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Abstract
The colorful Helly theorem and Tverberg’s theorem are fundamental results in discrete geometry.
We prove a theorem which interpolates between the two. In particular, we show the following for
any integers d ≥ m ≥ 1 and k a prime power. Suppose F1, F2, . . . , Fm are families of convex sets in
Rd, each of size n > ( d

m
+ 1)(k − 1), such that for any choice Ci ∈ Fi we have

⋂m

i=1 Ci ≠ ∅. Then,
one of the families Fi admits a Tverberg k-partition. That is, one of the Fi can be partitioned into k

nonempty parts such that the convex hulls of the parts have nonempty intersection. As a corollary,
we also obtain a result concerning r-dimensional transversals to families of convex sets in Rd that
satisfy the colorful Helly hypothesis, which extends the work of Karasev and Montejano.
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1 Introduction

1.1 Background

A k-partition of a finite set X is an ordered partition of X into k-nonempty parts, that is, a
k-tuple

(X1, X2, . . . , Xk),

such that X = X1 ∪ X2 ∪ · · · ∪ Xk and Xi ̸= ∅ for all i. If the elements of X are points
(or convex sets) in Rd, a k-partition of X, (X1, X2, . . . , Xk), is called a Tverberg k-partition
provided that

(conv X1) ∩ (conv X2) ∩ · · · ∩ (conv Xk) ̸= ∅.

A fundamental result of discrete geometry is the celebrated theorem of Tverberg [17],
which asserts that if |X| > (d + 1)(k − 1), then X admits a Tverberg k-partition.
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52:2 Colorful Intersections and Tverberg Partitions

Let F1, F2, . . . , Fm be families of sets. We say that F1, F2, . . . , Fm satisfy the colorful
intersection property if

C1 ∩ C2 ∩ · · · ∩ Cm ̸= ∅

for every choice C1 ∈ F1, C2 ∈ F2, . . . , Cm ∈ Fm.
Another fundamental result of discrete geometry is the colorful Helly theorem [1]. It

asserts that if F1, F2, . . . , Fd+1 are finite families of convex sets in Rd that satisfy the colorful
intersection property, then there is a point in common to every member of one of the families.
Observe that it is no loss in generality to assume that |Fi| = n for all i, in which case the
conclusion asserts (in our terminology) that one of the Fi admits a Tverberg n-partition.

Tverberg’s theorem and the colorful Helly theorem have both played important roles in the
development of discrete geometry, and there are a number of generalizations and extensions.
For further information on the subject, we suggest the reader consult [2, 3, 5, 6, 8, 12] and
the references therein.

In the last decade, a particular intriguing question related to the colorful Helly theorem
has been under investigation: What conclusions (if any) can be drawn if we are given fewer
than d + 1 families of convex sets in Rd which satisfy the colorful intersection property?
See [15, 11, 14] for some answers to this question, as well as [11, Conjecture 1] and [3,
Problems 8.1 and 8.2].

1.2 Main results
Our main result can be viewed as an interpolation between the colorful Helly theorem and
Tverberg’s theorem.

▶ Theorem 1. Given integers d ≥ m ≥ 1 and k a prime power. Suppose F1, F2, . . . , Fm

are families of convex sets in Rd, with |Fi| = n > ( d
m + 1)(k − 1), that satisfy the colorful

intersection property. Then one of the Fi admits a Tverberg k-partition.

▶ Remark 2. Note that for m = d, our theorem follows immediately from the colorful Helly
theorem. First project the sets into a hyperplane and apply the colorful Helly theorem.
There is a point in common to all the members of one of the projected families, and the
preimage of this point is a line that intersects all the members of one of the Fi. Now, just
apply Tverberg’s theorem within this line.

For smaller m this argument becomes generally less effective. Projecting into an (m − 1)-
flat and applying the colorful Helly theorem would give a (d − m + 1)-flat transversal to one
of the families Fi, but to obtain a Tverberg k-partition within this (d − m + 1)-flat would
require |Fi| > (d − m + 2)(k − 1), which is significantly worse than the size of Fi that we
require in Theorem 1.

▶ Remark 3. Whenever d is a multiple of m, our theorem is optimal with respect to the size
of the families. Indeed, consider the following construction in Rd = Rt × Rt × · · · × Rt with
m copies of Rt, where t = d

m . Let X ⊂ Rt be a set of (t + 1)(k − 1) points which does not
admit a Tverberg k-partition, and for 1 ≤ i ≤ m define the family

Fi :=
{
Rt × · · · × Rt × {x}

ith factor
× Rt × · · · × Rt : x ∈ X

}
.

Observe that these families satisfy the colorful intersection property, but none of them has a
Tverberg k-partition.
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▶ Remark 4. The prime power assumption in our Theorem 1 appears to be just an artifact
of our proof method, and we conjecture that the theorem also holds when k is any positive
integer.

Another interesting instance that our proof method falls short of would be to generalize
Theorem 1 to the case where the Fi may have distinct sizes and we ask for one of the Fi to
admit a Tverberg ki-partition. We leave it to the reader’s imagination to formulate (and
prove) such a conjecture.

1.3 An application to geometric transversals
Some of the earliest results dealing with the colorful intersection property for less than d + 1
families of convex sets in Rd are the transversal theorems of Karasev and Montejano [15, 14].
The simplest case asserts: Given three red convex and three blue convex sets in R3, where
each red set intersects each blue set, then there is a line that intersects every red set or a line
that intersects every blue set. More generally, we have the following

▶ Corollary 5. Let F1, F2, . . . , Fm be families of convex sets in Rd, each of size k+r, satisfying
the colorful intersection property, where k is a prime power. If d < (r+1)m

k−1 , then one of the
Fi have an r-dimensional affine flat transversal.

Proof. Theorem 1 implies that one of the Fi admits a Tverberg k-partition. That is, for
Fi = {C1, C2, . . . , Ck+r}, there is a k-partition (X1, X2, . . . , Xk) of [k +r] and a point x ∈ Rd

such that x ∈ conv
( ⋃

i∈Xj
Ci

)
for every 1 ≤ j ≤ k. This means that we can choose a point

xi ∈ Ci, for every 1 ≤ i ≤ k + r, such that x ∈ conv{xi}i∈Xj
for every 1 ≤ j ≤ k. Let Aj

denote the affine hull of {xi}i∈Xj
, and let A be the affine hull of A1 ∪ A2 ∪ · · · ∪ Ak. Then

x ∈ A1 ∩ A2 ∩ · · · ∩ Ak, and so

dim A ≤
k∑

j=1
dim Aj =

k∑
j=1

(|Xj | − 1) = r.

Since xi ∈ A for every 1 ≤ i ≤ k + r, it follows that A is an affine flat of dimension at most r

that intersects every Ci. ◀

▶ Remark 6. We note that the work of Karasev and Montejano deals with the cases k = 2
[15, Theorem 8] and k = m [15, Corollary 7], but without any primality condition on m.
For k = 2, their theorem requires d < r + m + 1, while Corollary 5 allows for d < (r + 1)m.
However, for the case k = m, their theorem requires d < ( r

m−1 + 1)m which is slightly better
than our bound d < ( r+1

m−1 )m given by Corollary 5.

▶ Remark 7. The work of Karasev and Montejano makes use of Schubert calculus and
the Lusternik–Schnirelmann category of the Grassmannian. In contrast, our proof uses a
combination of the configuration space / test map scheme from topological combinatorics
(see e.g. [13]) and Sarkaria’s tensor method from discrete geometry (see e.g. [12, section
8.3]). The latter appear more frequently in discrete and computational geometry literature,
so we expect these methods to attract broader interest from the community.

2 Proof of Theorem 1

We will show that a hypothetical counter-example to Theorem 1 would contradict the
following

SoCG 2024



52:4 Colorful Intersections and Tverberg Partitions

▶ Theorem (Volovikov [18]). Let G = Zp × Zp × · · · × Zp be the product of finitely many
copies, with p prime. Let X and Y be fixed point free G-spaces, where X is n-connected and
Y is finite dimensional and homotopy equivalent to Sn. Then there is no G-equivariant map
X → Y .

To reach a contradiction, we use Sarkaria’s tensor method to get geometric criteria for
the existence of a Tverberg k-partition, which we then use to construct such an equivariant
map. We then use discrete Morse theory to show that the domain of this map is sufficiently
connected to violate Volovikov’s theorem.

2.1 The configuration space K∗m
n,k

Given integers n > k ≥ 1, we let Vn,k denote the set of surjective maps

φ : [n] → [k].

Note that we can equivalently think of Vn,k as the set of k-partitions on [n](
φ−1(1), . . . , φ−1(k)

)
.

For a family of sets F = {C1, . . . , Cn} and φ ∈ Vn,k, we write φF to denote the k-partition(
F (1), . . . , F (k))

where F (i) = {Cj : j ∈ φ−1(i)}.
We define Kn,k to be the simplicial complex on the vertex set Vn,k whose faces consists

of subsets σ = {φ1, . . . , φr} ⊂ Vn,k such that

Xi = φ−1
1 (i) ∩ · · · ∩ φ−1

r (i) ̸= ∅ (1)

for every i ∈ [k]. Note that the facets of Kn,k correspond to a choice of representative from
each part of a k-partition, and the vertices of a facet correspond to all the ways of extending
this choice of representatives to a k-partition.

The symmetric group Sk acts (freely) on Vn,k by permuting the parts of the partition.
That is, for g ∈ Sk and φ =

(
φ−1(1), . . . , φ−1(k)

)
∈ Vn,k we have

gφ =
(
φ−1(g(1)), . . . , φ−1(g(k))

)
,

which means that Sk acts freely on Kn,k.
In order to apply Volovikov’s theorem, we need a lower bound on the connectedness of

Kn,k. This is given by

▶ Lemma 8. For all n > k ≥ 1, the simplicial complex Kn,k is (n − k − 1)-connected.

We give the proof of this lemma in section 3. For now we proceed with the proof
of Theorem 1 assuming the bound on the connectedness of Kn,k. We will construct an
equivariant map on the m-fold join K∗m

n,k = Kn,k ∗ · · · ∗ Kn,k.

2.2 Sarkaria’s criterion
Here we demonstrate one of the standard methods for proving Tverberg’s theorem, Sarkaria’s
tensor method. The method is usually applied for collections of points, but here we apply it
to families of convex sets, similar to the approach taken in [16].
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For each i ∈ [k], define the vector vi ∈ Rk as

vi = ei − 1
k 1,

where ei is the ith standard unit vector and 1 = (1, . . . , 1) ∈ Rk. Observe that the vi satisfy
only one linear dependency up to a scalar multiple, which is

v1 + · · · + vk = 0. (2)

Next, define the map

Li : Rd → R(d+1)×k

x 7→
[

x
1
]

⊗ vi

where
[

x
1
]

denotes the vector in Rd+1 obtained from x by appending an additional coordinate
and setting this equal to 1. For a given x ∈ Rd, we will regard the image Li(x) as a (d+1)×k

matrix. Observe that since each vi is orthogonal to 1 ∈ Rk, it follows that Li(x) belongs to
the subspace

Y = { [w1 · · · wk] : w1 + · · · + wk = 0} ⊂ R(d+1)×k.

We note that the symmetric group Sk acts on the subspace Y by permuting the columns,
and for g ∈ Sk and Li(x) ∈ Y , we have

gLi(x) = g(
[

x
1
]

⊗ vi) =
[

x
1
]

⊗ vg(i) = Lg(i)(x).

Observe that the action is not free, but it is fixed-point free on Y \ {0}.
For a convex set C ⊂ Rd, we write LiC to denote the set

LiC = {Li(x) : x ∈ C},

which is a convex subset of Y . The crucial step of the Sarkaria method is the following

▶ Observation 9. Let F = {C1, . . . , Cn} be a family of convex sets in Rd and φ ∈ Vn,k. If

0 ∈ conv
(
Lφ(1)C1 ∪ · · · ∪ Lφ(n)Cn

)
,

then φF is a Tverberg k-partition.

Indeed, suppose 0 = α1L1(x1) + · · · + αkLk(xk) is a convex combination, where

Li(xi) =
[

xi
1

]
⊗ vi ∈ conv

(⋃
j∈φ−1(i) LiCj

)
.

Then in each coordinate, the αi

[
xi
1

]
are the coefficients of a linear dependency of the vi, and

since (2) is the unique linear dependency up to scalar multiple, we have

α1 = · · · = αk and x1 = · · · = xk.

We also have xi ∈ conv
(⋃

j∈φ−1(i) Cj

)
, so φF is a Tverberg k-partition.

SoCG 2024



52:6 Colorful Intersections and Tverberg Partitions

2.3 The test map f

Consider a single family F1 = {C1, . . . , Cn} of compact convex sets in Rd which does not
have a Tverberg k-partition. We show how this gives us an equivariant map

f1 : Kn,k → Y.

For φ ∈ Vn,k, consider the k-partition φF1. By hypothesis, this is not a Tverberg k-partition,
so by Observation 9, there is a vector aφ ∈ Y which defines an open halfspace

Hφ = {y ∈ Y : aφ · y > 0}

such that

Lφ(1)C1 ∪ · · · ∪ Lφ(n)Cn ⊂ Hφ. (3)

It is important that the vectors aφ are chosen such that

gaφ = agφ

for every g ∈ Sk. This can be done by first choosing one vector aφ in each Sk orbit, and then
allowing the rest of the vectors in that orbit to be defined accordingly.

To verify that such a choice is valid, suppose that aφ has been chosen such that the
containment (3) holds and consider g ∈ Sk. Since gLi(x) = Lg(i)(x), we get

Lgφ(i)Ci = g(Lφ(i)Ci) ⊂ g(Hφ)
= {g(y) : aφ · y > 0}
= {z : aφ · g−1(z) > 0}
= {z : gaφ · z > 0}
= {z : agφ · z > 0} = Hgφ.

The equivariant map f1 : Kn,k → Y is defined by affine extension of a• by setting

f1(σ) = conv{aφ : φ ∈ σ},

for every face σ ∈ Kn,k.

Now consider the setting of Theorem 1 where we have families F1, . . . , Fm of compact
convex sets in Rd, each of size n, and suppose none of them have a Tverberg k-partition. For
every 1 ≤ i ≤ m, the family Fi gives us an equivariant map fi : Kn,k → Y as defined above.
By taking joins, we get an equivariant map

f = f1 ∗ f2 ∗ · · · ∗ fm : K∗m
n,k → Y.

(Note that the symmetric group Sk acts freely on K∗m
n,k by applying the group action to each

component of the join.)

2.4 Using colorful intersections to avoid a subspace
We now want to determine the range of f , and for this we use the assumption that the
families Fi satisfy the colorful intersection property.

First we note that the facets of Kn,k are in one-to-one correspondence with injective
functions

ρ : [k] → [n].



M. G. Dobbins, A. F. Holmsen, and D. Lee 52:7

In particular, each facet σ ∈ Kn,k corresponds to the unique injection ρ : [k] → [n] that has
σ as its set of left inverses. That is,

φ ∈ σ ⇐⇒ φ ◦ ρ = id[k].

Consider a facet σ = σ1 ∗ σ2 ∗ · · · ∗ σm ∈ K∗m
n,k with the corresponding injections ρi

satisfying φ ◦ ρi = id[k] for all φ ∈ σi. For each 1 ≤ i ≤ m, we apply ρi to select a k-tuple of
distinct convex sets

C
(i)
ρi(1), C

(i)
ρi(2), . . . , C

(i)
ρi(k) ∈ Fi.

The colorful intersection property now guarantees that, for every 1 ≤ j ≤ k, we can select a
point xj ∈ Rd which satisfies

xj ∈ C
(1)
ρ1(j) ∩ C

(2)
ρ2(j) ∩ · · · ∩ C

(m)
ρm(j).

Now consider a vertex φ ∈ σi and the halfspace Hφ = {y ∈ Y : aφ · y > 0} from the
definition of the test map f . Since φ ◦ ρi = id[k], we get

L1C
(i)
ρi(1) ∪ L2C

(i)
ρi(2) ∪ · · · ∪ LkC

(i)
ρi(k) ⊂ Hφ,

by the containment (3), which in turn implies{
L1(x1), L2(x2), . . . , Lk(xk)

}
⊂ Hφ.

Thus, for every vertex φ ∈ σ and every 1 ≤ j ≤ k, we have aφ · Lj(xj) > 0, which gives us

f(σ) = conv{aφ : φ ∈ σ} ⊂ {y ∈ Y : Lj(xj) · y > 0}. (4)

We claim that f(σ) does not intersect the subspace

B := ed+1 ⊗ Rk.

For the sake of contradiction, suppose there were a vector c = (c1, c2, . . . , ck) ∈ Rk such that

b = ed+1 ⊗ c ∈ f(σ) ∩ B.

Let j ∈ [k] be a coordinate such that cj is minimized. Then

vj · c = k−1
k cj − 1

k

∑
i ̸=j ci ≤ 0,

and so

Lj(xj) · b =
([xj

1
]

⊗ vj

)
· (ed+1 ⊗ c) =

([xj

1
]

· ed+1
)

(vj · c) ≤ 0,

but Lj(xj) · b > 0 by (4) since b ∈ f(σ), so f(σ) cannot intersect B.
We conclude that the range of f is contained in Y \ B, so we have an equivariant map

f : K∗m
n,k → Y \ B.

SoCG 2024
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2.5 Finishing the proof
By Lemma 8, it follows that the complex K∗m

n,k is (m(n − k + 1) − 2)-connected (see e.g. [13,
Proposition 4.4.3]), and since n > ( d

m + 1)(k − 1), we get

m(n − k + 1) − 2 > d(k − 1) − 2.

Therefore K∗m
n,k is at least (d(k − 1) − 1)-connected.

The symmetric group Sk acts on Y \B by permuting columns, which makes it a fixed-point
free action. If k = pr, then the action is also fixed-point free with respect to the subgroup
G = Zp × Zp × · · · × Zp. The subspace Y ∩ B⊥ has dimension d(k − 1) as it consists of the
matrices in Y whose (d + 1)st row is equal to the 0-vector, and therefore Y \ B is homotopy
equivalent to Sd(k−1)−1. Consequently, the existence of the map f contradicts Volovikov’s
theorem. ◀

3 Proof of Lemma 8

Here we show that the simplicial complex Kn,k is (n − k − 1)-connected. The proof is in two
steps. First we define a polyhedral complex Cn,k whose cells correspond to partial surjective
functions π : [n] → [k], and use Quillen’s fiber lemma to show that Cn,k is homotopy
equivalent to Kn,k. We then bound the connectedness of Cn,k using discrete Morse theory.

3.1 The complex of partial surjections
Given integers n > k ≥ 1, we let Cn,k denote the set of partial surjective functions

η : [n] → [k].

Equivalently, we can think of Cn,k as the set of k-partitions(
η−1(1), η−1(2), . . . , η−1(k)

)
of subsets of [n]. Furthermore, we may identify an element η ∈ Cn,k with the product of
simplices

∆η := 2η−1(1) × 2η−1(2) × · · · × 2η−1(k),

whose geometric realization is a convex polytope of dimension |η−1([k])| − k.
Observe that for η, γ ∈ Cn,k, if η−1([k]) ⊂ γ−1([k]) and η(x) = γ(x) for all x ∈ η−1([k]),

then ∆η is a face of ∆γ . Consequently, Cn,k has the structure of a polyhedral complex (see
Figure 1). Note that Cn,k may also be viewed as a poset where the faces are ordered by
inclusion. We need the following.

▶ Lemma 10. For all integers n > k ≥ 1, we have a homotopy equivalence Kn,k ≃ Cn,k.

Proof. Let K = Kn,k and C = Cn,k. Our goal is to construct an order-reversing map

g : K → C

such that g−1(C⪰η) is contractible for every η ∈ C, where C⪰η = {γ ∈ C : ∆γ ⊃ ∆η}. This
will establish the desired homotopy equivalence by Quillen’s fiber lemma [4, Theorem 10.5].

To this end, consider a face σ = {φ1, φ2, . . . , φ|σ|} ∈ Kn,k and define the k-tuple

X = (X1, X2, . . . , Xk),
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2 | 3 | 4

1 | 3 | 4

5 | 3 | 4

2 | 3 | 6

5 | 3 | 6

1 | 3 | 6

4 | 123

24 | 13

234 | 1

34 | 12

134 | 2

14 | 23

124 | 3

2 | 134

23 | 14

3 | 124

13 | 24

1 | 234

12 | 34

123 | 4

4 | 1

2 | 13 | 1

2 | 4

4 | 2

3 | 2

1 | 2

3 | 4

4 | 3

1 | 3

2 | 3

1 | 4

Figure 1 Above: The polyhedral cell of C6,3 corresponding to the ordered partition(
{1, 2, 5}, {3}, {4, 6}

)
, which we express more succinctly by (125 | 3 | 46). Below: The cell complex

C4,2.

SoCG 2024



52:10 Colorful Intersections and Tverberg Partitions

where Xj = φ−1
1 (j) ∩ φ−1

2 (j) ∩ · · · ∩ φ−1
|σ|(j) as in (1). By definition, each Xj is nonempty,

and so X is a k-partition of a subset of [n]. We may therefore identify X with a partial
surjective function ησ : [n] → [k] given by ησ(i) = j when φ(i) = j for each φ ∈ σ, and ησ(i)
is undefined otherwise, or equivalently η−1

σ (j) = Xj . By setting

g(σ) := ησ,

we have

τ ⊂ σ =⇒ η−1
σ (j) ⊂ η−1

τ (j) for each j ∈ [k]
=⇒ ∆g(σ) ⊂ ∆g(τ),

so we obtain a surjective map g : K → C, which is order-reversing. The upper set C⪰η is
the set of partial functions γ such that γ−1(j) ⊃ η−1(j) for each j, that is, C⪰η is the set of
extensions of η, so

g−1(C⪰η) = 2ση

where

ση :=
{

φ ∈ Kn,k : φ(i) = η(i) if η(i) is defined
}

.

Thus the fibers are simplices, and the associated complexes Kn,k and Cn,k are homotopy
equivalent by Quillen’s fiber lemma. ◀

3.2 Acyclic matchings
We now apply discete Morse theory [7] to determine the connectedness of Cn,k. This means
that we now view Cn,k as a poset, and it contains the empty face as a unique minimal
element.

Recall that a matching in a poset P is a matching in the underlying graph of the Hasse
diagram of P . In other words, a matching M in P is a collection of pairs

M =
{

{a1, b1}, {a2, b2}, . . . , {at, bt}
}

,

where the ai and bj are all distinct, and ai is an immediate predecessor of bi for every i. The
matching M is called cyclic if there is a subsequence of indices i1, i2, . . . , is ∈ [t] such that

ai2 ≺ bi1

ai3 ≺ bi2
...

ais ≺ bis−1

ai1 ≺ bis

If no such subsequence exists, then the matching M is called acyclic.

In the case when P is the face lattice of a polyhedral complex and M is an acyclic
matching, then the unmatched elements of P are called the critical cells of the matching.
One of the fundamental theorems of discrete Morse theory [9, Theorem 4.7] (see also [10,
Theorem 11.13]) asserts that if all the critical cells of M have dimension at least d, then the
polyhedral complex is (d − 1)-connected. Our goal is therefore to show the following
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▶ Lemma 11. For all n > k ≥ 1, there is an acyclic matching M on Cn,k whose critical
cells (if there are any) have dimension n − k.

In order to find such an acyclic matching we need two basic tools from the toolbox of
discrete Morse theory. The first one (referred to as an element matching [9, Lemma 4.1])
describes a particular acyclic matching which we use repeatedly. Let (σ − x, σ + x) denote
(σ \ {x}, σ ∪ {x}).

▶ Lemma (Element matching). Let X be a finite set, P ⊆ 2X is ordered by inclusion, and
for a fixed element x ∈ X, let

Px = {σ : σ − x, σ + x ∈ P} (5)
Mx = {{σ − x, σ + x} : σ ∈ Px}. (6)

Then Mx is an acyclic matching on P .

The second tool allows us to combine a collection of acyclic matchings into a single one
(see [9, Lemma 4.2] or [10, Theorem 11.10]).

▶ Lemma (Patchwork lemma). Let P and Q be finite posets, and let h : P → Q be an
order-preserving map. Assume we have acyclic matchings Mq on each of the subposets h−1(q).
Then, M =

⋃
q∈Q Mq is an acyclic matching on P .

Proof of Lemma 11. We proceed by induction on k. For k = 1, observe that Cn,1 is
isomorphic to 2[n], and so the element matching{

{σ − n, σ + n} : σ ∈ 2[n]}
is a complete acyclic matching (i.e. there are no critical cells).

Now, assume k > 1 and that the lemma holds for Cn′,k−1 for all n′ > k − 1. We denote
the cells of Cn,k as k-tuples

X = (X1, X2, . . . , Xk),

where the Xi are either nonempty, pairwise disjoint subsets of [n] (corresponding to a
nonempty cell of Cn,k), or they satisfy X1 = X2 = · · · = Xk = ∅ (corresponding to the
unique empty cell). Note that the dimension of a nonempty cell equals

∑k
i=1(|Xi| − 1), and

so our goal is to find an acyclic matching in Cn,k whose critical cells (if there are any) satisfy
X1 ∪ X2 ∪ · · · ∪ Xk = [n].

Let {a1, a2, . . . , ak−1} be an antichain and let ak ≺ ai for all 1 ≤ i < k. Then a map
h1 : Cn,k → {a1, a2, . . . , ak}, defined by

h1(X1, X2, . . . , Xk) =
{

ai if n ∈ Xi and i < k

ak otherwise

is order-preserving. Our goal is therefore to apply the patchwork lemma by finding appropriate
acyclic matchings on each of the subposets Ai := h−1

1 (ai).

Fix 1 ≤ i < k and consider the projection map pi : Ai → (2[n−1])×(k−1) which forgets the
ith component

pi(X1, X2, . . . , Xk) = (X1, . . . , Xi−1, Xi+1, . . . , Xk).
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This is an order preserving map when the range of pi is ordered by (componentwise)
inclusion. For a given (X1, . . . , Xi−1, Xi+1, . . . , Xk) in the range of pi, we observe that
p−1

i (X1, . . . , Xi−1, Xi+1, . . . , Xk) is isomorphic to 2Yi , where

Yi := [n − 1] \ (X1 ∪ · · · ∪ Xi−1 ∪ Xi+1 ∪ · · · ∪ Xk).

Therefore, if Yi ̸= ∅, then p−1
i (X1, . . . , Xi−1, Xi+1, . . . , Xk) has a complete element matching.

Otherwise, we have

p−1
i (X1, . . . , Xi−1, Xi+1, . . . , Xk) = (X1, . . . , Xi−1, {n}, Xi+1, . . . , Xk),

which will be one of our critical cells of dimension n − k.

It remains to find an appropriate acyclic matching on Ak. Define an order-preserving
map h2 : Ak → {a ≺ b} where

h2(X1, X2, . . . , Xk) =
{

a if Xk = {n} or Xk = ∅,

b otherwise.

Set A := h−1
2 (a) and B := h−1

2 (b). Note that the empty cell belongs to A, and A is isomorphic
to Cn−1,k−1. By induction, there is an acyclic matching on A such that all critical cells (if
there are any) have dimension n − k.

Consider the projection map pk : B → (2[n−1])×(k−1) which forgets the kth component

pi(X1, X2, . . . , Xk) = (X1, X2, . . . , Xk−1).

This is an order preserving map when the range of pk is ordered by (componentwise) inclusion.
For a given (X1, X2, . . . , Xk−1) in the range of pk, we observe that p−1

i (X1, X2, . . . , Xk−1) is
isomorphic to 2Yk \

{
∅, {n}

}
, where

Yk := [n] \ (X1 ∪ X2 ∪ · · · ∪ Xk−1).

By definition, Yk ̸= ∅, and so p−1
i (X1, X2, . . . , Xk−1) has a complete element matching of

the form {σ − n, σ + n}. ◀
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