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Abstract
The sum of square roots is as follows: Given x1, . . . , xn ∈ Z and a1, . . . , an ∈ N decide whether
E =

∑n

i=1 xi
√

ai ≥ 0. It is a prominent open problem (Problem 33 of the Open Problems Project),
whether this can be decided in polynomial time. The state-of-the-art methods rely on separation
bounds, which are lower bounds on the minimum nonzero absolute value of E. The current best
bound shows that |E| ≥ (n · maxi(|xi| · √

ai))−2n

, which is doubly exponentially small.
We provide a new bound of the form |E| ≥ γ · (n · maxi |xi|)−2n where γ is a constant depending

on a1, . . . , an. This is singly exponential in n for fixed a1, . . . , an. The constant γ is not explicit and
stems from the subspace theorem, a deep result in the geometry of numbers.
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1 Introduction

Several geometric optimization problems such as euclidean traveling salesman or euclidean
shortest path, rely on comparisons of sums of square roots, which is a decision problem as
follows. Given integers x1, . . . , xn ∈ Z and positive integers a1, . . . , an ∈ N decide whether

E =
n∑

i=1
xi

√
ai ≥ 0. (1)

While the decision problem (1) is easy to state, it is not known to be decidable in
polynomial time on a Turing machine, nor is it known to be NP [13], see also [1, 10, 20].
The best known complexity class containing the decision problem (1) is PSPACE. This
follows by modeling the decision as a problem in the existential theory of the reals for which
a PSPACE-algorithm exists [6, 22]. The zero test (when ≥ 0 is replaced by = 0) can be
decided in polynomial time with an algorithm of Blömer [3, 4].

The state-of-the-art method to decide (1) is based on separation bounds, see, e.g. [18].
Separation bounds are lower bounds on the absolute value of E, defined in (1), when it is
nonzero. The best known bound in our setting is by Burnikel et al. [5]. The bound follows
from the fact that the product of the conjugates, see, e.g. [16], of E is an integer. Each
conjugate of E is of the form

n∑
i=1

yi · xi
√

ai, y ∈ {±1}n,
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of absolute value bounded by n max
i

(|xi|
√

ai). This implies that

|E| ≥
(

n max
i

(|xi|
√

ai)
)−(2n−1)

(2)

whenever E ̸= 0. It follows that (1) can be decided with an approximation of the numbers
xi

√
ai in which O

[
2n log

(
n max

i

(
|xi|

√
ai

))]
bits of the respective fractional parts are correct.

This bound is exponential in n.
On the other hand, there is no empirical evidence [8] that the reciprocal 1/|E| can be

doubly exponential in n. The best empirical lower bounds [21] observed for 1/|E| are of the
form (maxi ai)Ω(n). The question of whether singly-exponential separation bounds for |E|
exist, is a highly visible open problem in computing [20], see also [9, Problem 33].

Contribution of this paper
Our main result is a new separation bound for |E| that shows single-exponential dependence
on n if a1, . . . , an are fixed. More precisely, we show the following.

i) If E ̸= 0, then

|E| ≥
(

1
n · ∥x∥∞

)2n

· γ, where γ ∈ R+ is a constant depending on
√

a1, . . . ,
√

an.

Compared to the bound (2) of Burnikel et al. this decreases the dependence on ∥x∥∞ from
doubly exponential in n to exponential. The new bound is obtained by applying tools and
concepts from the geometry of numbers such as lattices, Minkowski’s first and second theorem,
and Schmidt’s [23] celebrated subspace theorem. This bound is asymptotically tight with
respect to the exponent of ∥x∥∞ in the following sense.

ii) For each L ∈ N≥2 there exists x ∈ Zn, x ̸= 0 with ∥x∥∞ ≤ L with

0 < |E| ≤
n maxi

√
ai

Ln−1 .

This bound follows form the pigeon-hole principle, similar to its application to the number-
balancing problem [15, 14].
▶ Remark. The format of Problem 33 in [9] differs slightly from the problem description (1)
in this paper. Using our notation, Problem 33 requires n to be even and xi ∈ {±1} for
i = 1, . . . , n. Furthermore exactly half of the xi are positive one. However, the question
whether the logarithm of the reciprocal of the best separation bound is exponential or
sub-exponential in n is equivalent in both settings. The problem (1) can be reformulated in
the format of Problem 33 by replacing xi

√
ai with xi ̸= 0 with (xi/|xi|)

√
x2

i ai and doubling
n if necessary.

Simplifying assumptions
Before we develop the connection of separation bounds for (1) to the geometry of numbers,
we justify simplifying assumptions on the input of (1). If some ai is divisible by a square
y2 with y ∈ N \ {0, 1}, then ai can be replaced by ai/y2 as long as xi is replaced by xi · y.
Furthermore, if ai = aj for i ≠ j, then we can delete aj and replace xi with xi + xj , thereby
reducing the dimension n that appears in the exponent of our bound. We can therefore
assume, without loss of generality, that each ai ∈ N is square-free and that the ai are distinct.
We recall the following fact (see e.g. Theorem 2 in [2]).
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▶ Theorem 1. Let a1, . . . , an ∈ N+ be distinct square-free integers. The set

{
√

a1, . . . ,
√

an}

is linearly independent over the rational numbers Q.

2 Lattices and separation bounds

Let A ∈ Rn×n be a matrix of full rank. The set Λ(A) = {Ax : x ∈ Zn} is the lattice generated
by the (lattice) basis A. If A ∈ Qn×n is rational, then the lattice Λ(A) is rational. A shortest
vector w.r.t. a norm ∥ · ∥ of a lattice Λ ⊆ Rn is a nonzero v ∈ Λ of minimal norm. Lattices
have been used in the context of computing separation bounds by Cheng et al. [8]. Here, the
main idea is to consider the lattice generated by the basis

N −N
√

a1 · · · −N
√

an

1
. . .

1

 (3)

where N ∈ N+ is a positive integer. Suppose one is interested in the minimum absolute
value of E in (1) where the xi are bounded by one in absolute value. If the length of the
shortest vector w.r.t. ℓ2 is larger than

√
n + 1, then 1/N is a lower bound on E in that case.

Using algorithms for computing or approximating shortest vectors in the ℓ2-norm [17, 25]
can then be used to find the smallest such N . The approach of Cheng et al. [8] is suitable
for computing good lower bounds for large instances of the sum-of-square-roots problem.

Our approach is based on the dual of the lattice generated by (3). Recall that the dual
lattice of Λ ⊆ Rn is the lattice

Λ∗ = {y ∈ Rn : yT v ∈ Z for each v ∈ Λ}.

If Λ is generated by A ∈ Rn×n, then Λ∗ is generated by A−T , see, e.g. [7]. Let Q = N1/(n+1)

and denote βi = √
ai for i = 1, . . . , n. The dual of the lattice generated by (3) is thus

generated by the basis

B =


1/Qn+1

β1 1
...

. . .
βn 1

 (4)

Let ∥ · ∥ be a norm and i ∈ {1, . . . , n}. The i-th successive minimum of Λ is the smallest
radius R > 0 such that {x ∈ Rn : ∥x∥ ≤ R} contains i linearly independent lattice vectors.
i-th successive minimum is denoted by λi. In the following, we will restrict our attention to
the successive minima w.r.t. the ℓ∞-norm.

The absolute value of the determinant of any basis of a lattice Λ ⊆ Rn is an invariant of
the lattice. It is called the lattice determinant and is denoted by det(Λ). The following is
referred to as Minkowski’s second theorem, which we state for the ℓ∞-norm [19].

▶ Theorem 2 (Minkowski’s theorem for ℓ∞). Let Λ ⊆ Rn be a lattice. One has

λ1 · · · λn ≤ det(Λ), (5)

where the successive minima λi are with respect to the ℓ∞-norm. In particular, one has

λ1 ≤ det(Λ)1/n.

SoCG 2024
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We now develop the connection between separation bounds for (1) and the theory
described so far. Observe that the determinant of the lattice generated by the basis B in (4)
is 1/Qn+1 and that the dimension is n + 1. Theorem 2 implies that Λ(B) contains a nonzero
lattice vector v with ∥v∥∞ ≤ 1/Q. If this bound is almost tight, then the value of Q carries
over to a separation bound for E in (1). This is our next theorem.

▶ Theorem 3. Consider

E =
n∑

i=1
xi

√
ai

with a1, . . . , an ∈ N and x = (x1, . . . , xn) ∈ Zn \ {0} and let Λ(B) be the lattice generated
by B in (4).

If Q ≥ (2n∥x∥∞)3/2 and if λ1 ≥ 1/Q1+ 1
3n , then

|E| ≥ 1
Qn+1 . (6)

Proof. Minkowski’s second theorem gives the bound
n+1∏
i=1

λi ≤ 1
Qn+1 . (7)

Since λ1 ≥ 1/Q1+ 1
3n one has

λi ≤ 1
Q2/3 for each i ∈ {1, . . . , n + 1}.

The successive minima are attained at n + 1 linearly independent lattice vectors. Therefore,
one of the successive minima is attained at a lattice vector

v = B ·
(

q

−p

)
with q ∈ N and p = (p1, . . . , pn)T ∈ Zn such that pT x ̸= 0. Since pT x ∈ Z, one has

|pT x| ≥ 1. (8)

The condition ∥v∥∞ ≤ 1/Q2/3 implies that

|q · βi − pi| ≤ 1
Q2/3 ≤ 1

2n∥x∥∞
for each i ∈ {1, . . . , n + 1}.

By the triangle inequality,

|qβT x − pT x| ≤ 1
2

which, together with |pT x| ≥ 1 implies that

|βT x| ≥ 1
2q

. (9)

On the other hand, ∥v∥∞ ≤ 1/Q2/3 implies that q ≤ Qn+ 1
3 . The claim follows with (9) and

since 2 · Qn+ 1
3 ≤ Qn+1 for Q ≥ (2n∥x∥∞)3/2 ≥ 23/2. ◀

▶ Remark. This proof generalizes the main idea of a technique of Frank and Tardos [12]. An
integer vector p ∈ Zn stemming from (q, pT ) ∈ N×Zn that is a sufficiently good simultaneous
approximation to a real vector β ∈ Rn, separates the same set of integer points y with
bounded infinity norm, as long as pT y ̸= 0. We use this principle in (8), when all successive
minima are sufficiently good approximations.
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Using the subspace theorem
We consider again a lattice vector in v ∈ Λ(B)

v =


1/Qn+1

β1 1
...

. . .
βn 1

 ·


q

−p1
...

−pn

 (10)

with q ∈ N and p = (p1, . . . , pn)T ∈ Zn. Minkowski’s bound λ1 ≤ 1/Q implies the theorem
of Dirichlet on simultaneous Diophantine approximation ([24] Chapter II Theorem 1A).

▶ Theorem 4 (Dirichlet’s Theorem). Given β1, . . . , βn ∈ R and Q ∈ N+, there exist integers
q, p1, . . . , pn ∈ Z with

i) 1 ≤ q ≤ Qn and
ii) |qβi − pi| ≤ 1/Q for i = 1, . . . , n.

The subspace theorem of Wolfgang Schmidt [23] implies a lower bound that is almost tight.

▶ Theorem 5 (Theorem 1B in [24]). Let β1, . . . , βn ∈ R be real algebraic numbers such that
{1, β1, . . . , βn} is linearly independent over Q and let δ > 0. There are only finitely many
positive integers q ∈ N+ such that

q1+δ distZ(q · β1) · · · distZ(q · βn) < 1.

Here distZ(x) is the distance of the real number x ∈ R to the integers. It remains to show
that there exists a good Q satisfying the conditions of Theorem 3, which together with
Theorem 5 will prove our main result.

▶ Theorem 6. Consider

E =
n∑

i=1
xi

√
ai

with a1, . . . , an ∈ N and x = (x1, . . . , xn) ∈ Zn \ {0}. There exists a constant γ ∈ R
depending on a1, . . . , an such that E ̸= 0 implies

|E| ≥
(

1
n · ∥x∥∞

)2n

· γ. (11)

Proof. Following the arguments in Section 1 we can assume that the ai are distinct square-
free integers. And assume for now that all ai are different from one. This implies that the
set

{1, β1 =
√

a1, . . . , βn =
√

an}

is linearly independent over Q. It remains to show that there exists some Q0 ∈ N+ such that
the first successive minimum λ1 of the lattice Λ(B) satisfies λ1 ≥ 1/Q1+ 1

3n for all Q ≥ Q0.
The assertion then follows with Theorem 3 applied to Q = (Q0 · (2n∥x∥∞)3/2). To this end,
let δ = 1

3n and suppose to the contrary that the first successive minimum of Λ(B) satisfies

λ1 ≤ 1
Q1+δ

.

This means that there exists a q ∈ N+ with

SoCG 2024
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i) q ≤ Qn−δ and
ii) distZ(qβi) ≤ 1/Q1+δ for each i ∈ {1, . . . , n}.

The condition i) implies that

q1+δ ≤ Q(n−δ)(1+δ) < Qn(1+δ).

Together with ii) this implies that

q1+δ distZ(qβ1) · · · distZ(qβn) < 1. (12)

By Theorem 5, the number of integral q verifying (12) is finite. Furthermore, given that
β1 is a square root of an integer, we have that

1
q · (2β1 + 1) ≤ distZ(qβ1) ≤ 1

Q1+δ
.

Therefore, q is bounded from below by an increasing function of Q. As there are finitely
many q verifying (12), there are also finitely many Q for which λ1 ≤ 1

Q1+δ . Therefore, there
exists a bound Q0 such that for all Q ≥ Q0 the successive minimum λ1 of Λ(B) satisfies
λ1 ≥ 1/Q1+ 1

3n .
We now also consider the case a1 is equal to 1. In this case, β1 = 1 and the lattice basis

B is given by

B =


1/Qn+1

1 1
β2 1
...

. . .
βn 1


It is easy to see that the first successive minimum of Λ(B) remains the same upon deletion
of the second row and column. Denote this updated basis by B′ ∈ Rn×n. With exactly the
same argument as above, it follows that there exists a Q0 such that, for all Q ≥ Q0 one has
λ1 of Λ(B′) satisfies λ1 ≥ 1/Q1+ 1

3n .
Finally, by choosing Q = (Q0 · (2n∥x∥∞)3/2), we obtain the lower bound dependent on

Q0 and a single exponential in n · ∥x∥∞. Moreover, Q0 depends only on the bound for the
finitely many q verifying the statement of Theorem 5. This means that Q0 is a constant
depending only on a1, . . . , an. ◀

▶ Remark. The exponent 2n of equation (11) can be decreased to any n + ϵ, with ϵ > 0 using
a suitable δ when applying Theorem 5. Note that this would affect the constant γ by making
it dependent on ϵ.

3 An upper bound via number balancing

We now show asymptotic (almost) tightness of the bound on |E| when a1, . . . , an are fixed
and distinct square-free positive integers. Since √

a1, · · · ,
√

an are linearly independent over
Q, E is nonzero whenever x ∈ Zn is not equal to zero. We show that there exist solutions
asymptotically (almost) tight in ∥x∥∞ via the pigeon-hole principle, as it is used in the
number balancing problem [14, 15].

▶ Theorem 7. Let L ≥ 2. There exists a nonzero x ∈ Zn with ∥x∥∞ ≤ L such that

|E| ≤
n maxi

√
ai

Ln−1 .
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Proof. Let β = (√a1, . . . ,
√

an) ∈ Rn. The number of vectors y ∈ Zn such that ∥y∥∞ ≤ L/2
holds is at most Ln. On the other hand one always has

|yT β| ≤ nL

2 max
i

√
ai

for such vectors y. By the pigeon-hole principle, there exist y1 ̸= y2 ∈ Zn of infinity norms
at most L/2 such that their corresponding values are close:

|yT
1 β − yT

2 β| ≤ 2nL

2(Ln − 1) max
i

√
ai.

The difference x = y1 − y2 hence verifies ∥x∥∞ ≤ L and the required bound. ◀

4 Discussion

The subspace theorem (Theorem 5) does not provide explicit bounds on the number of
solutions q ∈ N+. The existing quantitative versions of the subspace theorem, see, e.g. [11],
do not provide such bounds either. This is still the case when all algebraic numbers are
square roots of integers. An explicit bound on the number of solutions would immediately
apply to a separation bound for the sum of square roots.

In light of the relationship of the subspace theorem and separation bounds that we
describe in this paper, it is an interesting open problem to find explicit upper and lower
bounds on the number of solutions q ∈ N+ satisfying the equations of Theorem 5 for βi = √

ai

and δ = 1/ poly(n).
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