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Abstract
We study the discrepancy of the following communication problem. Alice receives a halfplane, and
Bob receives a point in the plane, and their goal is to determine whether Bob’s point belongs to
Alice’s halfplane. This communication task corresponds to determining whether x1y1 + y2 ≥ x2,
where the first player knows (x1, x2) and the second player knows (y1, y2).

Denoting n = m3, we show that when the inputs are chosen from [m] × [m2], the communication
discrepancy of the above problem is O(n−1/6 log3/2 n).

On the other hand, through the connections to the notion of hereditary discrepancy by Matoušek,
Nikolov, and Tawler (IMRN 2020) and a classical result of Matoušek (Discrete Comput. Geom.
1995), we show that the communication discrepancy of every set of n points and n halfplanes is at
least Ω(n−1/4 log−1 n).
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1 Introduction

Discrepancy theory is an extensive mathematical area that studies the irregularities of
distributions of mathematical objects of all kinds. The various notions of discrepancy usually
measure the extent of irregularity a system is bound to exhibit. In a sense, discrepancy theory
studies how well discrete objects can be distributed to best approximate continuous ones.
The subject of discrepancy theory originated from number-theoretic problems in the 1930s,
and since then, it has developed into a broad and diverse research area with close connections
to theoretic fields like number theory and combinatorics, as well as newfound motivations
from complexity theory, computational geometry and numerical computations [18, 6].

In communication complexity, a related notion coincidentally named discrepancy, measures
the maximum imbalance over submatrices guaranteed by any probability distribution.
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5:2 Communication Complexity and Discrepancy of Halfplanes

▶ Definition 1 (Discrepancy). For a sign matrix M ∈ {±1}X ×Y , the discrepancy of M with
respect to a probability distribution µ on X × Y is

Discµ(M) := max
A⊆X
B⊆Y

DiscA×B
µ (M),

where

DiscA×B
µ (M) :=

∣∣∣∣ E
(x,y)∼µ

[M(x, y)1A(x)1B(y)]
∣∣∣∣ .

The discrepancy of M , denoted by Disc(M), is the minimum of Discµ(M) over all probability
distributions µ on X × Y.

The above notion of communication discrepancy is the main parameter of interest in this work.
To forestall possible confusion, we explicitly state that we are referring to the communication-
theoretic notion whenever we use the term “discrepancy” alone and denote the other notion
as “combinatorial discrepancy”.

Formulated as an irregularity measure, the definition of communication discrepancy
suggests probable connections with classical discrepancy theory. Matoušek, Nikolov and
Talwar [19] noted a relation that linked hereditary discrepancy and communication discrepancy
(Equation (3)), and we illustrate the power of this insight through studying a communication
task called the halfplane membership problem.

Let H be a finite set of halfplanes, and let P be a finite set of points. Alice receives a
halfplane in H, and Bob receives a point in P . Their goal is to determine whether Bob’s point
belongs to Alice’s halfplane. We represent every point in P by its coordinates (y1, y2) ∈ R2,
and every halfplane in H by a pair (x1, x2) ∈ R2, corresponding to the halfplane

Hx1,x2 := {(z1, z2) ∈ R2 : x1z1 + z2 ≥ x2}.

We show that the discrepancy of the halfplane membership problem is small even when
the points and halfplanes are chosen from [n]2, where [n] := {1, . . . , n}. This problem is
henceforth denoted as PH. In the context of communication complexity, Chor and Goldreich
[8] proved that for every 0 < ϵ < 1/2,

Rϵ(M) ≥ log 1 − 2ϵ

Disc(M) , (1)

where Rϵ(M) denotes the randomized communication complexity of M with an error of ϵ in
the public randomness model (See [12, Section 3] for the precise definition). As a consequence,
a small discrepancy implies a large randomized communication complexity.

Every n × n sign matrix M satisfies Rϵ(M) ≤ 1 + log n as illustrated by the trivial
protocol where Alice sends her whole input to Bob, and Bob computes the output. Also,
Disc(M) is always at least Ω(n−1/2), which we will discuss in Section 1.2. Our main theorem
shows that the halfplane membership problem essentially matches these worst-case bounds.

▶ Theorem 2 (Main theorem). Let n = m3 and consider the matrix PH ∈ {±1}n×n, whose
rows and columns are indexed by [m] × [m2], and

PH([x1, x2], [y1, y2]) =
{

1 if x1y1 + y2 ≥ x2

−1 otherwise
. (2)

We have

Disc(PH) = O(n−1/6 log3/2 n) and R1/3(PH) = Θ(log n).

On the other hand, for every point-halfplane membership instance with n points and n

halfplanes, the discrepancy is at least Ω(n−1/4 log−1 n).
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▶ Remark 3. It is essential that the halfplanes in H are not limited to be homogeneous,
which are the halfplanes defined by lines passing through the origin. Indeed, limiting to
homogeneous halfplanes results in the communication problem x1y1 ≥ x2, which is equivalent
to y1 > x2/x1. Since Alice has full information of x2/x1 and Bob has full information of y1,
this reduces to an instance of the so-called greater-than communication problem. Nisan [21]
showed that the randomized communication complexity of the n × n greater-than problem is
O(log log n). Moreover, Braverman and Weinstein [4] proved that the discrepancy of this
matrix is Ω(log−1/2 n).

Communication complexity

Theorem 2 extends the findings of a recent work by Hatami, Hosseini, and Lovett [10]. Their
work considered the following communication problem PH′, which is based on points and half-
spaces in dimension three. Specifically, for n = s4, Alice receives (x1, x2, x3) ∈ [s]2×[−3s2, 3s2]
and Bob receives (y1, y2) ∈ [s]2, the goal is to determine whether x1y1 + x2y2 ≥ x3. Hatami
et al. proved that Disc(PH′) = O(n−1/8 log n) and R(PH′) = Ω(log n). Theorem 2 extends
the result of [10] since PH is obtained from PH′ by the restriction x2 = 1. Our result also
represents an improvement in the discrepancy upper bound from the magnitude of n−1/8 to
n−1/6.

The discrepancy upper bound for PH′ in [10] crucially depends on the mixing property
of the function x1y1 + x2y2, a property absent in the corresponding function x1y2 + y2 in
PH. To overcome the requirement for a strong mixing property, we employ an averaging
argument based in a Fourier-theoretic fact: the L1 sum of the Fourier coefficients of the
convolution of two Boolean functions is always at most 1. This not only circumvents the
broken step in the proof of [10], but also significantly simplifies various parts of the proofs
shared between Theorem 2 and [10]. We elaborate on the differences between the two proofs
in more technical detail in Section 4.

Discrepancy theory

Partly motivated by applications to the range searching problem, Chazelle and Lvov [7]
provided an explicit example of n points and n halfplanes with hereditary discrepancy
Ω(n1/4 log−1/2 n). Hereditary discrepancy, denoted by herdisc(·), was introduced by Lovász,
Spencer, and Vesztergombi [17] as a robust version of combinatorial discrepancy. It is a
well-studied quantity in discrepancy theory with numerous applications in computer science
and related fields [6, 18, 1]. The formal definition of hereditary discrepancy and other related
notions will be deferred to subsequent sections.

Matoušek, Nikolov, and Talwar [19] established a connection between hereditary dis-
crepancy and the γ2 factorization norm, a matrix norm that has found extensive use in
communication complexity theory [14, 15, 16].

▶ Theorem 4 ([19]). There exists a universal constant C such that for any real matrix B

with m rows,

γ2(B)
C log m

≤ herdisc(B) ≤ γ2(B) · C
√

log m.

By means of the notion of margin, one can apply Theorem 4 to relate communication
discrepancy with hereditary discrepancy (see Theorems 9 and 10). Denoting

herdisc∞(A) := min{herdisc(B) : AijBij ≥ 1 ∀i, j},

SoCG 2024



5:4 Communication Complexity and Discrepancy of Halfplanes

Matoušek et al. [19] mentioned as a direct consequence of Theorem 4 that the quantities
herdisc∞(A) and Disc(A)−1 are equivalent up to poly-logarithmic factors:

Disc(A)−1

C log m
≤ herdisc∞(A) ≤ C Disc(A)−1

√
log m. (3)

By leveraging basic properties of the simple properties of γ2 norm in combination with Theo-
rem 4, we derive the following proposition, allowing for comparisons of classical discrepancy
results in the boolean setting to communication discrepancy results in the sign setting.

▶ Proposition 5. Let F ∈ {0, 1}m×n be a non-zero matrix. If A is the sign matrix obtained
by replacing 0 in F with −1, then

γ2(F ) ≤ γ2(A) ≤ 3γ2(F ). (4)

In particular,

herdisc(F ) · Ω(log−3/2 m) ≤ herdisc(A) ≤ herdisc(F ) · O(log3/2 m). (5)

By Proposition 5, Chazelle and Lvov’s example corresponds to an n × n sign matrix P

representable by points and halfplanes with

herdisc(P ) = Ω(n1/4 log−2 n),

whereas Theorem 2 provides a polynomial lower bound on the more challenging quantity

herdisc∞(PH) = Ω(n1/6 log−5/2 n).

In the other direction, Theorem 4 holds greater importance in adapting classical discrep-
ancy results to communication complexity. Theorems 9 and 10 combined give

Disc(A) = Ω(γ2(A)−1). (6)

Through the connection between γ2 norm and hereditary discrepancy (Theorem 4), as well
as the conversion from boolean to sign setting (Proposition 5), we can translate classical
discrepancy upper bounds on incidence systems into discrepancy lower bounds at an expense
of additional poly-logarithmic factors.

Employing this machinery and a celebrated upper bound result by Matoušek, we prove a
discrepancy lower bound in terms of the notion of sign-rank. The sign-rank of a sign matrix
is the minimum rank over real matrices with agreeing sign patterns. We will discuss the
geometric interpretation of the sign-rank and its significance in communication complexity
theory in Section 1.2.

▶ Theorem 6. Every n × n sign matrix A with sign-rank d satisfies

Disc(A) = Ω
(

n− 1
2 + 1

2(d−1) log−1 n
)

and herdisc(A) = O
(

n
1
2 − 1

2(d−1)

)
.

We will present the proof in Section 2. The second part of Theorem 2 is an immediate
corollary of this theorem. This theorem also improves the trivial bound of Disc(A) = Ω(n−1/2)
for any sign matrix A with sign-rank O

(
log n

log log n

)
.
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1.1 Geometric interpretation of Theorem 2
Theorem 2 offers an insightful interpretation of the geometry inherent in a point-halfspace
representation. A sign matrix can be naturally represented by an incidence system of points
and halfspaces. Concretely, a sign representation for a sign matrix A assigns each row
with a point ui and each column with a vector vj , denoting an oriented halfspace. This
representation ensures that sign(⟨ui, vj⟩) = Aij . By its very definition, PH is representable
by points and (non-homogeneous) halfspaces in dimension two.

Apart from dimension, another parameter of interest is the margin, which measures the
normalized distance of the points from the boundaries of halfspaces. We defer the formal
mathematical definition to Section 1.2. The dimension and margin of sign representations
are crucial performance parameters for linear classifiers in learning theory. Indeed, a low-
dimension classifier is desirable for its efficiency, while a large-margin classifier is favourable
for robustness against perturbations.

In view of the equivalence of discrepancy and margin (Theorem 10), Theorem 2 illustrates
that while the matrix PH is representable in dimension two as points and halfplanes, the
margin of such a representation of PH in any dimension stays small.

1.2 Sign-rank versus discrepancy
The sign-rank of a sign matrix A ∈ {±1}m×n, denoted by rank±(A), is the smallest rank
of a real matrix B ∈ Rm×n such that the entries of B are nonzero and have the same signs
as their corresponding entries in A. The notion of sign-rank was introduced in 1986 in
connection with randomized communication complexity in the unbounded-error model of
Paturi and Simon [22]. This fundamental notion arises naturally in various areas such as
learning theory, discrete geometry and geometric graphs, communication complexity, circuit
complexity, and Banach spaces theory (see [9] and the references therein).

Sign-rank can be equivalently defined based on sign representations. Recall that a sign
representation of a sign matrix A is a pair of sets of vectors {ui}, {vj} ⊆ Rd such that
Aij = sign(⟨ui, vj⟩) for all i, j. The sign-rank is the minimum d for such a representation to
exist. The margin of the representation is defined as

min
i,j

|⟨ui, vj⟩|
∥ui∥∥vj∥

,

and the margin of the matrix A, denoted by m(A), is the maximum margin attainable by
a sign representation in any dimension. For an n × n sign matrix A, if we take ui’s to be
the rows of A and vj ’s to be the columns of the identity matrix, this sign representation
achieves the trivial bounds rank±(A) ≤ n and m(A) ≥ 1/

√
n. By the equivalence of the

discrepancy and the margin (Theorem 10), the above bound gives the Ω(1/
√

n) lower bound
for the discrepancy.

The pioneering paper of Babai, Frankl, and Simon [3], which formally introduced the
communication complexity classes, initiated a line of research investigating the gap between
two fundamental notions in communication complexity – namely, sign-rank and discrepancy.
The same paper posed the separation question of these two parameters, in complexity class
terms, this is equivalent to asking for a separation between the two communication complexity
classes PPcc and UPPcc, i.e., weakly-unbounded-error and unbounded-error communication
complexity classes. We omit the definitions of the complexity classes here, and direct the
reader to [10] for a more comprehensive discussion.

SoCG 2024



5:6 Communication Complexity and Discrepancy of Halfplanes

The question posed by Babai, Frankl and Simon [3] remained unanswered for over two
decades. Finally, it was demonstrated by Buhrman et al. [5] and independently Sherstov [24]
that there are n × n sign matrices with rk±(F ) = O(log n) but Disc(F ) = 2− logΩ(1)(n).
Subsequent works [25, 26, 28, 27] further refined this separation, and an exponential separation
of rk±(F ) = O(log n) and Disc(F ) = n−Ω(1) was achieved in [27].

Recently, [10] improved the separation to rk±(F ) = 3 and Disc(F ) = O(n−1/8 log n).
The sign-rank 3 of this separation is tight since every sign matrix of sign-rank 2 consists of a
few copies of the greater-than matrix, and thus, by the result of Braverman and Weinstein [4],
such a matrix has discrepancy Ω(log−1/2 n). The matrix PH in Theorem 2 also has sign-rank
3 and it provides a slightly stronger upper bound on the discrepancy.

1.3 Discrepancy with respect to product measures
A sign matrix with a sub-logarithmic sign-rank inherit interesting structural properties from
low-dimensional geometry. For instance, Alon, Pach, Pinchasi, and Sharir [2, Theorem 1.3]
proved that every n×n sign matrix of sign-rank d contains a monochromatic rectangle of size

n
2d+1 × n

2d+1 . It follows that for such a matrix, and for every product measure λ × ν (where λ

and ν are probability measures over rows and columns, respectively), the inequality holds:

Discλ×ν(F ) ≥ 1
22d+2 .

This constitutes a meaningful lower bound when d = o(log n). It is particularly interesting
to contrast this result with Theorem 2. As the matrix PH in Theorem 2 has a sign-rank of 3,
it implies that

Disc×(PH) := inf
λ×ν

Discλ×ν(PH) ≥ 2−8,

while Theorem 2 shows if we allow the infimum to include non-product measures, then

inf
µ

Discµ(PH) ≤ O(n−1/6 log3/2 n).

From the communication complexity perspective, these observations lead to another example
that separates (general) distributional complexity and product distributional complexity.

For a distribution µ, the µ-distributional complexity of F , denoted by Dµ
ϵ (F ), is the least

cost of a deterministic protocol that computes F on an input sampled from µ with an error
probability of at most ϵ. Yao’s minimax principle [29] states that randomized communication
complexity is exactly the maximum distributional complexity. Thus by Theorem 2, one has

max
µ

Dµ
1/3(PH) = Θ(log n).

On the other hand, for any sign matrix F and product distribution λ × ν, [11] proved that

Dλ×ν
ϵ (F ) = O

(
1
ϵ

VC(F ) log 1
ϵ

)
.

Since the sign-rank upper bounds the VC dimension and PH has sign-rank 3, we have

Disc×(PH) ≥ 2−8 and D×
1/3(PH) := max

λ×ν
Dλ×ν

1/3 (PH) = O(1),

while by Theorem 2,

Disc(PH) = O(n−1/6 log3/2 n) and R1/3(PH) = Ω(log n). (7)
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Consequently, Theorem 2 reinstates the O(1)-versus-Ω(log n) separation1 between general
distributional complexity and product distributional complexity as proved by Sherstov [23].

▶ Theorem 7 ([23, Theorem 1.2]). Let ϵ > 0 be an arbitrary constant. There exists an n × n

sign matrix F such that

Disc×(F ) = Ω(1) and D×
1/3(F ) = O(1),

while

Disc(F ) = O
(

n− 1
2 +ϵ
)

and R1/3(F ) = Ω(log n).

2 Hereditary discrepancy and γ2 norm

The combinatorial discrepancy of a matrix A ∈ Rm×n is defined as minx∈{±1}n ∥Ax∥∞.
The hereditary discrepancy of A is the maximum combinatorial discrepancy among column
restrictions of A:

herdisc(A) := max
S⊆[n]

min
x∈{±1}|S|

∥ASx∥∞,

where AS is the restriction of A to columns in S. This concept was introduced by Lovász,
Spencer, and Vesztergombi [17] as a more well-behaved notion of combinatorial discrepancy.
Indeed, without the hereditary constraint, duplicating a set system of arbitrary combinatorial
discrepancy results in a set system with zero combinatorial discrepancy.

The γ2 factorization norm originates from Banach space theory. In the seminal work
by Linial and Shraibman [16], they introduced the norm as a lower-bound technique for
randomized and quantum communication complexities. Since then, γ2 norm has become a
central matrix complexity parameter of interest in communication complexity theory and
related areas.

▶ Definition 8 (γ2-factorization norm). The γ2 norm of a real matrix A is

γ2(A) := min
X,Y :A=XY

∥X∥row∥Y ∥col,

where ∥X∥row and ∥Y ∥col denote the largest ℓ2-norm of a row in X and the largest ℓ2 norm
of a column in Y , respectively.

A notable alternative definition of γ2 norm is formulated in [13]:

γ2(A) = min
P : ∥P ∥≤1

∥P ◦ A∥. (8)

Here ∥ · ∥ denotes the spectral norm and ◦ denotes Hadamard (entrywise) product. Many
properties of γ2 norm follow easily from Equation (8).

To establish the connection between communication discrepancy and hereditary discrep-
ancy, we require two important results related to the margin: the margin admits a γ2 norm
formulation, and it is equivalent to the discrepancy up to the constant factor.

1 We remind readers for the change of notation from [23]: Shertov stated the result in terms of a boolean
function f : {0, 1}n′

× {0, 1}n′
, whereas our result considers F to be an n × n matrix.

SoCG 2024



5:8 Communication Complexity and Discrepancy of Halfplanes

▶ Theorem 9 ([14]). For every sign matrix A, m(A)−1 = min{γ2(B) : AijBij ≥ 1 ∀i, j}.
In particular, m(A)−1 ≤ γ2(A).

▶ Theorem 10 ([15]). For every sign matrix A, Disc(A) ≤ m(A) ≤ 8 Disc(A).

In this work and common to communication complexity theory, it is routine to switch
between the boolean setting and sign setting to represent binary values. Equation (4) of
Proposition 5 states that the γ2 norms of a boolean matrix and its sign version are equivalent
up to a constant factor. This simple yet crucial fact allows us to bridge communication
discrepancy results with classical discrepancy results.

Proof of Proposition 5. Note that A = 2F − J , where J is the all-one matrix. By triangle
inequality and the fact that γ2(J) = 1, we have 2γ2(F ) − 1 ≤ γ2(A) ≤ 2γ2(F ) + 1. It can be
checked that γ2(A), γ2(F ) ≥ 1, this yields Equation (4) as required.

Combining Equation (4) with Theorem 4 yields

herdisc(A) ≤ γ2(A) · C
√

log m ≤ γ2(F ) · 3C
√

log m ≤ herdisc(F ) · 3C2 log3/2 m,

and

herdisc(A) ≥ γ2(A) · C−1 log−1 m ≥ γ2(F ) · C−1 log−1 m ≥ herdisc(F ) · C−2 log−3/2 m. ◀

With the above preparations, we are in a position to prove Theorem 6.

Proof of Theorem 6. Since A is of sign-rank d, there exist vectors ui, vj ∈ Rd such that
Aij = sign(⟨ui, vj⟩) for every i, j ∈ [n], By applying perturbations if necessary, we can assume
the d-th coordinate of vj is non-zero for each j. Furthermore, since we are only concerned
with the sign of ⟨ui, vj⟩, we can rescale vj ’s so that vj(d) = ±1 for each j. Partition the
columns of A into the sets

C+ := {j ∈ [n] : vj(d) = +1} and C− := {j ∈ [n] : vj(d) = −1}.

The case where all vj(d)’s are equal is a simple special case and the proof easily follows from
the general case. We assume C+, C− ̸= ∅ thereafter.

By reordering the columns if necessary, we can assume that all columns in C+ precede
the columns in C−. Consider the matrix A+ (resp. A−) obtained by restricting to the
columns in C+ (resp. C−), so A is the matrix with A+ placing next to A−. We show
that A+ and A− are representable by points and halfspaces in Rd−1. For v ∈ [n], define
ṽj = (vj(1), . . . , vj(d − 1)) ∈ Rd−1. For i ∈ [n], define

H
(+)
i = {w ∈ Rd−1 : ui(1)w(1) + ui(2)w(2) + · · · + ui(d − 1)w(d − 1) + ui(d) ≥ 0}.

Then, A+(i, j) = +1 iff ṽj ∈ H
(+)
i for any (i, j) ∈ [n] × C+. As for A−, for i ∈ [n] we define

H
(−)
i = {w ∈ Rd−1 : ui(1)w(1) + ui(2)w(2) + · · · + ui(d − 1)w(d − 1) − ui(d) ≥ 0}.

It follows that A−(i, j) = +1 iff ṽj ∈ H
(−)
i for any (i, j) ∈ [n] × C−.

It was proved in [20] that for a point-halfspace incidence system in Rt with n points, the
combinatorial discrepancy and consequently hereditary discrepancy of the boolean incidence
matrix is O(n1/2−1/2t). We prove that the same bound also holds for the sign setting, we
refer readers to the appendix of the full version for the proof.
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Observe that for two matrices P ∈ Rm×n1 and Q ∈ Rm×n2 ,

herdisc
([

P Q
])

≤ herdisc(P ) + herdisc(Q),

this concludes that

herdisc(A) ≤ herdisc(A−) + herdisc(A+) = O
(

n
1
2 − 1

2(d−1)

)
. (9)

For the communication discrepancy lower bound, applying Equation (6) and Theorem 4 to
Equation (9) gives the desired bound:

Disc(A) = Ω(γ2(A)−1) = Ω((herdisc(A) log n)−1) = Ω
(

n− 1
2 + 1

2(d−1) log−1 n
)

. ◀

3 Proof of Theorem 2

Before presenting the proof of Theorem 2, we first provide the technical preludes of the proof.

3.1 Preliminaries
Notations

To simplify the presentation, we often use ≲ or ≈ instead of the big-O notation whenever
the constants are unimportant. That is, x ≲ y means x = O(y), and x ≈ y means x = Θ(y).
For integers s < t, we denote [s, t] = {s, . . . , t}, and we shorthand [s] = [1, s].

For a random variable r, we denote µ = µr the distribution of r. For a finite set S, we
write r ∼ S to indicate that r is uniformly sampled from S.

Fourier analysis

We introduce the relevant notations and fundamental results in Fourier analysis over cyclic
groups, the primary tool for the proof of our main result. Let p be a prime. For f, g : Zp → C,
define the inner product by

⟨f, g⟩ = 1
p

∑
x∈Zp

f(x)g(x).

Let ep : Zp → C denote the exponentiation by a p-th root of unity, that is ep : x 7→ e2πix/p.
For a ∈ Zp, define the character function χa : x 7→ ep(−ax). Note that {χa : a ∈ Zp} forms
an orthonormal basis with respect to the inner product defined above.

The Fourier expansion of f : Zp → C is given by

f(x) =
∑

a∈Zp

f̂(a)χa(x),

where f̂(a) = ⟨f, χa⟩. Note that by definition,

f̂(a) = 1
p

∑
x∈Zp

f(x)ep(ax).

A fundamental identity of Fourier analysis is Parseval’s identity:∑
a∈Zp

|f̂(a)|2 = E
x∈Zp

|f(x)|2.

SoCG 2024



5:10 Communication Complexity and Discrepancy of Halfplanes

The convolution of two functions f, g : Zp → C is defined to be

f ∗ g(z) = 1
p

∑
a∈Zp

f(a)g(z − a).

From the orthonormality of characters, it follows that f̂ ∗ g(a) = f̂(a)ĝ(a). In particular,
if x1, . . . , xk are independent random variables taking values in Zp, and then the Fourier
coefficient of the distribution of the random variable x := x1 + . . . + xk is

µ̂x(a) = pk−1
k∏

i=1
µ̂xi

(a).

Number theory estimates

Fix a prime p. For x ∈ Z, denote |x|p the minimum distance of x to a multiple of p, that is

|x|p = min{|x − pk| : k ∈ Z}.

We will often use the estimate

4|x|p
p

≤ |ep(x) − 1| ≤ 8|x|p
p

,

which follows from the easy estimate that 4|y| ≤ |e2πiy − 1| ≤ 8|y| for y ∈ [−1/2, 1/2].

3.2 Proof
As mentioned in Section 1, the lower bound in Theorem 2 follows from Theorem 6. For the
rest of the section, we focus on the upper bound. Let m be sufficiently large and denote
X = [m] × [m2]. The matrix PH is an X × X matrix.

Construction of hard distribution

We introduce a distribution µ on X × X by sampling (x1, x2, y1, y2) ∈ X × X as follows.
Select x1, y1 ∼ [m/2], y2 ∼

[
m2/4, m2/2

]
uniformly and independently.

Let t = ⌊10 log m⌋. Select k1, . . . , kt ∼ [20m] uniformly and independently and set
k = k1 + · · · + kt. Set x2 = x1y1 + y2 + k or x2 = x1y1 + y2 + k − 20mt, each with
probability 1/2.

Assuming m is sufficiently large, we have 0 < x2 ≤ m2 and thus µ is indeed supported on
X × X . To make the presentation cleaner, instead of analyzing µ directly, we work with a
similar measure on the extended domain Z2 × Z2. We also extend the definition of PH in
Equation (2) to Z × Z.

We introduce a distribution ν on Z2 × Z2 by sampling (x1, x2, y1, y2) as follows:
Select x1, y1 ∼ [m], y2 ∼ [m2] uniformly and independently.
Select k1, . . . , kt ∼ [20m] uniformly and independently and set k = k1 + . . . + kt. Set
x2 = x1y1 + y2 + k or x2 = x1y1 + y2 + k − 20mt, each with probability 1/2. Note that
in the former case, x1y1 + y2 < x2 and in the latter case, x1y1 + y2 ≥ x2.

Let (x1, x2, y1, y2) ∼ ν and consider the event

S :=
{

(x1, x2, y1, y2) | x1, y1 ∈ [m/2] and y2 ∈
[
m2/4, m2/2

]}
.

The distribution µ, defined earlier, is ν conditioned on S.
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Consider A, B ⊆ X , and let A′ and B′ be A and B restricted to S, that is

A′ = {(x1, x2) ∈ A | x1 ≤ m/2} ⊆ A,

and

B′ =
{

(y1, y2) ∈ B | y1 ≤ m/2 and y2 ∈
[
m2/4, m2/2

]}
⊆ B.

We shorthand x = (x1, x2) and y = (y1, y2). By the definition of µ, we have

DiscA×B
µ (PH) = |E(x,y)∼µ[PH(x, y)1A′ (x)1B′ (y)]| = 1

Prν [S] |E(x,y)∼ν [PH(x, y)1A′ (x)1B′ (y)]|

= 16|E(x,y)∼ν [PH(x, y)1A′ (x)1B′ (y)]| = 16 DiscA′×B′
ν (PH).

Therefore, it suffices to show that for every A, B ⊆ X , we have

DiscA×B
ν (PH) = O(m−1/2 log3/2 m).

The rest of the proof of Theorem 2 is dedicated to proving this bound.

Invariance under shift

For every x1 ∈ [m], define Ax1 = {x2 : (x1, x2) ∈ A}. We have

DiscA×B
ν (PH) =

∣∣Ex1∼[m] Ey∼[m]×[m2]
[
1B(y)Ex2|x1,y[PH(x, y)1Ax1 (x2)]

]∣∣
= |B|

m3

∣∣Ex1∼[m] Ey∼B Ex2|x1,y[PH(x, y)1Ax1 (x2)]
∣∣

= |B|
2m3

∣∣Ex1∼[m],y∼B,k[1Ax1 (x1y1 + y2 + k) − 1Ax1 (x1y1 + y2 + k − 20mt)]
∣∣ .

Here, the last line follows from the definition of x2 and ν.
Let νB

x1
denote the distribution of x1y1 + y2 + k conditioned on the value of x1 and the

event (y1, y2) ∈ B. Note that νB
x1

is supported on [0, 3m2]. We embed this distribution into
Zp for some prime p ∈ [4m2, 5m2]. With this notation, we can rewrite

DiscA×B
ν (PH) = |B|

2m3

∣∣∣Ex1 Ew∼νB
x1

[1Ax1
(w) − 1Ax1

(w − 20mt)]
∣∣∣

= |B|
2m3

∣∣∣∣∣Ex1

∑
w∈Z

[1Ax1
(w)νB

x1
(w) − 1Ax1

(w − 20mt)νB
x1

(w)]

∣∣∣∣∣
= |B|

2m3

∣∣∣∣∣Ex1

∑
w∈Z

[1Ax1
(w)νB

x1
(w) − 1Ax1

(w)νB
x1

(w + 20mt)]

∣∣∣∣∣
≤ |B|

2m3 Ex1

∑
w∈Z

∣∣νB
x1

(w) − νB
x1

(w + 20mt)
∣∣

= |B|
2m3 Ex1

∑
w∈Zp

∣∣νB
x1

(w) − νB
x1

(w + 20mt)
∣∣

≲
|B|
m

Ex1 Ew∼Zp

∣∣νB
x1

(w) − νB
x1

(w + 20mt)
∣∣ .

The above analysis shows that in order to prove that DiscA×B
ν (PH) is small, we need to show

that typically νB
x1

is almost invariant under a shift of 20mt.
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Fourier Expansion of νB
x1

In order to analyze the shift-invariance of νB
x1

, we examine the Fourier expansion of νB
x1

(w)
as a function on Zp.

▶ Lemma 11. For a fixed x1, for every a ∈ Zp \ {0},

ν̂B
x1

(a) = 1
p

ep(ta)
(

1
20m

ep(20ma) − 1
ep(a) − 1

)t

Ey∼B [ep(x1y1 + y2)].

Proof. For the fixed x1, denote by η the distribution of x1y1 + y2 for random y ∼ B. For
j ∈ [t], denote by µj the distribution of kj . Note that

η̂(a) = 1
p

∑
u∈Zp

η(u)ep(au) = 1
p
Ey∼B [ep(a(x1y1 + y2)],

and for every j, by the partial sum formula of a geometric series,

µ̂j(a) = 1
p

20m∑
u=1

1
20m

ep(au) = ep(a)
20mp

· ep(20ma) − 1
ep(a) − 1 .

Since νB
x1

= x1y1 + y2 + k1 + . . . + kt, we have ν̂B
x1

(a) = ptη̂(a)µ̂1(a) . . . µ̂t(a), and the result
follows. ◀

Invariance via Fourier expansion

Our earlier upper bound on DiscA×B
ν (PH) translates to

DiscA×B
ν (PH) ≲ |B|

m
Ex1,w |νB

x1
(w) − νB

x1
(w + 20mt)|

= |B|
m

Ex1,w

∣∣∣∣∣∣
∑

a∈Zp

ν̂B
x1

(a)(χa(w) − χa(w + 20mt))

∣∣∣∣∣∣
= |B|

m
Ex1,w

∣∣∣∣∣∣
∑

a∈Zp

ν̂B
x1

(a)(1 − ep(−20mta))χa(w)

∣∣∣∣∣∣ .
We now square both sides and apply Cauchy-Schwarz, then Parseval’s identity, to obtain

DiscA×B
ν (PH)2 ≲

(
|B|
m

)2
Ex1

∑
a∈Zp

|ν̂B
x1

(a)|2|1 − ep(−20mta)|2.

Substituting ν̂B
x1

(a) for its value from Lemma 11 yields

DiscA×B
ν (PH)2 ≲

( |B|
pm

)2 ∑
a∈Zp

E
x1

∣∣∣∣ E
y∼B

ep(a(x1y1 + y2))
∣∣∣∣2 ∣∣∣∣ 1

20m

ep(20ma) − 1
ep(a) − 1

∣∣∣∣2t

|1 − ep(−20mta)|2 .

(10)

Since 4m2 ≤ p ≤ 5m2, for a ̸= 0, it follows from the trivial bound |ma|p ≤ m|a|p that

|ep(20mta) − 1| ≈ |20mta|p
p

≲ min
{

1,
mt|a|p

p

}
≲ min

{
1,

t|a|p
m

}
,

and
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∣∣∣∣ 1
20m

ep(20ma) − 1
ep(a) − 1

∣∣∣∣ ≤ min
{

1,
1

20m
× 8|20ma|p

4|a|p

}
≤ min

{
1,

p

10m|a|p

}
≤ min

{
1,

m

2|a|p

}
.

Denote Ea(B) := Ex1 |Ey∼B ep(a(x1y1 + y2))|2, and note that Ea(B) ≤ 1. We can split our
sum in Equation (10) as

DiscA×B
ν (PH)2 ≲

(
|B|
pm

)2

 ∑
|a|p≥m

Ea(B)
∣∣∣ 1

20m

ep(20ma) − 1
ep(a) − 1

∣∣∣2t

+
∑

|a|p<m

Ea(B) |1 − ep(−20mta)|2


≲

(
|B|
pm

)2 ∑
|a|p≥m

Ea(B)
(

m

2|a|p

)2t

+
(

|B|
pm

)2 ∑
|a|p<m

Ea(B)
(

t|a|p

m

)2

≤
p

2t
+
(

|B|
pm

)2 ∑
|a|p<m

Ea(B)
(

t|a|p

m

)2
. (11)

Here in the last line, we use |B| ≤ pm and the fact that there are at most p terms in the sum.

Key estimates, analyzing Ea(B)

The only mysterious term in (11) is Ea(B). In this part of the proof, we obtain the required
upper bounds on this quantity.

▶ Lemma 12. Let 0 < L < U < m. Then

∑
a∈[L,U ]

Ea(B) ≲ p2m2 log m

|B|2L
.

Proof. For y1 ∈ [m], define By1 : Zp → {0, 1} as By1(y) = 1 iff (y1, y) ∈ B. Considering the
Fourier expansion of By1 , for each y, we have

By1(y) =
∑
b∈Zp

B̂y1(b)ep(by).

Now we can rewrite the sum of Ea(B):∑
a∈[L,U]

Ea(B) =
∑

a∈[L,U]

Ex1∼[m] | Ey∼B ep(ax1y1 + ay2)|2

=
(

pm

|B|

)2 ∑
a∈[L,U]

E
x1∼[m]

∣∣∣∣ E
y1∼[m]

E
y2∼Zp

By1 (y2)ep(ax1y1 + ay2)

∣∣∣∣2
=
(

pm

|B|

)2 ∑
a∈[L,U]

E
x1∼[m]

E
y1,y′

1∼[m]
E

y2,y′
2∼Zp

By1 (y2)By′
1

(y
′
2)ep(ax1(y1 − y

′
1) + a(y2 − y

′
2))

=
(

pm

|B|

)2 ∑
a∈[L,U]

E
y1,y′

1∼[m]

(
E

x1∼[m]
ep(ax1(y1 − y

′
1))

)
E

y2,y′
2∼Zp

By1 (y2)By′
1

(y
′
2)ep(a(y2 − y

′
2))

=
(

pm

|B|

)2 ∑
a∈[L,U]

E
y1,y′

1∼[m]

(
E

x1∼[m]
ep(ax1(y1 − y

′
1))

)
B̂y1 (−a)B̂y′

1
(a).
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By the Cauchy-Schwarz inequality and Parseval’s identity, one has

∑
a∈[L,U ]

|B̂y1(−a)B̂y′
1
(a)| ≤

 ∑
a∈[L,U ]

|B̂y1(−a)|2
1/2 ∑

a∈[L,U ]

|B̂y′
1
(a)|2

1/2

≤

∑
a∈Zp

|B̂y1(−a)|2
1/2∑

a∈Zp

|B̂y′
1
(a)|2

1/2

= |Ey By1(y)|1/2|Ey By′
1
(y)|1/2 ≤ 1.

Combining this fact with the previous calculations, we obtain∑
a∈[L,U ]

Ea(B) ≤
(

pm

|B|

)2
E

y1,y′
1∼[m]

max
a∈[L,U ]

∣∣∣∣ E
x1∼[m]

ep(ax1(y1 − y′
1))
∣∣∣∣ .

Observe that for any y1, y′
1 ∈ [m], we have y1 − y′

1 ∈ [−m, m], and moreover, for every
y ∈ [−m, m], we have Pry1,y′

1∼[m][y1 − y′
1 = y] ≤ 1

m . Therefore,∑
a∈[L,U ]

Ea(B) ≤ p2m

|B|2

m∑
y=−m

max
a∈[L,U ]

∣∣∣∣ E
x1∼[m]

ep(ax1y)
∣∣∣∣ = p2m

|B|2

(
1 + 2

∑
y∈[m]

max
a∈[L,U ]

∣∣∣∣ E
x1∼[m]

ep(ax1y)
∣∣∣∣
)

.

Substituting∣∣∣∣ E
x1∼[m]

ep(ax1y)
∣∣∣∣ =

∣∣∣∣ 1
m

ep(may) − 1
ep(ay) − 1

∣∣∣∣ ≲ |may|p
m|ay|p

≲
p

m|ay|p
≲

m

|ay|p
,

we obtain

∑
a∈[L,U ]

Ea(B) ≲ p2m

|B|2

1 +
∑

y∈[m]

max
a∈[L,U ]

m

|ay|p

 .

Since |x|p = x for x ∈ [0, p/2], together with the assumptions of L < m and p > 2m2, we
have

∑
a∈[L,U ]

Ea(B) ≲ p2m

|B|2

1 +
∑

y∈[m]

m

Ly

 ≲
p2m2 log m

|B|2L
. ◀

With Lemma 12, we can bound the sum in Equation (11) as(
|B|
pm

)2 ∑
|a|p<m

Ea(B)
(

t|a|p
m

)2
≈
(

|B|
pm

)2
t2

m2

log m∑
c=1

∑
|a|p∈[2c−1,2c]

|a|2pEa(B)

≲

(
|B|
pm

)2
t2

m2

log m∑
c=1

22c · p2m2 log m

|B|22c−1

≈ t2

m2 log m

log m∑
c=1

2c

≈ t2 log m

m
.

Since t ≥ 10 log m, we have 2−t ≤ m−10 and hence

DiscA×B
ν (PH) ≲

√
max

{
p

2t
,

t2 log m

m

}
≈

√
log3 m

m
= m−1/2 log3/2 m.
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4 Concluding remarks

We study the halfplane membership problem on the integer lattice and prove an upper bound
of O(n−1/6 log3/2 n) bound on the discrepancy, widening the largest known gap between
sign-rank and discrepancy. It implies a Ω(log n) randomized communication complexity lower
bound, indicating that the halfplane membership problem belongs to a class of essentially
the hardest problems in the randomized communication model. The study of halfplane
membership is important since it is arguably one of the simplest known communication
problems exhibiting gaps in several complexity parameters.

Through the connection with hereditary discrepancy and an adaptation of the classical
combinatorial discrepancy upper bound for point-halfplane systems, we show that the
discrepancy of every set of n points and n halfplanes is Ω(n−1/4 log−1 n). More generally, we
prove a discrepancy lower bound in terms of sign-rank, and show that the discrepancy of a
matrix with bounded sign-rank is set apart from the trivial bound of Ω(n−1/2).

For the technical review, a key step of the proof of [10] relies on the mixing properties of
x1y1 + x2y2, thus resulting in a strong upper bound on

E(x1,x2)∼[m]2
∣∣E(y1,y2)∼B ep(a(x1y1 + x2y2))

∣∣2 ,

for every |a|p < m and every B ⊆ [m]2. However, the analogous quantity

Ea(B) = Ex1∼[m] |Ey∼B ep(a(x1y1 + y2))|2

that arises in the proof of Theorem 2 can generally be large even when |a|p < m. This
seemingly presented a serious obstacle to extending the proof of [10] to Theorem 2 at first.
Ultimately, we bypassed this issue in Lemma 12, by using the fact that the L1 sum of the
Fourier coefficients of the convolution of two Boolean functions is always at most 1. This
allowed us to show that while individual Ea(B) can be large, their average over the interval
[L, U ] is small (when L and U are small). In this sense, Lemma 12 is the major novel
component of the proof that allowed us to extend the result of [10].

Another key technical difference with [10] is the choice of the random variable k in
constructing the hard distribution. In this work, we choose k as a sum of Θ(log m) independent
uniform random variables in setting x2 in the hard distribution µ. By taking k as a sum of
a super-constant number of uniform elements, we remove the need for a strong bound on
Ea(B) when |a|p ≥ m and hence simplify and shorten the proof in [10].
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