
Efficient Algorithms for Complexes of Persistence
Modules with Applications
Tamal K. Dey #

Department of Computer Science, Purdue University, West Lafayette, IN, USA

Florian Russold #

Institute of Geometry, Graz University of Technology, Austria

Shreyas N. Samaga #

Department of Computer Science, Purdue University, West Lafayette, IN, USA

Abstract
We extend the persistence algorithm, viewed as an algorithm computing the homology of a complex of
free persistence or graded modules, to complexes of modules that are not free. We replace persistence
modules by their presentations and develop an efficient algorithm to compute the homology of a
complex of presentations. To deal with inputs that are not given in terms of presentations, we give
an efficient algorithm to compute a presentation of a morphism of persistence modules. This allows
us to compute persistent (co)homology of instances giving rise to complexes of non-free modules.
Our methods lead to a new efficient algorithm for computing the persistent homology of simplicial
towers and they enable efficient algorithms to compute the persistent homology of cosheaves over
simplicial towers and cohomology of persistent sheaves on simplicial complexes. We also show that
we can compute the cohomology of persistent sheaves over arbitrary finite posets by reducing the
computation to a computation over simplicial complexes.

2012 ACM Subject Classification Theory of computation → Computational geometry; Mathematics
of computing → Algebraic topology

Keywords and phrases Persistent (co)homology, Persistence modules, Sheaves, Presentations

Digital Object Identifier 10.4230/LIPIcs.SoCG.2024.51

Related Version Full Version: https://arxiv.org/abs/2403.10958

Supplementary Material Software (Source Code): https://github.com/TDA-Jyamiti/Algos-
cplxs-pers-modules/ [12], archived at swh:1:dir:6c13c2c3aeb94cc68377d695005250d1ab892cb7

Funding This work is supported partially by NSF grants CCF 2049010 and 2301360 and by the
Austrian Science Fund (FWF): W1230.

1 Introduction

The theory of persistence, a central building block of topological data analysis, is concerned
with the study of persistent objects and their persistent homology. A persistent object
A⃗ : N0 → A is a sequence of objects

A⃗ : A0 A1 A2 · · ·f0 f1 f2 (1)

in a category A with morphisms fi. Let k be a field. Assuming that there is a chain complex
of k-vector spaces C•(Ai) (in a category denoted Ch(A)) associated to these objects inducing
their homology, a persistent object provides a persistent chain complex C•(A⃗) : N0 → Ch(A)
((2) right) or equivalently a chain complex of persistence modules ((2) left).

© Tamal K. Dey, Florian Russold, and Shreyas N. Samaga;
licensed under Creative Commons License CC-BY 4.0

40th International Symposium on Computational Geometry (SoCG 2024).
Editors: Wolfgang Mulzer and Jeff M. Phillips; Article No. 51; pp. 51:1–51:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tamaldey@purdue.edu
https://orcid.org/0000-0001-5160-9738
mailto:russold@tugraz.at
mailto:ssamaga@purdue.edu
https://orcid.org/0000-0002-4128-3946
https://doi.org/10.4230/LIPIcs.SoCG.2024.51
https://arxiv.org/abs/2403.10958
https://github.com/TDA-Jyamiti/Algos-cplxs-pers-modules/
https://github.com/TDA-Jyamiti/Algos-cplxs-pers-modules/
https://archive.softwareheritage.org/swh:1:dir:6c13c2c3aeb94cc68377d695005250d1ab892cb7;origin=https://github.com/TDA-Jyamiti/Algos-cplxs-pers-modules;visit=swh:1:snp:cf1c636b5c687db1f9fd059ec1c433c6c280180b;anchor=swh:1:rev:5040010c80b997ed83eaee51c314ac2a48c9cfeb
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

51:2 Efficient Algorithms for Complexes of Persistence Modules with Applications

Ck+1(A⃗) : Ck+1(A0) Ck+1(A1) Ck+1(A2) · · ·

Ck(A⃗) : Ck(A0) Ck(A1) Ck(A2) · · ·

Ck91(A⃗) : Ck91(A0) Ck91(A1) Ck91(A2) · · ·

∂k+1

Ck+1(f0)

∂0
k+1

Ck+1(f1)

∂1
k+1

Ck+1(f2)

∂2
k+1

∂k

Ck(f0)

∂0
k

Ck(f1)

∂1
k

Ck(f2)

∂2
k

Ck91(f0) Ck91(f1) Ck91(f2)

(2)

We call the sequence Ck+1(A⃗) ∂k+1−−−→ Ck(A⃗) ∂k−→ Ck91(A⃗) where Ck(A⃗) is a persistence
module and ∂k ◦ ∂k+1 = 0 a complex of persistence modules. The persistent homology
Hk(A⃗) := ker ∂k/im∂k+1 of the complex of persistence modules (2) is given by the persistence
module

Hk(A⃗) : Hk(A0) Hk(A1) Hk(A2) · · ·Hk(f0) Hk(f1) Hk(f2)

where Hk(Ai) := ker ∂ik/im∂ik+1 and Hk(fi) are induced by the chain maps Ck(fi). The goal
of this paper is to present an efficient general purpose algorithm to compute the homology of
a complex of persistence modules and demonstrate some of its applications.

The inspiration for our approach comes from the well-known persistence algorithm [13].
Suppose the persistent object in (1) is a finite filtration of simplicial complexes, i.e. Ai is a
finite simplicial complex, fi is an inclusion and C•(A⃗) is the complex of persistent simplicial
chains. In [28] the authors observed that a persistence module can equivalently be viewed
as a graded module over the polynomial ring k[t]. Using this perspective, Ck(A⃗) is a free
module with a basis given by the k-simplices in the filtration and the boundary morphisms
∂k can be represented by matrices w.r.t. these bases. The persistence algorithm leverages this
compressed representation of C•(A⃗) by its generators and computes the persistent homology
of the whole filtration at once. This makes it much more efficient than naively computing
Hk(Ai) for each index i, where simplices would be considered multiple times.

If we allow the fi’s to be arbitrary simplicial maps, we obtain what is called a simplicial
tower. It turns out that this apparently simple modification brings a significant change at the
algebraic level because the persistence modules Ck(A⃗) in the complex may no longer remain
free (relations among generators may appear). Thus, in general, they do not admit a basis and
we can not straightforwardly represent ∂k by matrices and compute the homology using linear
algebra over k[t]. In [11, 20] the authors tackle this algebraic difficulty on a topological level,
by expanding a tower into a filtration and then applying efficient algorithms for filtrations.
We tackle the problem directly at the algebraic level by designing algorithms that can handle
complexes of non-free modules. These algorithms enable a further generalization obtained
by additionally considering algebraic information over a simplicial tower. If this algebraic
information is provided by a cosheaf, we obtain the case of persistent cosheaf homology [23].
The persistent cosheaf homology is again the homology of a complex of not necessarily free
persistence modules. But cosheaf homology is not a homotopy invariant, so the methods for
the plain tower [11, 20] do not work in this case. Here we are forced to tackle the problem at
an algebraic level.

One of our main observations is that we can compute the homology of a complex of non-
free modules if we consider relations in addition to the generators. This brings presentations
of modules into the picture which are morphisms from the free modules of relations to the
free modules of generators. So, we design: 1) an efficient algorithm (Section 4) to compute

T. K. Dey, F. Russold, and S. N. Samaga 51:3

a presentation of a morphism of persistence modules by free modules which allows us to
convert a complex of persistence modules into a complex of presentations, and 2) an efficient
algorithm (Section 3) to compute the homology of a complex of presentations. In the spirit
of the persistence algorithm our method considers a generator only once even though it may
exist over a wide range of indices. In fact, our algorithm is a direct generalization of the
persistence algorithm to which it specializes in the case of free modules.

At this point, we note that we are not aware of any computational approach in the TDA
literature that deals with complexes of persistence modules and complexes of presentations
in the full generality as our approach does. The closest along this line is the recent work
in [24] where the author introduces a new framework of barcode bases and operations on
them to compute a barcode basis of the homology of a complex of persistence modules in
the context of distributed persistent homology computations. Our presentation algorithm
does not require such a specific barcode form and can process general presentations. The
paper also does not discuss how to compute barcode bases and maps between them from
general morphisms of persistence modules which we address.

Applications. A central motivation of this paper is to provide computational tools for the
ever-growing body of ideas to use methods from algebraic topology in applications. In recent
years, the idea of using methods from sheaf theory in applications has gained traction in the
field of TDA [3, 8, 15, 19, 22]. Instead of just considering a space by itself, sheaves allow us
to study the behaviour of data over a space. Sheaves and their cohomology have been used
in various applications, see e.g. [2, 4, 6, 16, 17, 18, 21]. Persistent versions of sheaves and
cosheaves have also appeared in the TDA literature, see e.g. [10, 25, 26]. Moreover persistent
(co)sheaves have been used as a framework for a distributed computation of (persistent)
homology [9, 24, 27]. In [23], a general theory of persistent sheaf cohomology has been
developed for which this paper establishes a complete computational framework.

We have already mentioned that our approach provides a novel efficient algorithm to
compute the barcode of a given tower (Section 6.1). We demonstrate that it provides
efficient algorithms to compute various flavors of persistent cosheaf homology and sheaf
cohomology. We consider the persistent homology of a cosheaf over a varying simplicial
complex (Section 6.2) and the cohomology of a persistent sheaf on a fixed simplicial complex
(Section 6.3). We also show that we can reduce the computation of persistent sheaf cohomology
over an arbitrary finite poset to a computation over a simplicial complex (Section 6.4).

We have a preliminary implementation of the two basic algorithms mentioned before. Ex-
perimental results suggest that our approach is not merely theoretical, but has the potential to
be useful in practice (https://github.com/TDA-Jyamiti/Algos-cplxs-pers-modules/).

2 Persistence modules, graded modules, and presentations

In this section we recall basic notions of persistence modules, graded modules and their
presentations. A persistence module, as depicted in the top row of (3), is a functor M : N0 →
vec where vec denotes the category of finite dimensional vector spaces. It is of finite type, if
there exists an m ∈ N0 such that M(i ≤ j) is an isomorphism for all i ≥ m. A morphism of
persistence modules ϕ : M → N , as depicted in (3),

M : M(0) M(1) · · · M(m) · · ·

N : N(0) N(1) · · · N(m) · · ·

ϕ

M(0≤1)

ϕ(0)

M(1≤2)

ϕ(1)

M(m91≤m)

ϕ(m)

M(m≤m+1)

N(0≤1) N(1≤2) N(m91≤m) N(m≤m+1)

(3)

SoCG 2024

https://github.com/TDA-Jyamiti/Algos-cplxs-pers-modules/

51:4 Efficient Algorithms for Complexes of Persistence Modules with Applications

is a natural transformation of functors N0 → vec. Let pMod denote the category of
persistence modules of finite type. An N0-graded k[t]-module M is a direct sum of k-vector
spaces

⊕
i∈N0

Mi with the usual k-action on the summands and a ti-action for all i ∈ N0
such that ti ·Mj ⊆Mi+j . If m ∈Mi it is called a homogeneous element and we define its
degree by deg(m) := i. A (homogeneous) morphism ϕ : M → N of graded k[t]-modules M
and N is a map of k[t]-modules such that ϕ(Mi) ⊆ Ni. Let grModk[t] denote the category of
finitely generated N0-graded k[t]-modules. We know the following equivalence which allows
us to use persistence modules and graded modules interchangeably in the following.

▶ Proposition 1 ([7, Corollary 10][28, Theorem 3.1]). pMod ∼= grModk[t].

In what follows, we assume that all persistence modules and graded modules are of finite
type or finitely generated, respectively. Persistence modules as well as morphisms between
them can be represented by collections of matrices. Their equivalent counterpart graded
k[t]-modules can not be handled by matrices directly since they can have torsion in general.
To handle them with methods of linear algebra over k[t] we use presentations.

▶ Definition 2 (Presentation of module). Let M be a finitely generated graded k[t]-module. A
presentation of M is an exact sequence of the form

0 M P0 P1
µ p

where P0 and P1 are free finitely generated graded k[t]-modules. We call a presentation
reduced, if p is a monomorphism.

▶ Definition 3 (Presentation of morphism). Let ϕ : M → N be a morphism of finitely generated
graded k[t]-modules M and N . A presentation of ϕ is a commutative diagram

0 M P0 P1

0 N Q0 Q1

ϕ

µ

f0

p

f1

ν q

(4)

where the rows are presentations of M and N respectively.

In the following, we also refer to the morphism of free modules P0
p←− P1 in Definition 2 as a

presentation of M . By the exactness assumption M ∼= coker p and µ ∼= (P0
π−→ coker p). We

also refer to the right square in (4) as a morphism of presentations.
Given a < b ∈ N0∪{∞}, let I[a,∞) denote the free graded k[t]-module generated by a single

generator of degree a. Moreover, we denote by I[a,b) the quotient module I[a,∞)/I[b,∞). By
the equivalence of Proposition 1, I[a,b) corresponds to the indecomposable interval persistence
module starting at index a and ending at index b. By the Theorems of Krull-Remak-
Schmidt [1, Theorem 1] and Gabriel [14, Chapter 2.2] and Proposition 1, every finitely
generated graded k[t]-module M is isomorphic to a finite direct sum of indecomposable
interval modules M ∼=

⊕d
i=1 I[ai,bi) . We call the multiset of intervals {[ai, bi)|1 ≤ i ≤ d} the

barcode of M . For two interval modules I[a,b) and I[c,d) we have

Hom(I[a,b), I[c,d)) ∼=

{
k if c ≤ a < d ≤ b
0 else

. (5)

In other words, if two bars overlap in a certain way as stated in (5), then, for every scalar
λ ∈ k, there is a unique morphism defined by multiplication with λ where the bars overlap.

T. K. Dey, F. Russold, and S. N. Samaga 51:5

Moreover, given two finitely generated graded modules M and N , we have

Hom(M,N) ∼= Hom(
⊕
i

I[ai,bi),
⊕
j

I[cj ,dj)) ∼=
⊕
i

⊕
j

Hom(I[ai,bi), I[cj ,dj)) . (6)

We call the following reduced presentation of I[a,b) an elementary presentation

0 I[a,b) I[a,∞) I[b,∞) 0·tb9a (7)

where we set I[b,∞) and the map to zero if b =∞. The direct sum of presentations is defined
by the pointwise direct sum of graded modules. Thus, assuming bi ̸=∞ iff 1 ≤ i ≤ d′ ≤ d,
we obtain the following reduced presentation of M (up to isomorphism)

0
⊕d

i=1 I[ai,bi)
⊕d

i=1 I[ai,∞)
⊕d′

i=1 I[bi,∞) 0p

as a direct sum of elementary presentations where p is of the form

p =

tb19a1 0 · · · 0
0 tb29a2 · · · 0
...

...
. . .

...
0 0 · · · tbd′9ad′

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

. (8)

We call a presentation canonical if it is a direct sum of elementary presentations and has no
elementary summands (7) with a = b. The matrix p of a canonical presentation has a form
as in (8), i.e. every relation in P1 maps to a unique generator in P0. We obtain a natural
inclusion and projection of elementary summands, i.e. a commutative diagram of the form:

0 I[ai,bi) I[ai,∞) I[bi,∞) 0

0
⊕
l

I[al,bl)
⊕
l

I[al,∞)
⊕
l

I[bl,∞) 0

0 I[aj ,bj) I[aj ,∞) I[bj ,∞) 0

ι ι0

·tbi9ai

ι1

π π0

p

π1

·tbj9aj

Presentations of finitely generated graded k[t]-modules and their morphisms can be repre-
sented by the matrices corresponding to the morphisms of free modules p, q, f0, f1 in (4) with
labeled rows and columns recording the degree of the generators. When recording the degree
of the generators, we can use coefficients in k instead of coefficients in k[t] since the degree of
column and row determines the polynomial factor tr of an entry. If we have a morphism of
presentations as in (4) where p and q are in canonical form, then, by the structure of p and
q and by commutativity, f1 is uniquely determined by f0. To represent such a morphism of
presentations it is enough to store the matrix f0 and for each row and column the degree of
the generator in P0 or Q0 and its unique corresponding relation in P1 or Q1.

SoCG 2024

51:6 Efficient Algorithms for Complexes of Persistence Modules with Applications

3 Computing homology of complexes of presentations

In this section we develop an algorithm that computes the barcode of the homology of a
complex of finitely generated graded modules where we assume that the complex is given by
presentations. Consider the following sequence of finitely generated graded k[t]-modules

L
ϕ−−→M

ψ−−→ N

where ψ ◦ ϕ = 0. Suppose we are given reduced presentations of this sequence, i.e. a
commutative diagram with exact rows of the form:

0 L P0 P1 0

0 M Q0 Q1 0

0 N R0 R1 0

ϕ

λ

f0

p

f1

ψ

µ

g0

q

g1

ν r

(9)

such that g0 ◦ f0 = 0 and g1 ◦ f1 = 0. The condition g0 ◦ f0 = 0 and g1 ◦ f1 = 0 means that
(9) is a complex of presentations. In Example 8 one can find a concrete instance of such
a complex of presentations. Our goal is to compute a presentation of kerψ/imϕ from the
presentations in (9), i.e., an exact sequence of the form:

0 kerψ/imϕ W0 W1
w

where W0
w←−W1 is a morphism of free modules. We first construct a presentation of kerψ

through the maps(
g0 9r

)
: Q0 ×R1 → R0 ,

(
g0 9r

)
(x, y) := g0(x)− r(y)(

q

g1

)
: Q1 → Q0 ×R1 ,

(
q

g1

)
(a) := (q(a), g1(a))

where ker
(
g0 9r

)
= {(x, y) ∈ Q0 ×R1 | g0(x) = r(y)}. Note that the kernel of a morphism

of free modules is again a free module. Moreover, we define the map

κ : ker(g0 9 r)→ kerψ , κ(x, y) := µ(x) .

▶ Proposition 4. The following exact sequence

0 kerψ ker(g0 9 r) Q1
κ

(
q

g1

)

is a presentation of kerψ.

Next we show that the presentations of L, kerψ and ϕ are compatible via the map(
f0
0

)
: P0 → ker(g0 9 r) ,

(
f0
0

)
(x) := (f0(x), 0) .

▶ Proposition 5. The following diagram commutes:

0 L P0 P1

0 kerψ ker(g0 9 r) Q1

ϕ

λ (
f0

0

) p

f1

κ

(
q

g1

)

T. K. Dey, F. Russold, and S. N. Samaga 51:7

Finally, we define the presentation map from the relations to the generators(
f0 9q
0 9g1

)
: P0 ×Q1 → ker(g0 9 r) ,

(
f0 9q
0 9g1

)
(x, y) :=

(
f0
0

)
(x)−

(
q

g1

)
(y)

and denote by π : kerψ → kerψ/imϕ the quotient map.

▶ Theorem 6. The following exact sequence

0 kerψ/imϕ ker(g0 9 r) P0 ×Q1
π◦κ

(
f0 9q

0 9g1

)

is a presentation of kerψ/imϕ.

Theorem 6 leads us to the following algorithm PresHom for computing the barcode of the
persistence module or graded module kerψ/imϕ:

Algorithm 1 PresHom.

Input: A complex of presentations as in (9) given by the matrices p, q, r, f0, f1, g0, g1.

Step 1: Build the matrices
(
g0 9r

)
and

(
f0 9q
0 9g1

)
and order the columns by degree.

Step 2: Column reduce
(
g0 9r

)
from left to right. The generators corresponding to the

zero columns of the reduced matrix span ker
(
g0 9r

)
.

Step 3: Remove the rows of
(
f0 9q
0 9g1

)
corresponding to non-zero columns of the reduced

matrix
(
g0 9r

)
.

Step 4: Column reduce the resulting matrix from left to right.

Output: The barcode can be read off from the final matrix
(
f0 9q
0 9g1

)
in the following

way: If the row rj is a pivot row with pivot in column cjl , output the bar [deg(rj),deg(cjl)
)

otherwise output the bar [deg(rj),∞
)
.

▶ Theorem 7. The algorithm PresHom computes the barcode of kerψ/imϕ. If the matrices
p, q, r, f0, f1, g0, g1 are of size O(n)×O(n) the algorithm takes O(n3) time.

If we have a complex of free graded modules, then P1,Q1,R1 and the morphisms p, q, r in (9)
can be chosen as zero. In this case, the algorithm PresHom described above reduces to the
persistence algorithm as described in [28].

▶ Example 8. Consider the following instance of the complex of presentations in (9)

0 L P0 P1 0

0 M Q0 Q1 0

0 N R0 R1 0

ϕ

2 1 1()
0 1 1 0
0 0 1 1
1 1 0 1

6 5 7()
2 1 0 0
1 0 1 0
1 0 0 1

6 5 7()
5 1 1 0
5 0 1 1
6 1 0 1

ψ
0 0 1

()0 1 1 1

5 5 6()
0 1 0 0
0 0 1 0
1 0 0 1

5 5 6
()3 1 1 1

3
()0 1

SoCG 2024

51:8 Efficient Algorithms for Complexes of Persistence Modules with Applications

where the matrices are labeled by column and row degrees and have coefficients in Z2. We
build the matrices

(g0 9r) =
0 0 1 3

()0 1 1 1 1 ,
(

f0 9q
0 9g1

)
=

2 1 1 5 5 6 0 1 1 0 1 0 0
0 0 1 1 0 1 0
1 1 0 1 0 0 1
3 0 0 0 1 1 1

column reduce
(
g0 9r

)
, delete the rows corresponding to non-zero columns from

(
f0 9q
0 9g1

)
and order its columns by degree

(g0 9r) =
0 0 1 3

()0 1 0 0 0 ,
(

f0 9q
0 9g1

)
=

1 1 2 5 5 6()0 1 1 0 0 1 0
1 0 1 1 0 0 1
3 0 0 0 1 1 1

Now we column reduce
(
f0 9q
0 9g1

)
and obtain the reduced matrix

(
f0 9q
0 9g1

)
=

1 1 2 5 5 6()0 1 1 0 0 0 0
1 0 1 0 0 0 0
3 0 0 0 1 0 0

(10)

Finally we read off the barcode of kerψ/imϕ from (10) in the following way: Row 1 contributes
the bar [0, 1), row 2 contributes the empty bar [1, 1), and row 3 contributes the bar [3, 5).

4 Computing presentations of morphisms of persistence modules

The algorithm described in the previous section requires as input a complex of presentations of
graded modules. In practice, when working with, for example, simplicial towers or persistent
sheaves we cannot always assume that the input is given as a complex of presentations.
Thus, to make use of our algorithm in various settings, we develop an efficient algorithm
PresPersMod to compute a presentation of a morphism of persistence modules. Given a
morphism of persistence modules ϕ : M → N of finite type

M0 M1 · · · Mm · · ·

N0 N1 · · · Nm · · ·

A0

C0

A1

C1

Am91

Cm

∼=

B0 B1 Bm91 ∼=

(11)

where we use the notation Mi := M(i), Ni := N(i) and the morphisms M(i ≤ i + 1),
N(i ≤ i + 1) and ϕ(i) are input by the respective matrices Ai, Bi and Ci. Our goal is to
compute a canonical presentation

P0 P1

Q0 Q1

f0

p

f1

q

(12)

presenting a morphism of persistence modules isomorphic to (11). As explained in Section 2,
it is enough to compute the matrix f0 where each row and column additionally stores the
degree of the corresponding generator b(−) and its relation d(−). Each generator-relation

T. K. Dey, F. Russold, and S. N. Samaga 51:9

pair in a canonical presentation corresponds to an interval summand in a persistence module
isomorphic to the top or bottom row of (11) . Hence, an alternative point of view is that the
algorithm computes the barcodes of (11) while keeping track of how the bars map to each
other (cf. (5) and (6)). The algorithm PresPersMod maintains a canonical presentation

P i0 P i1

Qi0 Qi1

fi0

pi

fi1

qi

of a morphism of persistence modules obtained by restricting the original modules up to
index i

M0 · · · Mi Mi · · ·

N0 · · · Ni Ni · · ·

A0

C0

Ai91

Ci

id id

Ci

B0 Bi91 id id

(13)

while processing (11) from left i = 0 to right i = m. Iteratively, we build the matrix f i0 with
the birth- and death-time annotations. In a generic step, when we arrive at i from i− 1, the
matrices Ai, Bi, and Ci are already transformed to Ati, Bti , and Cti respectively. We reduce
these matrices further to Ari , Bri , and Cri which induce transformations of Ai+1, Bi+1, and
Ci+1 as we go forward in PresPersMod described below.

Initialization at i = 0. We start with the matrices A0, B0 and C0. Each column and row
of C0 corresponds to a basis element of M0 and N0. Since we are at index 0, each of these
basis elements has to start a new bar and they are mapped according to the matrix C0.
Therefore, we set f0

0 := C0 with b(cj) = 0, d(cj) = ∞ and b(rk) = 0, d(rk) = ∞ for every
column cj and every row rk of C0. Each bar at index 0 now corresponds to a generator in
P 0

0 or Q0
0 and their maps are determined by the matrix of generators f0

0 . Initially, we set
At0 := A0, Bt0 := B0 and Ct0 := C0 respectively.

Moving from i to i + 1. Given the matrix f i0 and the matrices Ati and Bti from the
previous step. Each column cj and row rk of f i0 corresponds to a bar in persistence modules
isomorphic to (13). The bars with d(cj), d(rk) < ∞ already finished (died) and need no
further processing. For the bars with d(cj), d(rk) =∞ we need to determine which of them
die entering index i+ 1. Moreover, we need to determine how many new bars are born at
index i+ 1 and how they are mapped.

Each column of Ati and Bti corresponds to a column and row of f i0 respectively and they
are ordered w.r.t. their order in f i0. Column reduce Ati and Bti from left to right to have
reduced matrices Ari and Bri respectively while performing the corresponding column and
row operations on f i0 to obtain the new matrix f i0. If aj is a zero column in Ari and cij is
the corresponding column of f i0, we set d(cij) = i+ 1. We proceed in the same way for the
columns of Bri and the rows of f i0.

Every row of Ari or Bri that is not a pivot row could be zeroed out by row reductions.
Hence, after a change of basis, every non-pivot row of Ari or Bri is a generator of the respective
cokernel and thus generates a new bar born at index i + 1. We do not perform the row
reduction on Ari or Bri but we transform Ai+1, Bi+1 and Ci+1 according to this change of
bases to maintain matrices that are consistent with the bases induced by our presentation.

SoCG 2024

51:10 Efficient Algorithms for Complexes of Persistence Modules with Applications

These transformed matrices constitute Ati+1, Bti+1 and Cti+1 for the next iteration. Observe
that every column of Ati+1 and Bti+1 and every column and row of Cti+1 corresponds either to
a non-pivot row of Ari or Bri and thus to a new born bar at index i+ 1 or to a pivot row with
pivot in the j-th column and thus to the bar of the j-th column in Ari or Bri . We sort the
columns of Ati+1 and Bti+1 and the columns and rows of Cti+1 w.r.t. their order in f

i

0 where
columns and rows for new generators are added at the end in arbitrary order. The matrix
Cti+1, restricted to the columns corresponding to non-pivot rows of Ari (new generators), is
added to f i0 to obtain f i+1

0 := f
i

0. For each new column gj and row hk we set b(gj) = i+ 1,
d(gj) =∞ and b(hk) = i+ 1, d(hk) =∞.

▶ Theorem 9. Given a morphism as in (11), the algorithm PresPersMod computes a
canonical presentation (12) in O(n3) time where dim(Mi), dim(Ni) = O(ni) and n =

∑m
i=0 ni.

▶ Example 10. Consider the following morphism of persistence modules over Z2

M0 M1 M2 · · ·

N0 N1 N2 · · ·

(
0 1 0
1 1 1
1 1 1

)
(

0 1 1
0 1 1
1 0 0

)
(

0 1 1
0 0 0
0 1 1

)
(

0 0 0
0 1 1
0 0 0

) (
1 0 0
1 0 0
0 1 0

)∼=
(

1 1 0
1 1 0
0 0 0

) (
1 1 1
0 1 1
0 0 1

) ∼=

We initialize f0
0 = C0 and set the birth- and death-time of every generator to 0 and ∞:

f
0
0 =

c1 c2 c3()
r1 0 1 1
r2 0 1 1
r3 1 0 0

,

c1 c2 c3 r1 r2 r3()
b 0 0 0 0 0 0
d ∞ ∞ ∞ ∞ ∞ ∞

We column reduce A0 and B0 while performing the corresponding operations on f0
0 :

A
r
0 =

c1 c2 c3()
0 1 0
1 0 0
1 0 0

, B
r
0 =

r1 r2 r3()
1 0 0
1 0 0
0 0 0

, f
0
0 =

c1 c2 c3()
r1 0 0 0
r2 0 1 1
r3 1 1 1

We perform the basis transformation on A1, B1 and C1:

A
t
1 =

c1 c2 c4()
0 0 1
0 0 0
0 0 1

, B
t
1 =

r1 r4 r5()
0 1 1
1 0 1
0 0 1

, C
t
1 =

c1 c2 c4()
r1 0 0 1
r4 0 0 1
r5 0 0 0

We update f0
0 in the following way: The column c4 and the rows r4 and r5 of Ct1 correspond

to non-pivot rows of Ar0 or Br0 . We add them as new columns and rows of f1
0 born at index 1.

The columns c3 of Ar0 and r2, r3 of Br0 are zero-columns, thus we set d(c3), d(r2), d(r3) = 1:

f
1
0 =

c1 c2 c3 c4 r1 0 0 0 1
r2 0 1 1 0
r3 1 1 1 0
r4 0 0 0 1
r5 0 0 0 0

,

c1 c2 c3 c4 r1 r2 r3 r4 r5()
b 0 0 0 1 0 0 0 1 1
d ∞ ∞ 1 ∞ ∞ 1 1 ∞ ∞

Since At1 and Bt1 are already column reduced we can directly transform C2:

C
t
2 =

c4 c5 c6()
r1 1 1 1
r4 1 1 1
r5 0 1 0

T. K. Dey, F. Russold, and S. N. Samaga 51:11

and update f1
0 = f1

0 by adding columns c5, c6 of Ct2 corresponding to non-pivot rows of At1.
Since c1 and c2 are zero-columns of At1, we set d(c1) = d(c2) = 2 and obtain the final result:

f
2
0 =

c1 c2 c3 c4 c5 c6 r1 0 0 0 1 1 1
r2 0 1 1 0 0 0
r3 1 1 1 0 0 0
r4 0 0 0 1 1 1
r5 0 0 0 0 1 0

,

c1 c2 c3 c4 c5 c6 r1 r2 r3 r4 r5()
b 0 0 0 1 2 2 0 0 0 1 1
d 2 2 1 ∞ ∞ ∞ ∞ 1 1 ∞ ∞

5 Complexes of presentations

The algorithm introduced in the previous section allows us to compute a canonical presentation
of a complex of persistence modules. To obtain a valid input for our homology algorithm the
resulting presentations need to form a complex, i.e., a sequence of presentations connected
by morphisms where composition of consecutive morphisms is zero. The problem is that
an arbitrary presentation of a complex of graded modules is not necessarily a complex of
presentations. Consider the following complex of persistence modules over Z2

I[1,2)
ϕ−−→ I[0,2)

ψ−−→ I[0,1)

where ϕ and ψ are the identity map on the overlap of the intervals and 0 elsewhere. Note
that the composition is zero because the first and the third interval do not overlap. The
following canonical presentation of the corresponding complex of k[t]-modules

0 I[1,2) I[1,∞) I[2,∞) 0

0 I[0,2) I[0,∞) I[2,∞) 0

0 I[0,1) I[0,∞) I[1,∞) 0

ϕ t

t

1

ψ 1

t2

t

t

(14)

is not a complex of presentations because 1 ◦ t ̸= 0 and t ◦ 1 ̸= 0. Using Proposition 11, we
show that we can always modify a canonical presentation of a complex of graded modules to
a complex of presentations.

▶ Proposition 11. Consider a commutative diagram of canonical presentations of the form:

0 I[a,b) I[a,∞) I[b,∞) 0

0 M P0 P1 0

0 N Q0 Q1 0

0 I[c,d) I[c,∞) I[d,∞) 0

ι ι0

·tb9a

ι1

ϕ

µ

f0

p

f1

π

ν

π0

q

π1

·td9c

(15)

If not (c < d ≤ a < b), then (π ◦ ϕ ◦ ι = 0 ⇐⇒ π0 ◦ f0 ◦ ι0 = 0 ⇐⇒ π1 ◦ f1 ◦ ι1 = 0).

It implies that given canonical presentations as in (9), the only case where the entry of
the matrix g0 ◦ f0, corresponding to the bars I[a,b) and I[c,d), can be non-zero is when
c < d ≤ a < b. In this case, we can add a new bar I[e,e) of length zero with d ≤ e ≤ a to the

SoCG 2024

51:12 Efficient Algorithms for Complexes of Persistence Modules with Applications

middle presentation in (9), and map I[a,∞) → I[e,∞) and I[e,∞) → I[c,∞) in such a way that
the resulting map I[a,b) → I[c,d) is zero. Given the morphisms of presentations in (14), we
add I[1,∞)

1←− I[1,∞) to the middle term to obtain the following complex of presentations:

0 I[1,2) I[1,∞) I[2,∞) 0

0 I[0,2) I[0,∞) ⊕ I[1,∞) I[2,∞) ⊕ I[1,∞) 0

0 I[0,1) I[0,∞) I[1,∞) 0

ϕ

(
t

1

) t (
1

t

)

ψ
(

1 t
)

(
t2 0

0 1

)
(
t 1

)
t

▶ Theorem 12. Let L ϕ−−→M
ψ−−→ N be a complex of finitely generated graded k[t]-modules,

then there exists a complex of presentations presenting L ϕ−−→M
ψ−−→ N .

▶ Corollary 13. Given a complex of graded k[t]-modules L ϕ−−→M
ψ−−→ N and a canonical

presentation as in (9) of size n := max{rank(P0), rank(Q0), rank(R0)}, we can modify (9)
such that the modified presentation is a reduced complex of presentations of size O(n).

The modification mentioned in Corollary 13 can be implemented in time O(n3) in the
following way:

Algorithm 2 An O(n3) implementation of the modification mentioned in Corollary 13.

Input: The matrices f0 and g0 with birth/death annotations representing canonical presen-
tations of ϕ and ψ.
Step 1: Compute the matrix product g0 ◦ f0.
Step 2: For every non-zero column cj of g0 ◦ f0, add a row (0, . . . , 0, 1

j
, 0, . . . , 0) with birth

and death index b(cj) to the end of f0 and the column −cj with birth and death index b(cj)
to the end of g0.
Output: The modified matrices f0 and g0.

6 Applications

6.1 Persistent homology of simplicial towers
We consider a simplicial tower:

K⃗ : K0 K1 · · · Km
f0 f1 fm91 (16)

where Ki is a finite simplicial complex and fi an arbitrary simplicial map. Our goal is to
compute the barcode of the homology persistence module

Hk(K⃗) : Hk(K0) Hk(K1) · · · Hk(Km) · · ·Hk(f0) Hk(f1) Hk(fm91) ∼= (17)

where we artificially extend finite persistence modules by isomorphisms to infinite persistence
modules of finite type to fit them into the algebraic framework discussed in Section 2. From
an input tower (16), we can construct the following complex of persistence modules for
computing its persistent homology

T. K. Dey, F. Russold, and S. N. Samaga 51:13

Ck+1(K⃗) Ck(K⃗) Ck91(K⃗)∂k+1 ∂k (18)

where Ck(K⃗) is the persistence module of simplicial k-chains in K⃗ defined by

Ck(K⃗) : Ck(K0) Ck(K1) · · · Ck(Km) · · ·Ck(f0) Ck(f1) Ck(fm91) ∼= (19)

Since simplices can be collapsed in a tower, the linear maps Ck(fi) are not necessarily
injective. Thus, in general Ck(K⃗) is not a free module, but we can use the pipeline developed
in Sections 4, 5 and 3 to compute the barcode of (17).

Tower Algorithm. In practice a tower is usually represented as a sequence of elementary
inclusions (adding a single simplex) and elementary collapses (collapsing exactly two vertices).
Every tower can be represented in this way [11], so w.l.o.g. we assume that (16) is a sequence
of elementary inclusions and collapses. Every collapse can be thought of as making some
simplices (chains) collapse trivially to 0, and some other pairs of simplices merging together.
The number of such trivial collapses and mergings cannot be more than the number of
elementary inclusions. So, we define the size n of the tower as the number of elementary
inclusions in K⃗. The special kind of persistence modules (19), arising from simplicial
towers, significantly simplify the computation of a presentation of (18). The reason for this
simplification is that in the matrices Ck(fi) in (19) each column is either zero or contains a
single 1 which implies that each column is reduced by a single other column and there is no
need to explicitly construct these matrices. In fact, a canonical presentation of Ck(K⃗) can
be computed in O(n) time directly by observing elementary inclusions (creating generators),
trivial collapses (pairing simplices to itself), and mergings (pairing the relation to the simplex
in the merge appearing later in the filtration). Corresponding to every merge, we have a basis
change which needs to be reflected by a sum of two columns in the boundary matrices that
connect two modules. This will incur quadratic complexity. By Proposition 11 and the fact
that the boundary of a simplicial chain can not die before the chain itself, this computation
of a canonical presentation of the complex in (18) yields a complex of presentations.

▶ Theorem 14. Given a simplicial tower (16) of size n, the Tower Algorithm outlined
above computes the persistent homology, i.e., the barcode of (17) in O(n3) time.

6.2 Persistent cosheaf homology over simplicial towers
In this section and the next, we consider cosheaves and sheaves over finite simplicial complexes.
Briefly, as depicted in Figure 1, a (co)sheaf is an assignment of vector spaces on simplices
of a simplicial complex and linear maps among them, which satisfy certain conditions of
commutativity. Similar to the homology of a simplicial complex, the homology of a cosheaf
over a simplicial complex can be computed from a chain complex where the boundary
operators are determined by how the vector spaces over k-simplices map to the vector spaces
over their (k 9 1)-dimensional faces.

The persistent homology of a tower can be viewed as a special case of persistent cosheaf
homology over a tower where the cosheaf is the constant cosheaf. We consider a simplicial
tower as in the lower row of (20) and a cosheaf F : Kop

m → vec over Km.

F 0 F 1 · · · Fm

K⃗ : K0 K1 · · · Km

f∗
0 f∗

1 f∗
m91

f0 f1 fm91

(20)

SoCG 2024

51:14 Efficient Algorithms for Complexes of Persistence Modules with Applications

F(v1) F(v2)

F(v2)

F(e1)

F(v2)F(e1)

F(e1)
F(v1) F(v2)F(e1)

F(v1≤e1) F(v2≤e1)

v1 v2

v3

v1 v2f:v3→v2

f
*

f
*
F(v3)=F(f(v3))

Figure 1 The pullback f∗F of a cosheaf F along an elementary collapse f : v3 → v2.

As shown in Figure 1, we use the inverse image functors f∗
i to iteratively pull back F = Fm

to cosheaves on all the Ki by defining F i = f∗
i F

i+1. We now use the induced maps
Hk(fi) : Hk(Ki, F

i)→ Hk(Ki+1, F
i+1) to construct the cosheaf homology persistence module

Hk(K⃗, F) : Hk(K0, F 0) Hk(K1, F 1) · · · Hk(Km, F m) · · ·Hk(f0) Hk(f1) Hk(fm91) ∼=

(21)

The persistent cosheaf homology is the homology of the complex of persistence modules

Ck+1(K⃗, F) Ck(K⃗, F) Ck91(K⃗, F)∂k+1 ∂k

where Ck(K⃗, F) is the persistence module of finite type defined by

Ck(K⃗, F) : Ck(K0, F 0) Ck(K1, F 1) · · · Ck(Km, F m) · · ·Ck(f0) Ck(f1) Ck(fm91) ∼=

Cosheaf Algorithm. As in the case of simplicial towers, the persistence modules Ck(K⃗, F)
are not necessarily free. We can again assume that the tower is given by a sequence
of elementary inclusions and collapses and define the size n of the instance (K⃗, F) as
n := # elementary inclusions× max

σ∈Km
dim

(
F (σ)

)
. We can now use our pipeline developed in

Sections 4, 5 and 3 to compute the barcode of (21) where the same simplifications as in the
tower case (Section 6.1) apply.

▶ Theorem 15. Given an instance (K⃗, F) of size n as in (20), the Cosheaf Algorithm
above computes the persistent cosheaf homology, i.e., the barcode of (21) in O(n3) time.

6.3 Cohomology of persistent sheaves over simplicial complexes
In this section we compute the cohomology of a persistent sheaf over a simplicial complex.
We consider a persistent sheaf F⃗ : N0 → Shv(K,vec) of finite type on a finite simplicial
complex K, i.e. a diagram of sheaves and sheaf morphisms (see Figure 2) over K

F⃗ : F0 F1 · · · Fm · · ·ϕ0 ϕ1 ϕm91 ∼= (22)

where ϕi is an isomorphism for all i ≥ m. As depicted in Figure 3, a persistent sheaf can
also be viewed as a sheaf of persistence modules. The figure shows parts of the sheaf in (23)
of interval persistence modules on a simplicial complex containing a triangle and its faces
where the maps are the identity on the overlap of intervals and zero elsewhere:

T. K. Dey, F. Russold, and S. N. Samaga 51:15

Figure 2 A sheaf morphism ϕ : F → G over a triangle and its faces.

0

0 0

k 0

k

k

k

0

k

k

k k

k

0

0

0
k

0

k

k

0

k

k
k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k
k

0 1 2

φ0 φ1

φ0

φ1

∼=

Figure 3 Two equivalent viewpoints of a persistent sheaf over a triangle and its faces.

I[1,7)

I[1,6) I[0,3) I[0,5)

I[2,6) I[0,5) I[1,5)

(23)

Our goal is to compute the persistent sheaf cohomology of F⃗ , i.e. the barcode of the following
persistence module:

Hk(X, F⃗) : Hk(K, F0) Hk(K, F1) · · · Hk(K, Fm) · · ·Hk(K,ϕ0) Hk(K,ϕ1) Hk(K,ϕm91) ∼= (24)

Persistent Sheaf Algorithm. We first assume that the input for the computation is given
by a collection of matrices representing the internal maps Fi(σ ≤ τ) of the sheaves for all
0 ≤ i ≤ m and σ <1 τ ∈ K and a collection of matrices representing the sheaf morphisms
ϕi(σ) for all 0 ≤ i < m and σ ∈ K. We define the size of the input as n :=

∑m
i=0 ni where

ni :=
∑
σ∈K dim

(
Fi(σ)

)
.

SoCG 2024

51:16 Efficient Algorithms for Complexes of Persistence Modules with Applications

From the input we can construct the following complex of persistence modules

Ck91(K, F⃗) Ck(K, F⃗) Ck+1(K, F⃗)δk91 δk (25)

where Ck(K, F⃗) is a persistence module of finite type defined by

Ck(K, F⃗) : Ck(K,F0) Ck(K,F1) · · · Ck(K,Fm) · · ·Ck(K,ϕ0) Ck(K,ϕ1) Ck(K,ϕm91) ∼=

Using the pipeline developed in Sections 4, 5 and 3, we can compute a presentation of (25),
transform it into a complex of presentations and compute the barcode of the cohomology.
As an example, the complex of presentations in Example 8 in Section 3 is a presentation of
(25) for k = 1 and the persistent sheaf in (23).

▶ Theorem 16. Given a persistent sheaf (22) of size n, the Persistent Sheaf Algorithm
above computes the persistent sheaf cohomology, i.e., the barcode of (24), in O(n3) time.

In practice, it is unlikely that one is just handed a persistent sheaf in the form described
above. In an application the persistent sheaf has to be constructed in the first place. To
construct a persistent sheaf F⃗ : N0 → Shv(K,vec) or equivalently a sheaf of persistence
modules F⃗ : K → pMod, one has to construct a persistence module F⃗ (σ) : N0 → vec over
every simplex σ ∈ K and connect them by a morphism of persistence modules F⃗ (σ ≤ τ)
if σ <1 τ . The idea of sheaves is to organize local information over a space. We use this
idea to compute presentations 0 ← F⃗ (σ) ← Pσ0

pσ←− Pσ1 of the modules over each simplex
and the morphisms F⃗ (σ ≤ τ) locally in time O

(
max{

∑m
i=0 dim(Fi(σ)),

∑m
i=0 dim(Fi(τ))}3)

.
This can be computed in a distributed manner while constructing the persistent sheaf. From
these local presentations we can assemble a presentation of (25). After this construction /
preprocessing step we can define the size of the presentation as n :=

∑
σ∈K rank(Pσ0). The

size of n depends on the structure of the modules F⃗ (σ). If all their summands restricted to
[0,m] are intervals of length 0, then n = n, but, if all their summands are intervals of length
m, then n = n

m . The remaining steps in our pipeline take O(n3) time. Therefore, if one can
take advantage of distributed computation of the input and local presentations our approach
can be significantly faster than O(n3).

6.4 Cohomology of persistent sheaves over posets
So far our algorithms allow us to compute the persistent sheaf cohomology barcode of
persistent sheaves over simplicial complexes. Discrete sheaves and their persistent version can
be defined more generally on finite posets. The problem is that for arbitrary finite posets there
is no direct analog to the explicit (co)chain complex (of polynomial size) computing the sheaf
cohomology over a simplicial complex. For arbitrary posets one could use the general definition
of sheaf cohomology via derived functors (see [5] for the non-persistent case). We now show
that we can reduce the computation of persistent sheaf cohomology over a finite poset to a
computation over a simplicial complex. Let X be a finite poset and F⃗ : N0 → Shv(X,vec) a
persistent sheaf. The order complex K(X) is the simplicial complex defined by all totally
ordered subsets of X, i.e. K(X) := {{x0, . . . , xk}|x0 < . . . < xk ∈ X)}. It comes with
a surjective projection morphism f : K(X) → X defined by f(x0 < . . . < xk) := xk.
We can now pull back F⃗ along this projection f to a persistent sheaf on K(X). Given
x• = (x0 < · · · < xk) ≤ (y0 < · · · < yl) = y• ∈ K(X) we define this pullback by
f∗F⃗ (x•) := F⃗ (xk) and f∗F⃗ (x• ≤ y•) := F⃗ (xk ≤ yl). The following theorem shows that
the persistent sheaf cohomology of F⃗ on the poset X is isomorphic to the persistent sheaf
cohomology of f∗F⃗ on the simplicial complex K(X).

T. K. Dey, F. Russold, and S. N. Samaga 51:17

▶ Theorem 17. If X is a finite poset, F⃗ a persistent sheaf on X and f : K(X) → X the
projection from the order complex, then Hk(X, F⃗) ∼= Hk(K(X), f∗F⃗).

We are now able to compute the persistent sheaf cohomology over any finite poset by pulling
back to the order complex and using our pipeline for simplicial complexes. Unfortunately
this approach is only practical for small instances since the size of the order complex is
exponential in the size of the poset. This raises the question if it is possible to compute the
persistent sheaf cohomology over a general poset in polynomial time. In the following we
give an example of a class of posets, which can have exponentially large order complexes,
where we can compute the persistent cohomology in polynomial time.

Let X be a zigzag-poset, i.e. a poset with the following Hasse diagram

x0 x1 · · · xn91 xn (26)

where each arrow can point to the left or to the right. Let F⃗ be a persistent sheaf on X.
We now construct a poset X ′ in the following way: Suppose the points in X are ordered
from left to right as in (26). Let xi0 be the minimal element in X with the smallest index
i0 ∈ {0, . . . , n}. Let xi1 be the maximal element of X with minimal index i1 > i0. Let xi2
be the minimal element of X with minimal index i2 > i1. We proceed in this way until we
reach the minimal element xim with maximal index im and define X ′ := {xi0 , . . . , xim}. The
constructed zigzag-poset X ′ is an alternating zigzag poset of the form:

xi1 · · · xim91

xi0 xi2 xim92 xim

and is a subposet of X, i.e. there is an order-preserving inclusion ι : X ′ ↪−→ X. We can pull
back the persistent sheaf F⃗ along this inclusion to obtain a persistent sheaf ι∗F⃗ on X ′. Since
X ′ is the poset of a one-dimensional simplicial complex, our algorithms are applicable to ι∗F⃗ .
Now, we can show that the cohomology of F⃗ on X agrees with the cohomology of ι∗F⃗ on X ′.

▶ Theorem 18. Let X be a zigzag-poset and ι : X ′ ↪−→ X the inclusion of the alternating
subposet. If F⃗ is a persistent sheaf on X, then Hk(X, F⃗) ∼= Hk(X ′, ι∗F⃗).

References
1 Gorô Azumaya. Corrections and supplementaries to my paper concerning Krull-Remak-

Schmidt’s theorem. Nagoya Mathematical Journal, 1:117–124, 1950.
2 Federico Barbero, Cristian Bodnar, Haitz Sáez de Ocáriz Borde, Michael Bronstein, Petar

Veličković, and Pietro Liò. Sheaf neural networks with connection laplacians. In Proceedings
of Topological, Algebraic, and Geometric Learning Workshops 2022, volume 196 of Proceedings
of Machine Learning Research, pages 28–36. PMLR, 25 February–22 July 2022.

3 Nicolas Berkouk, Grégory Ginot, and Steve Oudot. Level-sets persistence and sheaf theory.
CoRR, abs/1907.09759, 2019. arXiv:1907.09759.

4 Cristian Bodnar, Francesco Di Giovanni, Benjamin Chamberlain, Pietro Lió, and Michael
Bronstein. Neural sheaf diffusion: A topological perspective on heterophily and oversmoothing
in gnns. In Advances in Neural Information Processing Systems, volume 35, pages 18527–18541.
Curran Associates, Inc., 2022.

5 Adam Brown and Ondrej Draganov. Discrete microlocal morse theory, 2022. arXiv:2209.
14993.

SoCG 2024

https://arxiv.org/abs/1907.09759
https://arxiv.org/abs/2209.14993
https://arxiv.org/abs/2209.14993

51:18 Efficient Algorithms for Complexes of Persistence Modules with Applications

6 Adam Brown and Bei Wang. Sheaf-theoretic stratification learning from geometric and
topological perspectives. Discrete and Computational Geometry, 65, 2021. doi:10.1007/
s00454-020-00206-y.

7 René Corbet and Michael Kerber. The representation theorem of persistence revisited and
generalized. Journal of Applied and Computational Topology, 2(1-2):1–31, 2018. doi:10.1007/
s41468-018-0015-3.

8 Justin Curry. Sheaves, Cosheaves and Applications. PhD thesis, University of Pennsylvania,
2014. arXiv:1303.3255.

9 Justin Curry, Robert Ghrist, and Vidit Nanda. Discrete morse theory for computing cellular
sheaf cohomology. Foundations of Computational Mathematics, 16, 2013. doi:10.1007/
s10208-015-9266-8.

10 Justin Curry, Washington Mio, Tom Needham, Osman Berat Okutan, and Florian Russold.
Convergence of leray cosheaves for decorated mapper graphs, 2023. arXiv:2303.00130.

11 Tamal K. Dey, Fengtao Fan, and Yusu Wang. Computing topological persistence for simplicial
maps. In Proc. 13th Annu. Sympos. Comput. Geom. (SoCG), pages 345:345–345:354, 2014.

12 Tamal K. Dey, Florian Russold, and Shreyas N. Samaga. TDA-
Jyamiti/Algos-cplxs-pers-modules. Software, NSF 2301360, swhId:
swh:1:dir:6c13c2c3aeb94cc68377d695005250d1ab892cb7, (visited on 21/05/2024). URL:
https://github.com/TDA-Jyamiti/Algos-cplxs-pers-modules/.

13 Herbert Edelsbrunner, David Letscher, and Afra Zomorodian. Topological persistence and
simplification. Discrete & Computational Geometry, 28(4):511–533, November 2002.

14 Peter Gabriel. Unzerlegbare Darstellungen I. Manuscripta Mathematica, 6(1):71–103, 1972.
doi:10.1007/BF01298413.

15 Robert Ghrist. Elementary Applied Topology. CreateSpace Independent Publishing Platform,
2014.

16 Robert Ghrist and Yasuaki Hiraoka. Applications of sheaf cohomology and exact sequences
on network codings, 2011. URL: https://www2.math.upenn.edu/~ghrist/preprints/
networkcodingshort.pdf.

17 Jakob Hansen and Thomas Gebhart. Sheaf neural networks, 2020. arXiv:2012.06333.
18 Jakob Hansen and Robert Ghrist. Opinion dynamics on discourse sheaves. SIAM Journal on

Applied Mathematics, 81:2033–2060, 2021. doi:10.1137/20M1341088.
19 Masaki Kashiwara and Pierre Schapira. Persistent homology and microlocal sheaf theory.

Journal of Applied and Computational Topology, 2, 2018. doi:10.1007/s41468-018-0019-z.
20 Michael Kerber and Hannah Schreiber. Barcodes of towers and a streaming algorithm for

persistent homology. In 33rd International Symposium on Computational Geometry, SoCG
2017, volume 77 of LIPIcs, pages 57:1–57:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2017.

21 Michael Robinson. Understanding networks and their behaviors using sheaf theory. 2013
IEEE Global Conference on Signal and Information Processing, GlobalSIP 2013 - Proceedings,
2013. doi:10.1109/GlobalSIP.2013.6737040.

22 Michael Robinson. Topological Signal Processing. Mathematical Engineering. Springer Berlin
Heidelberg, 2014.

23 Florian Russold. Persistent sheaf cohomology, 2022. arXiv:2204.13446.
24 Álvaro Torras-Casas. Distributing persistent homology via spectral sequences. Discrete &

Computational Geometry, pages 1–40, 2023.
25 Xiaoqi Wei, Jiahui Chen, and Guo-Wei Wei. Persistent topological Laplacian analysis of

SARS-CoV-2 variants. J Comput Biophys Chem., January 2023.
26 Xiaoqi Wei and Guo-Wei Wei. Persistent sheaf Laplacians, 2022. arXiv:2112.10906.
27 Hee Rhang Yoon and Robert Ghrist. Persistence by parts: Multiscale feature detection via

distributed persistent homology, 2020. arXiv:2001.01623.
28 Afra Zomorodian and Gunnar Carlsson. Computing persistent homology. Discrete and

Computational Geometry, 33:249–274, 2005. doi:10.1007/s00454-004-1146-y.

https://doi.org/10.1007/s00454-020-00206-y
https://doi.org/10.1007/s00454-020-00206-y
https://doi.org/10.1007/s41468-018-0015-3
https://doi.org/10.1007/s41468-018-0015-3
https://arxiv.org/abs/1303.3255
https://doi.org/10.1007/s10208-015-9266-8
https://doi.org/10.1007/s10208-015-9266-8
https://arxiv.org/abs/2303.00130
https://archive.softwareheritage.org/swh:1:dir:6c13c2c3aeb94cc68377d695005250d1ab892cb7;origin=https://github.com/TDA-Jyamiti/Algos-cplxs-pers-modules;visit=swh:1:snp:cf1c636b5c687db1f9fd059ec1c433c6c280180b;anchor=swh:1:rev:5040010c80b997ed83eaee51c314ac2a48c9cfeb
https://github.com/TDA-Jyamiti/Algos-cplxs-pers-modules/
https://doi.org/10.1007/BF01298413
https://www2.math.upenn.edu/~ghrist/preprints/networkcodingshort.pdf
https://www2.math.upenn.edu/~ghrist/preprints/networkcodingshort.pdf
https://arxiv.org/abs/2012.06333
https://doi.org/10.1137/20M1341088
https://doi.org/10.1007/s41468-018-0019-z
https://doi.org/10.1109/GlobalSIP.2013.6737040
https://arxiv.org/abs/2204.13446
https://arxiv.org/abs/2112.10906
https://arxiv.org/abs/2001.01623
https://doi.org/10.1007/s00454-004-1146-y

	1 Introduction
	2 Persistence modules, graded modules, and presentations
	3 Computing homology of complexes of presentations
	4 Computing presentations of morphisms of persistence modules
	5 Complexes of presentations
	6 Applications
	6.1 Persistent homology of simplicial towers
	6.2 Persistent cosheaf homology over simplicial towers
	6.3 Cohomology of persistent sheaves over simplicial complexes
	6.4 Cohomology of persistent sheaves over posets

