minor relation on the Seifert surface and not the trees. However deciding this relation, even
by a brute force argument, seems challenging: in addition to the fact that no algorithm seems
to be known for testing isotopy of surfaces, one would also need to control the complexity of
the cutting arcs. Even with positive Hopf arborescent links only, this seems delicate [32].
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