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Abstract
It is well-known that the cohomology ring has a richer structure than homology groups. However,
until recently, the use of cohomology in persistence setting has been limited to speeding up of barcode
computations. Some of the recently introduced invariants, namely, persistent cup-length, persistent
cup modules and persistent Steenrod modules, to some extent, fill this gap. When added to the
standard persistence barcode, they lead to invariants that are more discriminative than the standard
persistence barcode. In this work, we devise an O(dn4) algorithm for computing the persistent k-cup
modules for all k ∈ {2, . . . , d}, where d denotes the dimension of the filtered complex, and n denotes
its size. Moreover, we note that since the persistent cup length can be obtained as a byproduct of our
computations, this leads to a faster algorithm for computing it for d ≥ 3. Finally, we introduce a new
stable invariant called partition modules of cup product that is more discriminative than persistent
cup modules and devise an O(c(d)n4) algorithm for computing it, where c(d) is subexponential in d.
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1 Introduction

Persistent homology is one of the principal tools in the fast growing field of topological data
analysis. A solid algebraic framework [34], a well-established theory of stability [4, 10–12]
along with fast algorithms and software [1–3, 8, 26] to compute complete invariants called
barcodes of filtrations have led to the successful adoption of single parameter persistent
homology as a data analysis tool [19, 20]. This standard persistence framework operates
in each (co)homology degree separately and thus cannot capture the interactions across
degrees in an apparent way. To achieve this, one may endow a cohomology vector space
with the well-known cup product forming a graded algebra. Then, the isomorphism type of
such graded algebras can reveal information including interactions across degrees. However,
even the best known algorithms for determining isomorphism of graded algebras run in
exponential time in the worst case [9]. So it is not immediately clear how one may extract
new (persistent) invariants from the product structure efficiently in practice.

Cohomology has already shown to be useful in speeding up persistence computations
before [1, 2, 8]. It has also been noted that additional structures on cohomology provide an
avenue to extract rich topological information [7,14,24,25,33]. To this end, in a recent study,
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50:2 Cup Product Persistence and Its Efficient Computation

the authors of [14] introduced the notion of (the persistent version of) an invariant called the
cup length, which is the maximum number of cocycles with a nonzero product. In another
version [15], the authors of [14] introduced an invariant called barcodes of persistent k-cup
modules which are stable, and can add more discriminating ability (Figure 1). Computing this
invariant allows us to capture interactions among various degrees. In Example 1, we provide
simple examples for which persistent cup modules can disambiguate filtered spaces where
ordinary persistence and persistent cup-length fail. Notice that for a filtered d-complex, the
k-cup modules for k ∈ {2, . . . , d} may not be a strictly finer invariant on its own compared
to ordinary persistence. It can however add more information as Example 1 illustrates.

▶ Example 1. See Figure 1. Let K1 be a cell complex obtained by taking a wedge of four
circles and two 2-spheres. Let K2 be a cell complex obtained by taking a wedge of two circles,
a sphere and a 2-torus. Let K3 be a cell complex obtained by taking a wedge of two tori.

▶ Remark 2. Throughout, for a cell complex C, the filtration for which all the k-dimensional
cells of C arrive at the same index is referred to as the natural cell filtration associated to C.

Consider the natural cell filtrations K1
•, K2

• and K3
•. Standard persistence cannot tell

apart K1
•, K2

• and K3
• as the barcode for the three filtrations are the same. Persistent cup

length cannot distinguish K2
• from K3

•, whereas the barcodes for persistent cup modules for
K1

•, K2
• and K3

• are all different.

In Section 3 and 4, we show how to compute the persistent k-cup modules for all
k ∈ {2, . . . , d} in O(dn4) time, where d denotes the dimension of the filtered complex, and n
denotes its size. Moreover, since the persistent cup length of a filtration can be obtained as a
byproduct of cup modules computation [14], we get an efficient algorithm to compute this
invariant as well. Our approach for computing barcodes of persistent k-cup modules involves
computing the image persistence of the cup product viewed as a map from the tensor product
of the cohomology vector space to the cohomology vector space itself. This approach requires
careful bookkeeping of restrictions of cocycles as one processes the simplices in the reverse
filtration order. Algorithms for computing image persistence have been studied earlier by
Cohen-Steiner et al. [13] and recently by Bauer and Schmahl [6]. However, the algorithms
in [6,13] work only for monomorphisms of filtrations making them inapplicable to our setting.

In Section 5, we introduce a new invariant called partition modules of the cup product
which is more discriminative than cup modules. In the extended version, we observe that this
invariant is stable for Rips and Čech filtrations [18, Section 5.1], and provide an algorithm
for computing it in O(c(d)n4) time, where c(d) is subexponential in d [18, Section 5.2].

2 Background and preliminaries

Througout, we use n to denote the size of the filtered complex K, [n] to denote the set
{1, 2, . . . , n} and I to denote the set {0, 1, 2, . . . , n}.

2.1 Persistent cohomology
In this paper, we work with mod-2 cohomology.We refer the reader to [22, 23] for topological
preliminaries. Let P denote a poset category such as N, Z, or R, and Simp denote the
category of finite simplicial complexes. A P -indexed filtration is a functor F : P → Simp
such that Fs ⊆ Ft whenever s ≤ t. A P -indexed persistence module V• is a functor from a
poset category P to the category of (graded) vector spaces. The morphisms ψs,t : Vs → Vt
for s ≤ t are referred to as structure maps. We assume it to be of finite type, that is, V• is
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Figure 1 Example 1 Persistent cup modules distinguishes all three cellular filtrations.

pointwise finite dimensional and all morphisms ψs,t for s ≤ t are isomorphisms outside a
finite subset of P . A P -indexed module W is a submodule of V if Ws ⊂ Vs for all s ∈ P and
the structure maps Ws →Wt are restrictions of ψs,t to Ws.

A persistence module V• defined on a totally ordered set such as N, Z, or R decomposes
uniquely up to isomorphism into simple modules called interval modules whose structure
maps are identity and the vector spaces have dimension one. The support of these interval
modules collectively constitute what is called the barcode of V• and denoted by B(V•).

When we have a filtration F on P where the complexes change only at a finite set of
values a1 < a2 < . . . < an, we can reindex the filtration with integers, and refine it so that
only one simplex is added at every index. Reindexing and refining in this manner one can
obtain a simplex-wise filtration of the final simplicial complex K defined on an indexing set
with integers. For the remainder of the paper, we assume that the original filtration on P

is simplex-wise to begin with. This only simplifies our presentation, and we do not lose
generality. With this assumption, we obtain a filtration indexed on I after writing Kai

= Ki,

K• : ∅ = K0 ↪→ K1 ↪→ · · · ↪→ Kn = K.

SoCG 2024



50:4 Cup Product Persistence and Its Efficient Computation

Applying the functor C∗, we obtain a persistence module C∗(K•) of cochain complexes
whose structure maps are cochain maps defined by restrictions induced by inclusions:

C∗(K•) : C∗(Kn)→ C∗(Kn−1)→ · · · → C∗(K0),

and applying the functor H∗, we get a persistence module H∗(K•) of graded cohomology vector
spaces whose structure maps are linear maps induced by the above-mentioned restrictions:

H∗(K•) : H∗(Kn)→ H∗(Kn−1)→ · · · → H∗(K0).

For simplifying the description of the algorithm, we work with Iop-indexed modules
H∗(K•) and C∗(K•). The barcode B(M) (see section 2.4) of a finite-type P op-module M
can be obtained from the barcode B(N) of its associated Iop-module N by writing the
interval (j, i] ∈ B(N) for j < i < n as [aj+1, ai+1) ∈ B(M), and the interval (j, n] ∈ B(N)
as [aj+1,∞) ∈ B(M). In this convention, we refer to i (or n) as a birth index, j as a death
index, and intervals of the form (j, n] as essential bars.

▶ Definition 3 (Restriction of cocycles). For a filtration K•, if ζ is a cocycle in complex Kb,
but ceases to be a cocycle at Kb+1, then ζi is defined as ζi = ζ ∩ C∗(Ki) for i ≤ b, and in this
case, we say that ζi is the restriction of ζ to index i. For i > b , ζi is set to the zero cocycle.

▶ Definition 4 (Persistent cohomology basis). Let ΩK = {ζi | i ∈ B(H∗(K•))} be a set of
cocycles, where for every i = (di, bi], ζi is a cocycle in Kbi

but no more a cocycle in Kbi+1. If
for every index j ∈ [n], the cocycle classes

{
[ζji ] | ζi ∈ ΩK

}
form a basis for H∗(Kj), then we

say that ΩK is a persistent cohomology basis for K•, and the cocycle ζi is called a representative
cocycle for the interval i. If bi = n, [ζi] is called an essential class.

2.2 Simplicial cup product
Simplicial cup products connect cohomology groups across degrees. Let ≺ be an arbitrary
but fixed total order on the vertex set of K. Let ξ and ζ be cocycles of degrees p and q

respectively. The cup product of ξ and ζ is the (p+ q)-cocycle ξ ⌣ ζ whose evaluation on
any (p+ q)-simplex σ = {v0, . . . , vp+q} is given by

(ξ ⌣ ζ)(σ) = ξ({v0, ..., vp}) · ζ({vp, . . . , vp+q}). (1)

This defines a map ⌣: Cp(K) × Cq(K) → Cp+q(K), which assembles to give a map
⌣: C∗(K)× C∗(K)→ C∗(K) for the cochain complex C∗(K). Using the fact that δ(ζ ⌣ ξ) =
δξ ⌣ ζ + ξ ⌣ δζ, it follows that ⌣ induces a map ⌣: H∗(K)× H∗(K)→ H∗(K). It can be
shown that the map ⌣ is independent of the ordering ≺.

Using the universal property for tensor products and linearity, the bilinear maps for

⌣: Cp(K)×Cq(K)→ Cp+q(K) assemble to give a linear map ⌣: C∗(K)⊗C∗(K)→ C∗(K).

and the bilinear maps for

⌣: Hp(K)×Hq(K)→ Hp+q(K) assemble to give a linear map ⌣: H∗(K)⊗H∗(K)→ H∗(K).

Finally, we state two well-known facts about cup products that are used throughout.

▶ Theorem 5 (Commutativity [23]). [ξ] ⌣ [ζ] = [ζ] ⌣ [ξ] for all [ξ], [ζ] ∈ H∗(K).

▶ Theorem 6 (Functoriality of the cup product [23]). Let f : K→ L be a simplicial map and
let f∗ : H∗(L)→ H∗(K) be the induced map on cohomology. Then, f∗([ξ] ⌣ [ζ]) = f∗([ξ]) ⌣
f∗([ζ]) for all [ξ], [ζ] ∈ H∗(K).
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2.3 Image persistence
The category of persistence modules is abelian since the indexing category P is small and the
category of vector spaces is abelian. Thus, kernels, cokernels, and direct sums are well-defined.
Persistence modules obtained as images, kernels and cokernels of morphisms were first studied
in [13]. In this section, we provide a brief overview of image persistence modules.

Let C• and D• be two persistence modules of cochain complexes:

C∗
n

φn−−→ C∗
n−1

φn−1−−−→ . . .
φ1−→ C∗

0 and D∗
n

ψn−−→ D∗
n−1

ψn−1−−−→ . . .
ψ1−−→ D∗

0,

such that for 0 ≤ i ≤ n the graded vector spaces C∗
i and D∗

i (along with the respective
coboundary maps) are cochain complexes, and the structure maps {φi : C∗

i → C∗
i−1 | i ∈ [n]}

and {ψi : D∗
i → D∗

i−1 | i ∈ [n]} are cochain maps. Let G• : C• → D• be a morphism
of persistence modules of cochain complexes, that is, there exists a set of cochain maps
Gi : C∗

i → D∗
i ∀i ∈ {0, . . . , n}, and the following diagram commutes for every i ∈ [n].

C∗
i D∗

i

C∗
i−1 D∗

i−1

Gi

φi

Gi−1

ψi

Applying the cohomology functor H∗ to the morphism G• : C• → D• induces another
morphism of persistence modules, namely, H∗(G•) : H∗(C•)→ H∗(D•). Moreover, the image
im H∗(G•) is a persistence module. Like any other single-parameter persistence module, an
image persistence module decomposes uniquely into intervals called its barcode [34].

As noted in [6], a natural strategy for computing the image of H∗(G•) is to write it as

im H∗(G•) ∼=
G•(Z∗(C•))

G•(Z∗(C•)) ∩ B∗(D•) ,

where the i-th terms for the numerator and the denominator are given respectively by
(G•(Z∗(C•)))i = Gi(Z∗(Ci)) and (G•(Z∗(C•)) ∩ B∗(D•))i = Gi(Z∗(Ci)) ∩ B∗(Di).

Tensor product image persistence. Consider the following map:

⌣•: C∗(K•)⊗ C∗(K•)→ C∗(K•). (2)

Taking G• =⌣• in the definition of image persistence, we get a persistence module, denoted by
im H∗(⌣ K•), which is the same as the persistent cup module introduced in [15]. Whenever the
underlying filtered complex is clear from the context, we use the shorthand notation im H∗(⌣•)
instead of im H∗(⌣ K•). Our aim is to compute its barcode denoted by B(im H∗(⌣•)).

2.4 Barcodes
Let K• denote a filtration on the index set I = {0, 1, . . . , n}. Assume that K• is simplex-wise,
that is, Ki \ Ki−1 is a single simplex. Consider the persistence module H∗

• obtained by
applying the cohomology functor H∗ on the filtration K•, that is, H∗

i = H∗(Ki). The structure
maps {φ∗

i : H∗(Ki)→ H∗(Ki−1) | i ∈ [n]} for this module are induced by the cochain maps
{φi : C∗(Ki) → C∗(Ki−1) | i ∈ [n]}. Since K• is simplex-wise, each linear map φ∗

i is either
injective with a cokernel of dimension one, or surjective with a kernel of dimension one, but not

SoCG 2024



50:6 Cup Product Persistence and Its Efficient Computation

both. Such a persistence module H∗
• decomposes into interval modules supported on a unique

set of intervals, namely the barcode of H∗
• written as B(H∗

•) = {(di, bi] | bi ≥ di, bi, di ∈ I}.
Notice that since I is the indexing poset of K•, Iop is the indexing poset of H∗

•. For r > s,
we define φ∗

r,s = φ∗
s+1 ◦ · · · ◦ φ∗

r−1 ◦ φ∗
r and φr,s = φs+1 ◦ · · · ◦ φr−1 ◦ φr.

▶ Remark 7. Since im H∗(⌣•) is a submodule of H∗(K•), the structure maps of im H∗(⌣•) for
every i ∈ I, namely, im H∗(⌣i)→ im H∗(⌣i−1) are given by restrictions of φ∗

i to im H∗(⌣i).

▶ Definition 8. For any i ∈ {0, . . . , n}, a nontrivial cocycle ζ ∈ Z∗(Ki) is said to be a
product cocycle of Ki if [ζ] ∈ im H∗(⌣i).

▶ Proposition 9. For a filtration K•, the birth indices (resp. death indices) of B(im H∗(⌣•))
are a subset of the birth indices (resp. death indices) of B(H∗(K•)).

Proof. Let (di, bi] and (dj , bj ] be (not necessarily distinct) intervals in B(H∗(K•)), where
bj ≥ bi. Let ξi and ξj be representatives for (di, bi] and (dj , bj ] respectively. If ξi ⌣ ξbi

j is
trivial, then by the functoriality of cup product, φbi,r(ξi ⌣ ξbi

j ) = φbi,r(ξi) ⌣ φbi,r(ξb
i

j ) =
ξri ⌣ ξrj is trivial ∀r < bi. Writing contrapositively, if ∃r < bi for which ξri ⌣ ξrj is nontrivial,
then ξi ⌣ ξbi

j is nontrivial. Noting that im H∗(⌣ℓ) for any ℓ ∈ {0, . . . , n} is generated
by {[ξℓi ] ⌣ [ξℓj ] | ξi, ξj ∈ ΩK}, it follows that an index b is the birth index of a bar in
B(im H∗(⌣•)) only if it is the birth index of a bar in B(H∗(K•)), proving the first claim.

Let Ω′
j+1 = {[τ1], . . . , [τk]} be a basis for im H∗(⌣j+1). Then, Ω′

j+1 extends to a basis
Ωj+1 of H∗(Kj+1). If j is not a death index of B(H∗(K•)), then φj+1(τ1), . . . , φj+1(τk) are
all nontrivial and linearly independent. From Remark 7, it follows that j is not a death index
of B(im H∗(⌣•)), proving the second claim. ◀

▶ Corollary 10. For a filtration K•, if d is a death index of B(im H∗(⌣•)), then at most one
bar of B(im H∗(⌣•)) has death index d.

Proof. Using the fact that if the rank of a linear map f : V1 → V2 is dimV1 − 1, then the
rank of f |W1 for a subspace W1 ⊂ V1 is at least dimW1 − 1, from Remark 7 it follows that if
dim H∗(Kd) = dim H∗(Kd+1)− 1, then

dim(im H∗(⌣d)) + 1 ≥ dim(im H∗(⌣d+1)) ≥ dim(im H∗(⌣d)) proving the claim. ◀

▶ Remark 11. The persistent cup module is a submodule of the original persistence module.
Let dim(im Hpi ) denote dim(im Hp(⌣i)). In the barcode B(im H∗(⌣•)), if Ki = Ki−1 ∪ {σp},
then either (i) dim(im Hpi ) > dim(im Hpi−1), or (ii) dim(im Hp−1

i ) < dim(im Hp−1
i−1 ), or (iii)

there is no change: dim(im Hpi ) = dim(im Hpi−1) and dim(im Hp−1
i ) = dim(im Hp−1

i−1 ). The
decrease (increase) in persistent cup modules happens only if there is a decrease (increase) in
ordinary cohomology. Multiple bars of B(im H∗(⌣•)) may have the same birth index. But, if
i is a death index, then Corollary 10 says that it is so for at most one bar in B(im H∗(⌣•)).

3 Algorithm: barcode of persistent cup module

Our goal is to compute the barcode of im H∗(⌣•), which being an image module is a
submodule of H∗(K•). The vector space im H∗(⌣i) is a subspace of the cohomology vector
space H∗(Ki). Let us call this subspace the cup space of H∗(Ki). Our algorithm keeps track
of a basis of this cup space as it processes the filtration in the reverse order. This backward
processing is needed because the structure maps between the cup spaces are induced by
restrictions φj,i : C∗(Kj) → C∗(Ki) that are, in turn, induced by inclusions Kj ⊇ Ki, i ≤ j.
In particular, a cocycle/coboundary in Kj is taken to its restriction in Ki for i ≤ j. Our
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algorithm keeps track of the birth and death of the cocycle classes in the cup spaces as it
proceeds through the restrictions in the reverse filtration order. We maintain a basis of
nontrivial product cocycles in a matrix S whose classes S form a basis for the cup spaces. In
particular, cocycles in S are born and die with birth and death of the elements in cup spaces.

A cocycle class from H∗(Ki) may enter the cup space im H∗(⌣i) signalling a birth or may
leave (become zero) the cohomology vector space and hence the cup space signalling a death.
Interestingly, multiple births may happen, meaning that multiple independent cocycle classes
may enter the cup space, whereas at most a single class can die because of Corollary 10. To
determine which class from the cohomology vector space enters the cup space and which one
leaves it, we make use of the barcode of H∗(K•). However, the classes of the bases maintained
in H do not directly provide bases for the cup spaces. Hence, we need to compute and
maintain S separately, of course, with the help of H.

Let us consider the case of birth first. Suppose that a cocycle ξ at degree p is born at
index k = bi for H∗(K•). With ξ, a set of product cocycles are born in some of the degrees
p+ q for q ≥ 1. To detect them, we first compute a set of candidate cocycles by taking the
cup product of cocycles ξ ⌣ ζ, for all cocycles ζ ∈ H at bi which can potentially augment the
basis maintained in S. The ones among the candidate cocycles whose classes are independent
w.r.t. the current basis maintained in S are determined to be born at bi. Next, consider
the case of death. A product cocycle ζ in degree r ceases to exist if it becomes linearly
dependent of other product cocycles. This can happen only if the dimension of Hr(K•) itself
has reduced under the structure map going from k + 1 to k. It suffices to check if any of the
nontrivial cocycles in S have become linearly dependent or trivial after applying restrictions.
In what follows, we use deg(ζ) to denote the degree of a cocycle ζ.

Algorithm 1 CupPers (K•).

Step 1. Compute barcode B(F) = {(di, bi]} of H∗(K•) with representative cocycles
ξi; Let H = {ξi | [ξi] essential and deg(ξi) > 0}; Initialize S with the coboundary
matrix ∂⊥ obtained by taking transpose of the boundary matrix ∂;
Step 2. For k := n to 1 do

Restrict the cocycles in S and H to index k;
Step 2.1 For every i with k = bi (k is a birth-index) and deg(ξi) > 0
∗ Step 2.1.1 If k ̸= n, update H := [H | ξi]
∗ Step 2.1.2 For every ξj ∈ H

i. If (ζ ← ξi ⌣ ξj) ̸= 0 and ζ is independent in S, then S := [S | ζ] with
column ζ annotated as ζ · birth := k and ζ · rep@birth := ζ

Step 2.2 If k = di (k is a death-index) for some i and deg(ξi) > 0 then
∗ Step 2.2.1 Reduce S with left-to-right column additions
∗ Step 2.2.2 If a nontrivial cocycle ζ is zeroed out, remove ζ from S, generate

the bar-representative pair {(k, ζ · birth], ζ · rep@birth}
∗ Step 2.2.3 Update H by removing the column ξi

Algorithm CupPers describes this algorithm with a pseudocode. First, in Step 1, we
compute the barcode of the cohomology persistence module H∗(K•) along with a persistent
cohomology basis. This can be achieved in O(n3) time using either the annotation algorithm [8,
19] or the pCoH algorithm [17]. The basis H is maintained with the matrix H whose columns
are cocycles represented as the support vectors on simplices. The matrix H is initialized
with all cocycles ξi that are computed as representatives of the bars (di, bi] for the module
H∗(K•) which get born at the first (w.r.t. reverse order) complex Kn = K. The matrix S

SoCG 2024



50:8 Cup Product Persistence and Its Efficient Computation

is initialized with the coboundary matrix ∂⊥ with standard cochain basis. Subsequently,
nontrivial cocycle vectors are added to S. The classes of the nontrivial cocycles in matrix S
form a basis S for the cup space at any point in the course of the algorithm.

In Step 2, we process cocycles in the reverse filtration order. At each index k, we do the
following. If k is a birth index for a bar (−, bi] (Step 2.1), that is, k = bi for a bar with
representative ξi in the barcode of H∗(K•), first we augment H with ξi to keep it current
as a basis for the vector space H∗(Kk) (Step 2.2.1). Now, a new bar for the persistent cup
module can potentially be born at k. To determine this, we take the cup product of ξi with
all cocycles in H and check if the cup product cocycle is non-trivial and is independent of
the cocycles in S. If so, a product cocycle is born at k that is added to S (Step 2.1.2). To
check this independence, we need S to have current coboundary basis along with current
nontrivial product cocycle basis S that are both updated with restrictions. Note that we
need a for loop in Step 2.1 because at k = n, there can be multiple births in H∗(K•).

▶ Remark 12. Restrictions in H and S are implemented by zeroing out the corresponding
row associated to the simplex σi when we go from Ki to Ki−1 and Ki \ Ki−1 = {σi}.

If k is a death index (Step 2.2), potentially the class of a product cocycle from S can be
a linear combination of the classes of other product cocycles after S has been updated with
restriction. We reduce S with left-to-right column additions and detect the column that is
zeroed out (Step 2.2.1). If the column ζ is zeroed out, the class [ζ] dies at k and we generate
a bar with death index k and birth index equal to the index when ζ was born (Step 2.2.2).
Finally, we update H by removing the column for ξi (Step 2.2.3).

3.1 Rank functions and barcodes
Let P ⊆ Z be a finite set with induced poset structure from Z. Let Int(P ) denote the
set of all intervals in P . Recall that P op denotes the opposite poset category. Given a
P op-indexed persistence module V•, the rank function rkV• : Int(P ) → Z assigns to each
interval I = [a, b] ∈ Int(P ) the rank of the linear map Vb → Va. It is well known that
(see [12, 20]) the barcode of V• viewed as a function DgmV•

: Int(P )→ Z can be obtained
from the rank function by the inclusion-exclusion formula:

DgmV•
([a, b]) = rkV• [a, b]− rkV• [a− 1, b] + rkV• [a, b+ 1]− rkV• [a− 1, b+ 1] (3)

To prove the correctness of Algorithm CupPers, we use the following elementary fact.

▶ Fact 1. A class that is born at an index ≥ b dies at a iff rkV•([a, b]) < rkV•([a+ 1, b]).

3.2 Correctness of Algorithm CUPPERS

▶ Theorem 13. Algorithm CupPers computes the barcode of the persistent cup module.

Proof. In what follows, we abuse notation by denoting the restriction at index k of a cocycle
ζ born at b also by the symbol ζ. That is, index-wise restrictions are always performed, but
not always explicitly mentioned. We use {ξi} to denote cocycles in the persistent cohomology
basis computed in Step 1. The proof uses induction to show that for an arbitrary birth
index b in B(H∗(K•)), if all bars for the persistent cup module with birth indices b′ > b are
correctly computed, then the bars beginning with b are also correctly computed.

To begin with we note that in Algorithm CupPers, as a consequence of Proposition 9,
we need to check if an index k is a birth (death) index of B(im H∗(⌣•)) only when it is a
birth (death) index of B(H∗(K•)). Also, from Corollary 10, we know that at most one cycle
dies at a death index of B(im H∗(⌣•)) (justifying Step 2.2.2).
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We now introduce some notation. In what follows, we denote the persistent cup module
by V•. For a birth index b, let Sb be the cup space at index b. Let Cb be the vector space of
the product cocycle classes created at index b. In particular, the classes in Cb are linearly
independent of classes in Sb+1. For a birth index b < n, Sb can be written as a direct sum
Sb = Sb+1 ⊕ Cb. For index n, we set Sn = Cn. Then, for a birth index b ∈ {0, . . . , n}, Cb is
a subspace of H∗(Kb). Cb can be written as:

Cb =
{
⟨[ξi] ⌣ [ξj ] | ξi, ξj are essential cocycles of H∗(K•)⟩ if b = n

⟨[ξi] ⌣ [ξj ] | ξi is born at b, and ξj is born at an index ≥ b⟩ if b < n

For a birth index b, let Cb be the submatrix of S formed by representatives whose classes
generate Cb, which augments S in Step 2.1.2 (i) when k = b in the for loop. The cocycles
in Cb are maintained for k ∈ {b, . . . , 1} via subsequent restrictions to index k. Let Sb be
the submatrix of S containing representative product cocycles that are born at index ≥ b.
Clearly, Cb is a submatrix of Sb for b < n, and Cn = Sn.

Let DPb be the set of filtration indices for which the cocycles in Cb become successively
linearly dependent to other cocycles in Sb. That is, d ∈ DPb if and only if there exists a
cocycle ζ in Cb such that ζ is independent of all cocycles to its left in matrix S at index
d+ 1, but ζ is either trivial or a linear combination of cocycles to its left at index d.

For the base case, we show that the death indices of the essential bars are correctly
computed. First, we observe that for all d ∈ DPn, rkV•([d, n]) = rkV•([d+ 1, n])− 1. Using
Fact 1, it follows that the algorithm computes the correct barcode for im H∗(⌣•) only if
the indices in DPn are the respective death indices for the essential bars. Since the leftmost
columns of S are coboundaries from ∂⊥ followed by cocycles from Cn, and since we perform
only left-to-right column additions in Step 2.2.1 to zero out cocycles in Cn, the base case
holds true. By (another) simple inductive argument, it follows that the computation of
indices in DPn does not depend on the specific ordering of representatives within Cn.

Let b < n be a birth index in B(H∗(K•)). For induction hypothesis, assume that for every
birth index b′ > b the indices in DPb′ are the respective death indices of the bars of im H∗(⌣•)
born at b′. By construction, the cocycles {ζ1, ζ2, . . . } in S are sequentially arranged by the
following rule: If ζi and ζj are two representative product cocycles in S, then i < j if the
birth index bi of the interval represented by ζi is greater than or equal to the birth index bj
of the interval represented by ζj . Then, as a consequence of the induction hypothesis, for a
cocycle ζ ∈ Cb \ Sb, we assign the correct birth index to the interval represented by ζ only if
ζ can be written as a linear combination of cocycles to its left in matrix S.

Now, suppose that at some index d ∈ DPb we can write a cocycle ζ in submatrix Cb

as a linear combination of cocycles to its left in S. For such a d ∈ DPb, rkV•([d, b]) =
rkV•([d+ 1, b])− 1. Hence, using Fact 1, a birth index ≥ b must be paired with d.

However, since DPb ∩DPb′ = ∅ for b < b′, it follows from the inductive hypothesis that
the only birth index that can be paired to d is b. Moreover, since we take restrictions of
cocycles in S, all cocycles in Cb eventually become trivial or linearly dependent on cocycles
to its left in S. So, DPb has the same cardinality as the number of cocycles in Cb, and all
the bars that are born at b must die at some index in DPb. As a final remark, it is easy
to check that the computation of indices in DPb is independent of the specific ordering of
representatives within Sb by a simple inductive argument. ◀

Time complexity of CUPPERS. Let the input simplex-wise filtration have n additions and
hence the complex K have n simplices. Step 1 of CupPers can be executed in O(n3) time
using algorithms in [8, 17]. The outer loop in Step 2 runs O(n) times. For each death index
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in Step 2.2, we perform left-to-right column additions as done in the standard persistence
algorithm to bring the matrix in reduced form. Hence, for each death index, Step 2.2 can
be performed in O(n3) time. Since there are at most O(n) death indices, the total cost for
Step 2.2 in the course of the algorithm is O(n4).

Step 2.1 apparently incurs higher cost than Step 2.2. This is because at each birth
point, we have to test the product of multiple pairs of cocycles stored in H. However, we
observe that there are at most O(n2) products of pairs of representative cocycles that are
each computed and tested for linear independence at most once. In particular, if ξi and ξj
represent (di, bi] and (dj , bj ] resp. with bi ≤ bj , then ξi ⌣ ξj is computed and tested for
independence iff bi > dj and the test happens at bi. Using Equation (1), computing ξi ⌣ ξj
takes linear time. So the cost of computing the O(n2) products is O(n3). Moreover, since
each independence test takes O(n2) time with the assumption that S is kept reduced all the
time, Step 2.1 can be implemented to run in O(n4) time over the entire algorithm.

Finally, since restrictions of cocycles in S and H are computed by zeroing out corresponding
rows, the total time to compute restrictions over the course of the algorithm is O(n2).
Combining all costs, we get an O(n4) complexity bound for CupPers.

4 Algorithm: barcode of persistent k-cup modules

While considering the persistent 2-cup modules (referred to as persistent cup modules in
Section 3) is the natural first step, it must be noted that the invariants thus computed can
still be enriched by considering persistent k-cup modules. As a next step, we consider image
persistence of the k-fold tensor products.

Image persistence of k-fold product. Consider image persistence of the map

⌣k
•: C∗(K•)⊗ C∗(K•)⊗ · · · ⊗ C∗(K•)→ C∗(K•) (4)

where the tensor product is taken k times. Taking G• = ⌣k
• in the definition of image

persistence, we get the module im H∗(⌣k
•) which is same as the persistent k-cup module

introduced in [15]. Our aim is to compute B(im H∗(⌣k K•)) (written as B(im H∗(⌣k
•)) when

the complex is clear from the context). Likewise, the degree-wise barcodes B(im Hp(⌣•))
and B(im Hp(⌣k

•)) can also be defined and computed. We omit the details for brevity.

▶ Definition 14. For any i ∈ {0, . . . , n}, a nontrivial cocycle ζ ∈ Z∗(Ki) is said to be an
order-k product cocycle of Ki if [ζ] ∈ im H∗(⌣k

i ).

4.1 Computing barcode of persistent k-cup modules
The order-k product cocycles can be viewed recursively as cup products of order-(k − 1)
product cocycles with another cocycle. This suggests a recursive algorithm for computing the
barcode of persistent k-cup module: compute the barcode of persistent (k − 1)-cup module
recursively and then use that to compute the barcode of persistent k-cup module just like
the way we computed persistent 2-cup module using the bars for ordinary persistence. In the
algorithm OrderkCupPers, we assume that the barcode with representatives for H∗(K•)
has been precomputed which is denoted by the pair of sets ({(di,1, bi,1], {ξi,1}). For simplicity,
we assume that this pair is accessed by the recursive algorithm as a global variable and is
not passed at each recursion level. At each recursion level k, the algorithm computes the
barcode-representative pair denoted as ({(di,k, bi,k], {ξi,k}). Here, the cocycles ξi,k are the
initial cocycle representatives (before restrictions) for the bars (di,k, bi,k]. At the time of
their respective births bi,k, they are stored in the field ξi,k · rep@birth.
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Algorithm 2 OrderkCupPers (K•,k).

Step 1. If k = 2, return the barcode with representatives {(di,2, bi,2], ξi,2} computed
by CupPers on K•
else {(di,k−1, bi,k−1], ξi,k−1} ← OrderkCupPers(K•, k − 1)

Let H={ξi,1 | [ξi,1] essential & deg(ξi,1)>0}; R :={ξi,k−1 | bi,k−1 =n}; S :=∂⊥;
Step 2. For ℓ := n to 1 do

Restrict the cocycles in S, R, and H to index ℓ;
Step 2.1 For every r s.t. br,1 = ℓ ̸= n (i.e., ℓ is a birth-index) and deg(ξr,1) > 0
∗ Step 2.1.1 Update H := [H | ξr,1]
∗ Step 2.1.2 For every ξj,k−1 ∈ R

i. If (ζ ← ξr,1 ⌣ ξj,k−1) ̸= 0 and ζ is independent in S, then S := [S | ζ] with
column ζ annotated as ζ · birth := ℓ and ζ · rep@birth := ζ

Step 2.2 For all s such that ℓ = bs,k−1
∗ Step 2.2.1 If ℓ ̸= n, update R := [R | ξs,k−1]
∗ Step 2.2.2 For every ξi,1 ∈ H

i. If (ζ ← ξs,k−1 ⌣ ξi,1) ̸= 0 and ζ is independent in S, then S := [S | ζ] with
column ζ annotated as ζ · birth := ℓ and ζ · rep@birth := ζ

Step 2.3 If ℓ = di,1 (i.e. ℓ is a death-index) and deg(ξi,1) > 0 for some i then
∗ Step 2.3.1 Reduce S with left-to-right column additions
∗ Step 2.3.2 If a nontrivial cocycle ζ is zeroed out, remove ζ from S, generate

the bar-representative pair {(ℓ, ζ · birth], ζ · rep@birth}
∗ Step 2.3.3 Remove the column ξi,1 from H
∗ Step 2.3.4 Remove the column ξj,k−1 from R if dj,k−1 = ℓ for some j

A high-level pseudocode for computing the barcode of persistent k-cup module is given
by algorithm OrderkCupPers. The algorithm calls itself recursively to generate the sets
of bar-representative pairs for the persistent (k − 1)-cup module. As in the case of persistent
2-cup modules, birth and death indices of order-k product cocycle classes are subsets of birth
and death indices resp. of ordinary persistence. Thus, as before, at each birth index of the
cohomology module, we check if the cup product of a representative cocycle (maintained in
matrix H) with a representative for persistent (k − 1)-cup module (maintained in matrix R)
generates a new cocycle in the barcode for persistent k-cup module (Steps 2.1.2(i), 2.2.2(i)).
If so, we note this birth with the resp. cocycle (by annotating the column) and add it to the
matrix S that maintains a basis for live order-k product cocycles. At each death index, we
check if an order-k product cocycle dies by checking if the matrix S loses a rank through
restriction (Step 2.3.1). If so, the cocycle in S that becomes dependent to other cocycles
through a matrix reduction is designated to be killed (Step 2.3.2) and we note the death of a
bar in the k-cup module barcode. We update H, R appropriately (Steps 2.3.3, 2.3.4). At a
high level, this algorithm is similar to CupPers with the role of H played by both H and R
as they host the cocycles whose products are to be checked during the birth and the role of
S in both algorithms remains the same, that is, check if a product cocycle dies or not.

Correctness and complexity of ORDERKCUPPERS. Correctness can be established the
same way as for CupPers. See the extended version [18, Appendix B] for a sketch of the
proof. For complexity, observe that we incur a cost from recursive calling in Step 1 and O(n4)
cost from Step 2 with a similar analysis as for CupPers while noting that there are again
O(n2) cocycles to be checked for independence at birth (Steps 2.1 and 2.2). Then, we get a
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recurrence for time complexity as T (n, k) = T (n, k − 1) +O(n4) and T (n, 2) = O(n4) which
solves to T (n, k) = O(kn4). Note that k ≤ d, the dimension of K. This gives an O(dn4)
algorithm for computing the barcodes of k-cup modules for all k ∈ {2, . . . , d}.

4.2 Persistent cup-length: faster computation
The cup length of a ring is defined as the maximum number of multiplicands that together
give a nonzero product in the ring. Let Int∗ denote the set of all closed intervals of R. Let
F be an R-indexed filtration of simplicial complexes. The persistent cup-length function
cuplength• : Int∗ → N is defined as a function from the set of closed intervals to the set of
non-negative integers, which assigns to each interval [a, b], the cup-length of the image ring
im

(
H∗(K)[a, b]

)
, which is the ring im

(
H∗(Kb)→ H∗(Ka)

)
.

Given a P -indexed filtration F of a d-complex K of size n, let V k• denote its k-cup module.
Leveraging the fact that cuplength•([a, b]) = argmax{k | rkV k

•
([a, b]) ̸= 0} (see Proposition

5.9 in [15]), the algorithm described in Section 4 can be used to compute the persistent cup-
length in O(dn4) time, whereas O(nd+2) is a coarse estimate for the runtime of the algorithm
described in [14]. Thus, for d ≥ 3, our complexity bound for computing the persistent cup
length is strictly better. The details can be found in the extended version [18, Appendix A].

5 Partition modules: a more refined invariant

A partition λq of an integer q is a multiset of integers that sum to q, written as λq ⊢ q.
That is, a multiset λq = {s1, s2, . . . , sℓ} is a partition of q if s1 + s2 + · · ·+ . . . sℓ = q. The
integers s1, s2, . . . , sℓ are non-decreasing. For every partition λq of q, we define a submodule
im Hλq (⌣ K•)) (written as im Hλq (⌣•)) when K is clear from context) of im Hq(⌣ℓ

•)):

im Hλq (⌣i)) = ⟨[α1] ⌣ [α2] ⌣ · · ·⌣ [αℓ] | [αj ] ∈ Hsj (Ki) for j ∈ [ℓ]⟩.

The structure map im Hλq (⌣i))→ im Hλq (⌣i−1)) is the restriction of φ∗
i to im Hλq (⌣i)).

For an integer q ≥ 1, let P(q) denote the number of partitions of q. In [16], Pribitkin
proved that for q ≥ 1, P(q) < ec

√
q

q
3
4

, where c = π
√

2/3. For a d-complex K, let P↑(d) denote

the total number of partition modules. Below, we obtain an upper bound for P↑(d).

P↑(d) =
d∑
q=2
P(q) <

d∑
q=2

ec
√
q

q
3
4

< d
1
4 ec

√
d.

When d is small, as is often the case in practice, P↑(d) is also small. For instance,
P↑(2) = 1, P↑(3) = 3, P↑(4) = 7.

Partition modules are more discriminative. From Remark 15 and Example 16, it follows
that barcodes of partition modules are a strictly finer invariant compared to barcodes of cup
modules.
▶ Remark 15. Given two filtrations K• and L•, suppose that for some ℓ and q, im Hq(⌣ℓ K•))
and im Hq(⌣ℓ L•)) are distinct. Without loss of generality, there exists a bar (d, b] in
B(im Hq(⌣ K•))) with no matching bar in B(im Hq(⌣ L•))). Let ζ be a representative for
the bar (d, b]. Then, [ζ] can be written as [ζ1] ⌣ [ζ2] ⌣ · · · ⌣ [ζℓ] in Kb. Let si for each
i ∈ [ℓ] denote the degree of cocycle class [ζi]. Then, λq = {s1, s2, . . . , sℓ} is a partition of q. It
follows that the bar (d, b] will be present in B(im Hλq (⌣ K•))) but not in B(im Hλq (⌣ L•))).

▶ Example 16. Let L1 = (S3×S1)∨S2 ∨S2 and L2 = (S2×S2)∨S1 ∨S3. The natural cell
filtrations L1

• and L2
• have isomorphic persistence modules and cup modules. While L1

• has a
nontrivial barcode for im H(3,1) and a trivial barcode for im H(2,2), the opposite is true for L2

•.
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Partition modules are not a complete invariant. Let C1 be the 3-torus, and C2 = RP2 ∨
RP2 ∨ RP3. The natural cell filtrations C1

• and C2
• have isomorphic persistence modules,

isomorphic persistent cup modules as well as isomorphic partition modules. Yet, C1 and C2

have non-isomorphic cohomology algebras.

The barcodes of all partition modules of the cup product can be computed in O(d 1
4 ec

√
dn4)

time, where c = π
√

2/3 time. Refer to the extended version [18, Section 5.1] for details.
Finally, using functoriality of the cup product, it is observed that partition modules are

stable for Čech and Rips filtrations w.r.t. the interleaving distance. We state the theorem
below. For a short proof, we refer the reader to the extended version [18, Section 5.2].

▶ Theorem 17. Let λq = {s1, s2, . . . , sℓ} be a partition of an integer q. Then, for finite
point sets X and Y in Rd, the following identities hold true:

1
2dI(im Hλq (⌣ VR•(X)), im Hλq (⌣ VR•(Y ))) ≤ dGH(X,Y ).

1
2dI(im Hλq (⌣ Č•(X)), im Hλq (⌣ Č•(Y ))) ≤ dH(X,Y ).

6 Conclusion

The cup product, the Massey products and the Steenrod operations are cohomology operations
that give the cohomology vector spaces the structure of a graded ring [22,27,29,31]. Recently,
Lupo et al. [25] introduced invariants called Steenrod barcodes and devised algorithms
for their computation, which were implemented in the software steenroder. Our work
complements the results in Lupo et al. [25], Contessoto et al. [14] and Mémoli et al. [28]. We
believe that the combined advantages of a fast algorithm and stability properties make cup
modules and partition modules valuable additions to the topological data analysis pipeline.

We note that although the commonly used algorithms for computing ordinary persistence
are worst case O(n3) time, in practice, on most datasets they run in nearly linear time [3,5,8].
Likewise, although the theoretical complexity bound for the algorithm for computing cup
modules presented in this work is O(dn4) time, if implemented, we expect it to run in nearly
cubic or even quadratic time on most datasets.

Finally, it would be remiss not to mention the recent application of persistent cup products
for quasi-periodicity detection in sliding window embedding of time-series data [30, Section 4.5].
In fact, using extensive experimentation, in [30], Polanco shows that cup product information
leads to improved quasi-periodicity detection as compared to using only ordinary persistence
as in [32]. However, in [30] only the cup product of cocycle representatives of the two longest
intervals in dimension 1 barcode is used. A more recent work [21] uses the persistent Künneth
formula for quasiperiodicity detection. It is conceivable that cup modules could be used to
improve on the quasi-periodicity detection methods described in [21,30,32].
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