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Abstract
Let X be a finite-dimensional normed space. We prove that if the Hamming cube {−1, 1}n embeds
into X with bi-Lipschitz distortion at most D ≥ 1, then

dim(X) ≳ sup
p∈[1,2]

np

DpTp(X)p
,

where Tp(X) is the Rademacher type p constant of X. This estimate yields a mutual refinement of
distortion lower bounds which follow from works of Oleszkiewicz (1996) and Ivanisvili, van Handel
and Volberg (2020). The proof relies on a combination of semigroup techniques on the biased
hypercube with the Borsuk–Ulam theorem from algebraic topology.
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1 Introduction

If (M, dM) is a metric space and (Y, ∥ · ∥Y ) is a normed space, we say that M embeds into
Y with bi-Lipschitz distortion at most D ∈ [1, ∞), if there exists a mapping f : M → Y

satisfying the condition

∀ p, q ∈ M, dM(p, q) ≤ ∥f(p) − f(q)∥Y ≤ DdM(p, q). (1)

The least D ≥ 1 for which such an embedding exists will be denoted by cY (M). The rapidly
growing field of metric dimension reduction aims to uncover conditions under which given
families of metric spaces admit (or do not admit) embeddings into low-dimensional normed
spaces with prescribed properties. Without attempting to survey this vast area, we note that
important contributions have been made on low-dimensional embeddings of finite subsets of
Hilbert space [22], arbitrary finite metric spaces [23, 3, 33, 34], discrete hypercubes [43, 27],
diamond graphs [10, 28, 40], Laakso graphs [17, 27], ultrametric spaces [7], series-parallel
graphs [11], recursive cycle graphs [1], Heisenberg-type metrics [25, 42], ℓp variants of thin
Laakso structures [6, 8] and expander graphs [37]. We refer to the survey [38] for more
bibliographic information and to [19, 31, 50, 2] for a sample of applications to algorithms.

Let {−1, 1}n be the n-dimensional discrete hypercube equipped with the Hamming metric

∀ x, y ∈ {−1, 1}n, ρ(x, y) = 1
2

n∑
i=1

|x(i) − y(i)|, (2)
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where x = (x(1), . . . , x(n)) and y = (y(1), . . . , y(n)). The purpose of the present paper is
to investigate embeddability properties of this discrete metric space into low-dimensional
normed spaces. The first to study the bi-Lipschitz embeddability of hypercubes into normed
spaces was Enflo. In the seminal work [13], he introduced the notion of roundness of a metric
space and used it to show that any embedding of the Hamming cube {−1, 1}n into an Lp(µ)
space, where p ∈ [1, 2], incurs bi-Lipschitz distortion at least n1−1/p (see also [12, 14] for
additional early results along these lines). More specifically, Enflo proved that if p ∈ [1, 2],
then any mapping f : {−1, 1}n → Lp(µ) satisfies the estimate∫

{−1,1}n

∥∥f(x) − f(−x)
∥∥p

Lp(µ)
dσn(x)

≤
n∑

i=1

∫
{−1,1}n

∥∥f(x) − f
(
x(1), . . . , −x(i), . . . , x(n)

)∥∥p

Lp(µ)
dσn(x), (3)

where σn is the uniform probability on {−1, 1}n. This readily implies that if f has bi-Lipschitz
distortion D, then D ≥ n1−1/p. In the follow-up work [14], he raised an influential problem by
asking for which normed spaces (X, ∥ ·∥X), inequality (3) is satisfied for X-valued functions f

up to a multiplicative constant T , independent of the choice of f or the dimension n. Restrict-
ing our requirement to linear functions f(x)=

∑n
i=1 xivi, we recover the necessary condition∫

{−1,1}n

∥∥∥ n∑
i=1

xivi

∥∥∥p

X
dσn(x) ≤ T p

n∑
i=1

∥vi∥p
X , (4)

which must be satisfied for every n ∈ N and vectors v1, . . . , vn ∈ X. If a normed space X

satisfies (4), we say that X has Rademacher type p and the least constant T is denoted by
Tp(X). After decades of substantial efforts (see [9, 48, 41, 18, 15]), Ivanisvili, van Handel and
Volberg resolved Enflo’s problem in the breakthrough work [20] by proving the sufficiency
of this condition, namely that any normed space of Rademacher type p also has Enflo’s
nonlinear type p. Consequently, any bi-Lipschitz embedding of {−1, 1}n into a normed space
X of Rademacher type p incurs distortion at least a constant multiple of Tp(X)−1n1−1/p.
We note in passing that, conversely, a classical theorem of Pisier [44] implies that if X does
not have type p for any p > 1, then {−1, 1}n embeds into X with bi-Lipschitz distortion at
most 1 + ε, for any ε > 0.

Independently of this line of research, the beautiful (but perhaps overlooked) work [43] of
Oleszkiewicz established a nonembeddability result for discrete hypercubes in the context of
dimensionality reduction. Following Ball, Carlen and Lieb [4], we say that a normed space is
p-uniformly smooth, where p ∈ [1, 2], if there exists a constant S > 0 such that

∀ x, y ∈ X,
∥x∥p

X + ∥y∥p
X

2 ≤
∥∥∥x + y

2

∥∥∥p

X
+ Sp

∥∥∥x − y

2

∥∥∥p

X
; (5)

the least such constant S is denoted by Sp(X). A well-known tensorization argument due
to Pisier [46] shows that Tp(X) ≤ Sp(X), yet there exist examples of normed spaces X for
which Tp(X) < ∞ whereas Sp(X) = ∞ for p ∈ (1, 2], see [47, 21, 49]. The main result of
Oleszkiewicz’s paper [43] asserts that if {−1, 1}n embeds into a finite-dimensional normed
space X with bi-Lipschitz distortion at most D ≥ 1, then

dim(X) ≥ sup
p∈[1,2]

np

DpSp(X)p
(6)

(see also [5] for a precursor of this result for linear embeddings). Viewed differently, the result
of [43] asserts that if X is a d-dimensional normed space, then

cX({−1, 1}n) ≥ sup
p∈[1,2]

n

Sp(X)d1/p
(7)
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which substantially improves the bound cX({−1, 1}n) ≳ Tp(X)−1n1−1/p which follows
from [20] for spaces X with Sp(X) ≍ 1 and dimensions dim(X) << n.

The main purpose of the present paper is to revisit the technique used for Oleszkiewicz’s
nonembeddability theorem [43], in particular proving the following mutual refinement of this
result with the recent work of Ivanisvili, van Handel and Volberg [20].

▶ Theorem 1. Fix D ≥ 1 and let (X, ∥ · ∥X) be a finite-dimensional normed space. If the
Hamming cube {−1, 1}n embeds into X with bi-Lipschitz distortion at most D, then

dim(X) ≳ sup
p∈[1,2]

np

DpTp(X)p
. (8)

We emphasize that the bound obtained in Theorem 1 is sharp. Indeed, if X = ℓn
q and

1 ≤ q ≤ p ≤ 2, then Enflo’s theorem [13] combined with simple manipulations implies that
Tp(ℓn

q ) = n1/q−1/p and D = n1−1/q, so the two sides of the inequality become equal. On the
other hand, in contrast to Oleszkiewicz’s bound (6), Theorem 1 also captures more accurately
the nonembeddability of the hypercube into (finite-dimensional subspaces of) normed spaces
which have Rademacher type p but are not r-smooth for any r ∈ (1, 2], see [21, 49].

1.1 About the proof
Theorem 1 is proven by a combination of semigroup tools with a clever topological trick
of [43]. More specifically, let f : {−1, 1}n → X be a function, where X is a d-dimensional
normed space and d < n. An application of the Borsuk–Ulam theorem [35] for the unique
multilinear extension of f implies that there exists a subset σ ⊆ {1, . . . , n} with |σ| = d, a
product measure ν on {−1, 1}σ and a point w ∈ {−1, 1}σc such that∫

{−1,1}σ

f(x, w) dν(x) =
∫

{−1,1}σ

f(−x, −w) dν(x). (9)

Then, a Poincaré inequality à la Enflo for the product measure ν (instead of the uniform
measure σd) on the d-dimensional subcubes {−1, 1}σ × {w} and {−1, 1}σ × {−w} yields the
distortion bounds of Theorem 1 (see Theorem 9 and also equation (39) below).

In the case of p-uniformly smooth spaces, Oleszkiewicz [43] used (9) and a bootstrap
argument for the Lipschitz constant of f , based on the two-point inequality (5), to obtain (6).
In our case, the biased Poincaré inequality which will yield (8) is an extension of an inequality
for the uniform measure that was proven in [20]. The key technical contribution of [20] was a
novel representation of the time derivative of the heat flow on {−1, 1}n. Instead, we consider
a Markov process having the product measure ν as stationary measure (see Section 2) and
prove a formula for the time derivative of the corresponding semigroup (see Proposition 8)
which extends the formula of [20] (see also (38) below). Due to the fact that our product
measure ν is no longer the stationary measure of the random walk on a group, the resulting
identity lacks some homogeneity properties that were used in [20], but nevertheless it is
sufficient for the proof of the biased Poincaré inequality which is needed for our geometric
application.

2 Preliminaries

2.1 Probability
In this section, we outline the basics of analysis on the biased hypercube, with an emphasis
on the underlying semigroup structure.

SoCG 2024
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The biased measure
For α ∈ (0, 1), consider the α-biased probability measure µα on {−1, 1} given by µα{1} = α

and µα{−1} = 1 − α. Moreover, if ααα = (α1, . . . , αn) ∈ (0, 1)n, then we shall denote by µααα

the product measure µα1 ⊗ · · · ⊗ µαn
on the hypercube {−1, 1}n.

The Markov process
For α ∈ (0, 1), consider the transition matrices {pα

t }t≥0 on {−1, 1} given by

∀ t ≥ 0,

(
pα

t (1, 1) pα
t (1, −1)

pα
t (−1, 1) pα

t (−1, −1)

)
=
(

1 − (1 − e−t)(1 − α) (1 − e−t)(1 − α)
(1 − e−t)α 1 − (1 − e−t)α

)
(10)

Moreover, for ααα = (α1, . . . , αn) ∈ (0, 1)n consider the corresponding tensor products {pααα
t }t≥0

on {−1, 1}n given by

∀ x, y ∈ {−1, 1}n, pααα
t (x, y) =

n∏
i=1

pαi
t

(
x(i), y(i)

)
. (11)

As each pαi
t is a row-stochastic 2 × 2 matrix with nonnegative entries, the same holds also for

the 2n × 2n matrices pααα
t . Therefore, {pααα

t }t≥0 is the transition kernel of a time-homogeneous
Markov chain {Xααα

t }t≥0 on {−1, 1}n, that is

∀ t, s ≥ 0, P
{

Xααα
t+s = y

∣∣ Xααα
s = x

}
= pααα

t (x, y), (12)

where x, y ∈ {−1, 1}n. We shall need the following simple facts for this process.

▶ Lemma 2. Fix ααα ∈ (0, 1)n and let {Xααα
t }t≥0 be a Markov process on {−1, 1}n with transition

kernels {pααα
t }t≥0. Then, {Xααα

t }t≥0 is stationary and reversible with respect to µααα.

Proof. Due to the product structure of the Markov chain, it suffices to consider the case
n = 1, that is, to prove that for α ∈ (0, 1),

∀ x, y ∈ {−1, 1}, µα(x)pα
t (x, y) = µα(y)pα

t (y, x). (13)

This follows automatically by the expression (10) for the transition matrix. The simple fact
that reversibility implies stationarity is well-known [30, Proposition 1.20]. ◀

The stationary Markov process {Xααα
t }t≥0 has a simple probabilistic interpretation which

we shall now describe. For i = 1, . . . , n, let {Nt(i)}t≥0 be n independent Poisson processes
of unit rate and suppose that Xααα

0 is sampled from µααα independently of {Nt}t≥0. Then, at
any time t > 0 for which the process Nt(i) jumps for some i ∈ {1, . . . , n}, the corresponding
value Xααα

t (i) is updated independently from µαi
. An explicit calculation shows that this

probabilistic construction gives rise exactly to the transition kernel of (10) and (11).

The corresponding semigroup
Fix ααα ∈ (0, 1)n and let {Pααα

t }t≥0 be the Markov semigroup associated to the process {Xααα
t }t≥0.

Concretely, if X is a vector space, then for every function f : {−1, 1}n → X and t ≥ 0, we
denote by

∀ x ∈ {−1, 1}n, Pααα
t f(x) = E

[
f
(
Xααα

t

) ∣∣ Xααα
0 = x

]
. (14)
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In view of the above interpretation of {Xααα
t }t≥0 by means of a Poisson process, the action of

the semigroup {Pααα
t }t≥0 can be computed via the identity

Pααα
t f =

∑
S⊆{1,...,n}

P
{

Nt(i) > 0 for i ∈ S and Nt(i) = 0 for i /∈ S
}∫

{−1,1}S

f d
∏
i∈S

µαi

=
∑

S⊆{1,...,n}

(1 − e−t)|S|e−t(n−|S|)
∫

{−1,1}S

f d
∏
i∈S

µαi . (15)

▶ Lemma 3. Fix ααα = (α1, . . . , αn) ∈ (0, 1)n and let {Pααα
t }t≥0 be the semigroup (14). Then,

the action of its generator Lααα on a function f : {−1, 1}n → X, where X is a vector space, is
given by

∀ x ∈ {−1, 1}n, Lαααf(x) = −
n∑

i=1
∂αi

i f(x) (16)

where ∂β
i f(x) = f(x) −

∫
{−1,1} f(x1, . . . , xi−1, y, xi+1, . . . , xn) dµβ(y) for β ∈ (0, 1).

Proof. The claim follows from the expression (15) of the semigroup and the definition

∀ x ∈ {−1, 1}n, Lαααf(x) = d
dt

∣∣∣
t=0

Pααα
t f(x). ◀

2.2 Topology
Apart from the probabilistic elements from analysis on biased hypercubes, the proof of
Theorem 1 also has a crucial topological component, following an idea of [43].

The Borsuk–Ulam theorem
While the Poincaré-type inequality of Enflo for X-valued functions on {−1, 1}n cannot
capture the dimension of the target space X, a key part of the argument towards Theorem 1
is to show that there exists a dim(X)-dimensional subcube of {−1, 1}n along with a bias
vector ααα for which the ααα-biased Poincaré inequalities (see Theorem 9 below) on this subcube
and its antipodal yield much better distortion lower bounds. This will be done using the
Borsuk–Ulam theorem from algebraic topology, see [35].

▶ Theorem 4 (Borsuk–Ulam). For every continuous function g : Sd → Rd, where d ∈ N,
there exists a point w ∈ Sd such that g(w) = g(−w).

Multilinear extension and low-dimensional faces of the cube
Every function f : {−1, 1}n → X admits a unique multilinear extension on the solid cube
[−1, 1]n, given by

∀ y ∈ [−1, 1]n, F (y) def=
∑

S⊆{−1,1}n

( 1
2n

∑
x∈{−1,1}n

f(x)wS(x)
)

wS(y), (17)

where wS(a) =
∏

i∈S ai, which is usually referred to as the Fourier–Walsh expansion of f .
Extending f to the continuous cube allows for the use of topological methods. In what
follows, we will exploit the fact that the cube [−1, 1]n is equipped with a canonical CW
complex structure. Concretely, for d ∈ {1, . . . , n}, consider the subsets

Cn
d

def=
{

x ∈ [−1, 1]n : there exists σ ⊆ {1, . . . , n} with |σ| ≥ n−d and |x(i)| = 1, ∀ i ∈ σ
}

SoCG 2024
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consisting of all ℓ-dimensional faces of [−1, 1]n for ℓ ≤ d, so that Cn
n = [−1, 1]n and Cn

0 =
{−1, 1}n. We shall use the following elementary topological fact (see [43, Lemma 1]).

▶ Lemma 5. If d < n, there exists a continuous map hd : Sd → Cn
d with hd(−x) = −hd(x),

∀ x ∈ Sd.

Combining this and the Borsuk–Ulam theorem, we deduce the following useful lemma.

▶ Lemma 6. If n, d ∈ N with d < n, then for every continuous function F : Cn
d → Rd there

exists a point z ∈ Cn
d such that F (z) = F (−z).

Proof. Consider the function g
def= F ◦ hd : Sd → Rd, where hd is the function of Lemma 5.

By the Borsuk–Ulam theorem and the oddness of hd, there exists a point w ∈ Sd such that

F (hd(w)) = g(w) = g(−w) = F (hd(−w)) = F (−hd(w)) (18)

and the conclusion follows by choosing z = hd(w) ∈ Cn
d . ◀

3 Proof of Theorem 1

We are now ready to proceed to the main part of the proof. The main analytic component
is a biased version of the key formula of [20] for the time derivative of the heat flow
on {−1, 1}n. Given t ≥ 0, α ∈ (0, 1) and an auxiliary parameter θ ∈ R, consider the
matrix ηα

t (·, ·; θ) given by

∀ t ≥ 0,

(
ηα

t (1, 1; θ) ηα
t (1, −1; θ)

ηα
t (−1, 1; θ) ηα

t (−1, −1; θ)

)
=
(

e−t−θ
pα

t (1,1)
−θ

pα
t (−1,1)

θ−e−t

pα
t (1,−1)

θ
pα

t (−1,−1)

)
. (19)

For future reference, we record the following straightforward properties of ηα
t (·, ·; θ).

▶ Lemma 7. Fix t ≥ 0 and α ∈ (0, 1). Then,

∀ x ∈ {−1, 1}, θ ∈ R, pα
t (x, 1)ηα

t (1, x; θ) + pα
t (x, −1)ηα

t (−1, x; θ) = 0 (20)

and

min
θ∈R

max
x∈{−1,1}

{
pα

t (x, 1)ηα
t (1, x; θ)2 + pα

t (x, −1)ηα
t (−1, x; θ)2

}
= e−t

(et − 1)(
√

αpα
t (−1, −1) +

√
(1 − α)pα

t (1, 1))2
≤ 1

et − 1 . (21)

Proof. The centering condition (20) can be checked easily using the explicit formulas (10)
and (19) of the matrices. For (21), we compute that for any θ ∈ R,

max
x∈{−1,1}

{
pα

t (x, 1)ηα
t (1, x; θ)2 + pα

t (x, −1)ηα
t (−1, x; θ)2

}
= max

{ (e−t − θ)2

pα
t (1, 1)pα

t (1, −1) ,
θ2

pα
t (−1, 1)pα

t (−1, −1)

}
. (22)

As this is the maximum of two quadratic functions in θ, its minimum is attained at the point
θ∗ where they intersect in the interval (0, e−t), namely at

θ∗ =
e−t
√

αpα
t (−1, −1)√

αpα
t (−1, −1) +

√
(1 − α)pα

t (1, 1)
. (23)
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The first equality in (21) is immediate, whereas for the inequality we compute

e−t

(et − 1)(
√

αpα
t (−1, −1) +

√
(1 − α)pα

t (1, 1))2
≤ e−t

(et − 1)(αpα
t (−1, −1) + (1 − α)pα

t (1, 1))

= e−t

(et − 1)
(
1 − (1 − e−t)(α2 + (1 − α)2)

)
≤ 1

et − 1 ,

where both inequalities follow from the convexity of x 7→ x2. ◀

The key technical ingredient in the proof of Theorem 1 is the following identity.

▶ Proposition 8. Fix n ∈ N, ααα = (α1, . . . , αn) ∈ (0, 1)n, t ≥ 0 and θ1, . . . , θn ∈ R. Then,
for every function f : {−1, 1}n → X, where X is a vector space, we have

∀ x ∈ {−1, 1}n, LαααPααα
t f(x) = −E

[ n∑
i=1

ηαi
t

(
x(i), Xααα

t (i); θi

)
∂αi

i f(Xααα
t )
∣∣∣ Xααα

0 = x
]
. (24)

Proof. In view of (16) and the product structure of the process {Xααα
t }t≥0, it suffices to check

the claim for n = 1, namely that for every β ∈ (0, 1), θ ∈ R and f : {−1, 1} → X,

∀ x ∈ {−1, 1}, e−t∂βf(x) = P β
t ∂βf(x) = E

[
ηβ

t (x, Xβ
t ; θ)∂βf(Xβ

t )
∣∣ Xβ

0 = x
]
, (25)

where the first equality follows from the probabilistic representation (15). Taking into account
that β∂βf(1) + (1 − β)∂βf(−1) = 0, this amounts to the system of equations{

e−t = pβ
t (1, 1)ηβ

t (1, 1; θ) − β
1−β pβ

t (1, −1)ηβ
t (1, −1; θ)

e−t = − 1−β
β pβ

t (−1, 1)ηβ
t (−1, 1; θ) + pβ

t (−1, −1)ηβ
t (−1, −1; θ)

(26)

which can be easily verified by direct computation. ◀

▶ Theorem 9. Fix p ∈ [1, 2] and let (X, ∥ · ∥X) be a normed space of Rademacher type
p. Then, for any n ∈ N and ααα = (α1, . . . , αn) ∈ (0, 1)n, every function f : {−1, 1}n → X

satisfies the inequality∫
{−1,1}n

∥∥∥f(x)−
∫

{−1,1}n

f dµααα

∥∥∥p

X
dµααα(x) ≤

(
2πTp(X)

)p
n∑

i=1

∫
{−1,1}n

∥∥∂αi
i f(x)

∥∥p

X
dµααα(x).

Proof. Writing

f(x) −
∫

{−1,1}n

f dµααα = Pααα
0 f(x) − Pααα

∞f(x) = −
∫ ∞

0
LαααPααα

t f(x) dt (27)

and using Jensen’s inequality and Proposition 8, we see that for θ1(t), . . . , θn(t) ∈ R,(∫
{−1,1}n

∥∥∥f(x) −
∫

{−1,1}n

f dµααα

∥∥∥p

X
dµααα(x)

)1/p

≤
∫ ∞

0

(∫
{−1,1}n

∥∥∥LαααPααα
t f(x)

∥∥∥p

X
dµααα(x)

)1/p

dt

=
∫ ∞

0

(∫
{−1,1}n

∥∥∥∥∥E[
n∑

i=1

ηαi
t

(
x(i), Xααα

t (i); θi(t)
)
∂αi

i f(Xααα
t )
∣∣∣ Xααα

0 = x
]∥∥∥∥∥

p

X

dµααα(x)

)1/p

dt

≤
∫ ∞

0

(
E
∥∥∥ n∑

i=1

ηαi
t

(
Xααα

0 (i), Xααα
t (i); θi(t)

)
∂αi

i f(Xααα
t )
∥∥∥p

X

)1/p

dt, (28)

SoCG 2024
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where in the last expectation Xααα
0 is distributed according to µααα. Now, by the reversibility of

the chain, this expectation can be written as

E
∥∥∥ n∑

i=1
ηαi

t

(
Xααα

0 (i), Xααα
t (i); θi(t)

)
∂αi

i f(Xααα
t )
∥∥∥p

X

=
∫

{−1,1}n

∑
y∈{−1,1}n

pααα
t (x, y)

∥∥∥ n∑
i=1

ηαi
t

(
y(i), x(i); θi(t)

)
∂αi

i f(x)
∥∥∥p

X
dµααα(x). (29)

Fixing x ∈ {−1, 1}n, equation (20) asserts that each ηαi
t (y(i), x(i); θi(t)) is a centered random

variable when y(i) is distributed according to pαi
t (x(i), ·). Therefore, as pααα

t (x, ·) is a product
measure, the Rademacher type condition for sums of centered independent random vectors
(see [26, Proposition 9.11]) yields the bound∫

{−1,1}n

∑
y∈{−1,1}n

pααα
t (x, y)

∥∥∥ n∑
i=1

ηαi
t

(
y(i), x(i); θi(t)

)
∂αi

i f(x)
∥∥∥p

X
dµααα(x)

≤
(
2Tp(X)

)p

∫
{−1,1}n

n∑
i=1

∑
y(i)∈{−1,1}

pαi
t

(
x(i), y(i)

) ∣∣ηαi
t

(
y(i), x(i); θi(t)

)∣∣p∥∥∂αi

i f(x)
∥∥p

X
dµααα(x)

≤
(
2Tp(X)

)p
n∑

i=1

∫
{−1,1}n

( ∑
y(i)∈{−1,1}

pαi
t

(
x(i), y(i)

) ∣∣ηαi
t

(
y(i), x(i); θi(t)

)∣∣2)p/2∥∥∂αi

i f(x)
∥∥p

X
dµααα(x),

(30)

where we also used that p ≤ 2. Now, choosing the θi(t) which minimize the quantity in the
left-hand side of (21) with bias αi, and combining (28), (29) and (30), we conclude that(∫

{−1,1}n

∥∥∥f(x)−
∫

{−1,1}n

f dµααα

∥∥∥p

X
dµααα(x)

)1/p

≤ 2Tp(X)
∫ ∞

0

(
n∑

i=1

∫
{−1,1}n

∥∥∂αi
i f(x)

∥∥p

X
dµααα(x)

)1/p
dt√

et − 1
, (31)

which is precisely the desired estimate. ◀

Equipped with the biased Poincaré inequality of Theorem 9, we can now conclude the
proof.

Proof of Theorem 1. Let X = (Rd, ∥ · ∥X) be a d-dimensional normed space and suppose
that f : {−1, 1}n → X is a function such that

∀ x, y ∈ {−1, 1}n, ρ(x, y) ≤ ∥f(x) − f(y)∥X ≤ Dρ(x, y) (32)

for some D ≥ 1. The conclusion of the theorem follows from [20] when d ≥ n so we shall
assume that d < n. Let F : [−1, 1]n → X be the multilinear extension of f given by (17).
Then, F is clearly continuous as a polynomial and therefore, by Lemma 6, there exists a
point z ∈ Cn

d such that F (z) = F (−z). As z has at least n − d coordinates equal to 1 in
absolute value we shall assume without loss of generality that |z(d + 1)| = . . . = |z(n)| = 1
and consider the functions h+, h− : {−1, 1}d → X which are defined as

∀ x ∈ {−1, 1}d, h±(x) = f
(

± x(1), . . . , ±x(d), ±z(d + 1), . . . , ±z(n)
)
. (33)
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Consider also the bias vector αααz =
( 1+z(1)

2 , . . . , 1+z(d)
2
)

∈ (0, 1)d and notice that, by the
multilinearity of F , we have the identity∫

{−1,1}d

h+(x) dµαααz (x) = F (z) = F (−z) =
∫

{−1,1}d

h−(x) dµαααz (x). (34)

Therefore, by the triangle inequality and Theorem 9 we get∫
{−1,1}d

∥∥h+(x) − h−(x)
∥∥p

X
dµαααz

(x)

≤ 2p−1
∫

{−1,1}d

∥∥h+(x) − F (z)
∥∥p

X
+
∥∥h−(x) − F (−z)

∥∥p

X
dµαααz

(x)

≤ 22p−1(πTp(X)
)p

d∑
i=1

∫
{−1,1}d

∥∥∂
1+z(i)

2
i h+(x)

∥∥p

X
+
∥∥∂

1+z(i)
2

i h−(x)
∥∥p

X
dµαααz (x). (35)

Now, in view of the lower Lipschitz condition (32), we clearly have∥∥h+(x) − h−(x)
∥∥

X
=
∥∥f(x, z̄) − f(−x, −z̄)

∥∥
X

≥ n (36)

for every x ∈ {−1, 1}d, where z̄ = (z(d + 1), . . . , z(n)). On the other hand, for a fixed
i ∈ {1, . . . , d} and β = 1+z(i)

2 , we have∫
{−1,1}

∥∥∂β
i h+(x)

∥∥p

X
dµβ(x(i))

= β∥∂β
i h+(x(1), . . . , 1, . . . , x(d))∥p

X + (1 − β)∥∂β
i h+(x(1), . . . , −1, . . . , x(d))∥p

X

=
(
β(1 − β)p + (1 − β)βp

) ∥∥h+(x(1), . . . , 1, . . . , x(d)) − h+(x(1), . . . , −1, . . . , x(d))
∥∥p

X

≤ Dp

2p
,

where in the last equality we used that p ≤ 2 along with the upper Lipschitz condition (32).
The same bound also holds for h−. Integrating the last two inequalities and combining them
with (35), we deduce that

np ≤ (2πTp(X))pdDp, (37)

which completes the proof of the theorem. ◀

4 Concluding remarks

1. The identity of Proposition 8 in the case of the uniform measure σn (which was obtained
in [20]) is simpler. Let ξ1(t), . . . , ξn(t) be i.i.d. random variables distributed according to
µβ(t), where β(t) = 1+e−t

2 . Then, for any point x ∈ {−1, 1}n, the corresponding unbiased
process {Xt(i)}t≥0 with X0 = x has distribution equal to x(i)ξi(t) at time t. Thus applying
formula (24) with αi = 1

2 and θi(t) = e−t

2 , we recover the usual identity

∀ x ∈ {−1, 1}n, LPtf(x) = −E
[ n∑

i=1

ξi(t) − e−t

et − e−t
· ∂if

(
xξ(t)

)]
, (38)

where xξ(t) = (x(1)ξ1(t), . . . , x(n)ξn(t)), as was proven in [20].
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2. The proof of Theorem 1 in fact implies a Poincaré-type inequality for restrictions of
functions f : {−1, 1}n → X if dim(X) < n, which in turn yields the refined distortion
lower bounds. An inspection of the argument reveals that for every such f there exists
a subset σ ⊆ {1, . . . , n} with |σ| ≤ dim(X), a point w ∈ {−1, 1}σc and a bias vector
ααα = (αi)i∈σ ∈ (0, 1)σ such that∫

{−1,1}σ

∥∥f(x, w) − f(−x, −w)
∥∥p

X
dµααα(x)

≤ 22p−1(πTp(X)
)p∑

i∈σ

∫
{−1,1}σ

∥∥∂αi
i f(x, w)

∥∥p

X
+
∥∥∂αi

i f(−x, −w)
∥∥p

X
dµααα(x). (39)

3. Such refinements of Poincaré-type inequalities for topological reasons had not been
exploited since Oleszkiewicz’s original work [43]. The last decades have seen the development
of many metric inequalities on graphs which yield nonembeddability results into normed
spaces. We believe that investigating whether the distortion estimates which one obtains
this way can be further improved assuming upper bounds for the dimension of the target
space is a very worthwhile research program. As examples, we mention the nonembeddability
of graphs with large girth into uniformly smooth spaces [32, 39], of ℓ∞-grids into spaces of
finite cotype [36] and of trees [29] and diamond graphs [24] into uniformly convex spaces.

4. The results of [20] in fact imply that any Lipschitz embedding of {−1, 1}n into a normed
space of Rademacher type p incurs p-average distortion at least a constant multiple of
Tp(X)−1n1−1/p. It would be interesting to understand whether the bound of Theorem 1 can
be extended to average distortion embeddings beyond bi-Lipschitz ones.

5. In the full version [16] of this paper we will discuss some further applications of heat
flow methods. In particular, we shall present a biased version of Pisier’s inequality [48] and
derive a nonlinear version of the classical isomorphic invariant of stable type [45].
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