Light, Reliable Spanners

Arnold Filtser
Bar-Ilan University, Ramat-Gan, Israel

Yuval Gitlitz
Ben-Gurion University of the Negev, Be’er Sheva, Israel

Ofer Neiman
Ben-Gurion University of the Negev, Be’er Sheva, Israel

Abstract

A \(\nu\)-reliable spanner of a metric space \((X,d_X)\), is a (dominating) graph \(H\), such that for any possible failure set \(B \subseteq X\), there is a set \(B^+\) just slightly larger \(|B^+| \leq (1 + \nu) \cdot |B|\), and all distances between pairs in \(X \setminus B^+\) are (approximately) preserved in \(H \setminus B\). Recently, there have been several works on sparse reliable spanners in various settings, but so far, the weight of such spanners has not been analyzed at all. In this work, we initiate the study of light reliable spanners, whose weight is proportional to that of the Minimum Spanning Tree (MST) of \(X\).

We first observe that unlike sparsity, the lightness of any deterministic reliable spanner is huge, even for the metric of the simple path graph. Therefore, randomness must be used: an oblivious reliable spanner is a distribution over spanners, and the bound on \(|B^+|\) holds in expectation.

We devise an oblivious \(\nu\)-reliable \((2 + \frac{2}{\nu-1})\)-spanner for any \(k\)-HST, whose lightness is \(\approx \nu^{-2}\). We demonstrate a matching \(\Omega(\nu^{-2})\) lower bound on the lightness (for any finite stretch). We also note that any stretch below 2 must incur linear lightness.

For general metrics, doubling metrics, and metrics arising from minor-free graphs, we construct light tree covers, in which every tree is a \(k\)-HST of low weight. Combining these covers with our results for \(k\)-HSTs, we obtain oblivious reliable light spanners for these metric spaces, with nearly optimal parameters. In particular, for doubling metrics we get an oblivious \(\nu\)-reliable \((1 + \varepsilon)\)-spanner with lightness \(\varepsilon^{-O(d_{\text{dim}})} \cdot O(\nu^{-2} \cdot \log n)\), which is best possible (up to lower order terms).

2012 ACM Subject Classification Theory of computation → Computational geometry; Theory of computation → Sparsification and spanners

Keywords and phrases light spanner, reliable spanner, HST cover, doubling metric, minor free graphs

Digital Object Identifier 10.4230/LIPIcs.SoCG.2024.56

Funding Arnold Filtser: Israel Science Foundation (grant No. 1042/22).
Yuval Gitlitz: Partially supported by the Lynn and William Frankel Center for Computer Sciences and Israel Science Foundation (grant No. 970/21).
Ofer Neiman: Israel Science Foundation (grant No. 970/21).

1 Introduction

Given a metric space \((X,d_X)\), a \(t\)-spanner is a graph \(H\) over \(X\) such that for every \(x,y \in X\),

\[d_X(x,y) \leq d_H(x,y) \leq t \cdot d_X(x,y),\]

where \(d_H\) is the shortest path metric in \(H\). \(^1\) The parameter \(t\) is often referred to as the stretch. In essence, the purpose of spanners is to represent the distance metric using a sparse graph. Spanners where introduced by Peleg and Schäffer [34], and found numerous applications throughout computer science. For a

\(^1\) Often in the literature, the input metric is the shortest path metric of a graph, and a spanner is required to be a subgraph of that graph. Here we study metric spanners where there is no such requirement.
more systematical study, we refer to the book [33] and survey [2]. In many cases, the goal is to minimize the total weight of the spanner and not just the number of edges. E.g., when constructing a road network, the cost is better measured by the total length of paved roads, as opposed to their number. This parameter of interest is formalized as the lightness of a spanner, which is the ratio between the weight of the spanner (sum of all edge weights), and the weight of the Minimum Spanning Tree (MST) of X. Note that the MST is the minimal weight of a connected graph, and thus of a spanner with finite stretch. So the lightness is simply a “normalized” notion of weight.

Light spanners have been thoroughly studied. It is known that general n-point metric spaces admit a $(2k-1)(1+\varepsilon)$ spanner (for $k \in \mathbb{N}$, $\varepsilon \in (0,1)$) with $O(n^{1+1/k})$ edges and lightness $O(\varepsilon^{-1} \cdot n^{1/k})$ [30, 6] (see also [4, 18, 14, 23]). Every n-point metric space with doubling dimension $O(\varepsilon^{-3})$ [7]. (see also [24, 23]). Finally, the shortest path metric of a graph excluding a fixed set of failed nodes t-reliable spanner of a metric space X,d_X if d_H dominates d_X, and for every set $B \subseteq X$ of points, called an attack set, there is a set $B^+ \supseteq B$, called a faulty extension of B, such that: (1) $|B^+| \leq (1+\nu)|B|$, (2) For every $x,y \notin B^+$, $d_H(x,y) \leq t \cdot d_X(x,y)$.

An oblivious ν-reliable t-spanner is a distribution D over dominating graphs H, such that for every attack set $B \subseteq X$ and $H \in \text{supp}(D)$, there exist a superset $B^+ \supseteq B$ such that, for every $x,y \notin B^+_H$, $d_H(x,y) \leq t \cdot d_X(x,y)$, and $\mathbb{P}_{H \sim D} [B^+_H] \leq (1+\nu)|B|$. We say that the oblivious spanner D has m edges and lightness ϕ if $H \in \text{supp}(D)$ has at most m edges and lightness at most ϕ.

For general n-point metrics, Filtser and Le [21] (improving over [25]) constructed an oblivious ν-reliable $8k + \varepsilon$-spanner with $O(n^{1+1/k} \cdot \varepsilon^{-2})$ edges. For the shortest path metric of graph excluding a fixed minor, there is oblivious ν-reliable $(2+\varepsilon)$-spanner with $\varepsilon^{-2} \cdot \varepsilon^{-1} \cdot \tilde{O}(n)$ edges, while every oblivious reliable spanner with stretch $t < 2$ requires $\Omega(n^2)$ edges [21]. For Euclidean and doubling metrics, oblivious ν-reliable $(1+\varepsilon)$-spanners can be constructed with only $n \cdot \varepsilon^{-O(d)} \cdot \tilde{O}(\nu^{-1} \cdot \log^2 \log n)$ edges [11, 21].

2 A metric space (X,d) has doubling dimension ddim if every ball of radius $2r$ can be covered by 2^{ddim} balls of radius r. The d-dimensional Euclidean space has doubling dimension $\Theta(d)$.

3 For a comprehensive discussion with the related notion of fault-tolerant spanners, see Section 1.3.

4 Metric space (X,d_H) dominates metric space (X,d_X) if $\forall u,v \in X$, $d_X(u,v) \leq d_H(u,v)$.
The results of this paper are summarized in Table 1. Our results on light reliable spanners for various metric spaces are based on constructing such spanners for k-HSTs, this lies in contrast to previous results on sparse reliable spanners, which were mostly based on reliable spanners for the path graph.

1.1 Our Results

The results of this paper are summarized in Table 1. Our results on light reliable spanners for various metric families are based on constructing such spanners for k-HSTs, this lies in contrast to previous results on sparse reliable spanners, which were mostly based on reliable spanners for the path graph.

5 Locality sensitive ordering is a generic tool that “reduces” metric spaces into the line, by devising a collection of orderings such that every two points are “nearby” in one of the orderings, see [13, 21].

6 The only previous work that did not reduced to P_n is by Har-Peled et al. [25] who reduced to uniform metrics. Nevertheless, their approach on P_n will have stretch 3, and lightness $\Omega(n)$.

<table>
<thead>
<tr>
<th>Family</th>
<th>Stretch</th>
<th>Lightness</th>
<th>Size</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doubling ddim</td>
<td>$1 + \varepsilon$</td>
<td>$\varepsilon^{-O(\ddim)} \cdot \tilde{O}(\nu^{-2} \cdot \log n)$</td>
<td>$n \cdot \varepsilon^{-O(\ddim)} \cdot \tilde{O}(\nu^{-2}) \cdot \ast$</td>
<td>FullV[20]</td>
</tr>
<tr>
<td>ddim</td>
<td>$\tilde{O}(\log n \cdot \nu^{-2}) \cdot \ddim^{O(1)}$</td>
<td>$n \cdot \tilde{O}(\nu^{-2}) \cdot \ddim^{O(1)} \cdot \ast$</td>
<td>FullV[20]</td>
<td></td>
</tr>
<tr>
<td>General Metric</td>
<td>$12t + \varepsilon$</td>
<td>$n^{1/14} \cdot \tilde{O}(\nu^{-2} \cdot \varepsilon^{-3}) \cdot \log^{O(1)} n$</td>
<td>$\tilde{O}(n^{1+1/4} \cdot \nu^{-2} \cdot \varepsilon^{-3})$</td>
<td>FullV[20]</td>
</tr>
<tr>
<td>Tree</td>
<td>< 2</td>
<td>$\Omega(n)$</td>
<td>$\Omega(n^2)$</td>
<td>[21]</td>
</tr>
<tr>
<td>Weighted Path</td>
<td>1</td>
<td>$\nu^{-2} \cdot \tilde{O}(\log n)$</td>
<td>$n \cdot \tilde{O}(\nu^{-1}) \cdot \ast$</td>
<td>FullV[20]</td>
</tr>
<tr>
<td>Unweighted Path</td>
<td>$< \infty$</td>
<td>$\tilde{O}(\nu^{-2} \cdot \log(\nu \cdot n))$</td>
<td>-</td>
<td>FullV[20]</td>
</tr>
<tr>
<td>HST (ultrametric)</td>
<td>$2 + \varepsilon$</td>
<td>$\tilde{O}(\varepsilon^{-4} \cdot \nu^{-2}) \cdot \ast$</td>
<td>$n \cdot \tilde{O}(\varepsilon^{-3} \cdot \nu^{-2}) \cdot \ast$</td>
<td>FullV[20]</td>
</tr>
</tbody>
</table>

But what about lightness? no previous work attempted to construct reliable spanners of low total weight even though it is clearly desirable to construct reliable networks of low total cost. The single most studied metric in the context of reliable spanners is the unweighted path graph, and then generalized it other metric spaces using locality sensitive orderings. A reliable spanner should have many edges between every two large enough sets, so that they could not be easily disconnected. Consider an attack B consisting of the middle $\frac{2}{3}$ vertices on P_n. If there are less than $\frac{n}{8}$ crossing edges from left to right, then an attack $B' \supseteq B$ that contains also one endpoint per crossing edge, will disconnect two sets of size $\frac{n}{2}$. Therefore a linear number of vertices should be added to B'^\ast. We conclude that every deterministic reliable spanner (for any finite stretch) must have lightness $\Omega(n)$ (see full version [20] for a formal proof). Thus, all hope lies in oblivious reliable spanners. However, even here any two large sets must be well connected. Previous oblivious reliable spanners for P_n all had unacceptable polynomial lightness.

As reliable spanners for P_n are the main building blocks for reliable spanners for other metric spaces, all previous constructions have inherent polynomial lightness.

5 Locality sensitive ordering is a generic tool that “reduces” metric spaces into the line, by devising a collection of orderings such that every two points are “nearby” in one of the orderings, see [13, 21].

6 The only previous work that did not reduced to P_n is by Har-Peled et al. [25] who reduced to uniform metrics. Nevertheless, their approach on P_n will have stretch 3, and lightness $\Omega(n)$.

SoCG 2024
Roughly speaking, previous works on reliable spanners show us that the “cost” of making a spanner ν-reliable, is often a ν^{-1} factor in its size. Our results in this paper offer a similar view for light spanners: here the “cost” of reliability is a factor of ν^{-2} in the lightness. That is, an $\Omega(\nu^{-2})$ factor must be paid in the most basic cases (path graph, HST), while in more interesting and complicated metric families, we essentially match the best non-reliable light spanner constructions, up to this ν^{-2} factor (and in some cases, such as minor-free graphs, an unavoidable constant increase in the stretch). For brevity, in the discussion that follows we omit the bounds on the size of our spanners (which can be found in Table 1).

k-HSTs. We devise an oblivious ν-reliable $2 + O(\frac{1}{k})$-spanner for any k-HST, whose lightness is $\tilde{O}(\nu^{-1} \cdot \log \log n)^2$ (see Theorem 2). It is implicitly shown in [21, Observation 1] that with stretch smaller than 2, the lightness must be $\Omega(n)$. So when k is large, our stretch bound is nearly optimal.\(^7\) We also show that the lightness must be at least $\Omega(\nu^{-2})$, regardless of the stretch, thus nearly matching our upper bound.

Light k-HST Covers. To obtain additional results for other metric families, following [21], we use the notion of tree covers, in which every tree is a k-HST. We design these covers for metrics admitting a pairwise partition cover scheme (see definition in the full version [20]), such that each k-HST in the cover has lightness $O(k \cdot \log n)$.

General Metrics. For any metric space, by building a light k-HST cover, and applying our oblivious reliable spanner for every k-HST in the cover, we obtain an oblivious ν-reliable $O(k)$-spanner with lightness $\tilde{O}(\nu^{-2} \cdot n^{1/k})$. Note that up to a constant in the stretch (and lower order terms), this result is optimal, even omitting the reliability requirement.

Doubling Metrics. For any metric with doubling dimension ddim, and $\varepsilon \in (0, 1)$, we devise an oblivious ν-reliable $(1 + \varepsilon)$-spanner with lightness $\varepsilon^{-O(\text{ddim})} \cdot \tilde{O} (\nu^{-2} \cdot \log n)$. This result is tight up to second order terms. Indeed, every $(1 + \varepsilon)$-spanner for doubling metrics must have lightness $\varepsilon^{-\Omega(\text{ddim})}$ (see e.g., [8]). In the full version [20], we show that every oblivious ν-reliable spanner (for any finite stretch) for the shortest path metric of the unweighted path graph (which has ddim 1) must have lightness $\Omega(\nu^{-2} \cdot \log(n))$. This dependence on n in the lower bound is somewhat surprising, and does not appear in the closely related fault-tolerant spanners for doubling metrics (see Section 1.3 for further details).

In our doubling reliable spanner construction, we adapt the framework used for general metrics. Note that general k-HSTs must suffer stretch at least 2. Fortunately, the k-HSTs in the cover for doubling metrics have bounded maximum degree. For such HSTs we construct oblivious reliable $1 + O(\frac{1}{k})$-spanner with lightness $\tilde{O}(\nu^{-1} \cdot \log \log n)^2$. Whenever $k \geq \frac{1}{\varepsilon}$, this is $1 + \varepsilon$ stretch.

High Dimensional Euclidean and Doubling Metrics. Given n points in high dimensional Euclidean (or doubling) space, our previous construction has exponential dependence on the dimension, which might be too large. Following our approach for general metrics, we construct a t-spanner with lightness $2^{O(\frac{\text{ddim}}{k})} \cdot \text{ddim}^{O(1)} \cdot \tilde{O}(\nu^{-2} \cdot \log n)$, which can be further improved to $2^{O(\frac{\text{ddim}}{k})} \cdot d^{O(1)} \cdot \tilde{O}(\nu^{-2} \cdot \log n)$ for the case of d-dimensional Euclidean space.

\(^7\) We also have a similar result for every $k \geq 1$, with stretch $2 + \varepsilon$ and lightness $\tilde{O}(\varepsilon^2 \cdot \nu^{-1} \cdot \log \log n)^2$.
Metrics of Minor-free Graphs. Consider a metric (X, d) arising from shortest paths of a graph G that excludes a fixed minor. In the full version [20] we show that X admits “good” pairwise partition cover with stretch 2, and thus by using the framework mentioned above as a black-box, we can get oblivious ν-reliable $(4 + \varepsilon)$-spanner. However, the lower bound on the stretch is the same as for k-HST, which is only 2 (whenever the lightness is sub-linear). To obtain near optimal results, we exploit a certain property of our pairwise partition cover for these metrics, and achieve (in a non-black-box manner) the nearly optimal oblivious ν-reliable $(2 + \varepsilon)$-spanner with lightness $\nu^{-2} \cdot \poly(\log n, 1/\varepsilon)$.

The path graph. We conclude our journey on light reliable spanners by constructing an oblivious ν-reliable 1-spanner for the weighted path graph P_n, whose lightness is $\tilde{O}(\nu^{-2} \cdot \log n)$.

As mentioned above, we prove that this bound on the lightness is optimal (up to lower order terms), for any finite stretch. A useful property of our spanner is that it is hop-bounded, that is, every pair outside B^+ admits a shortest path with at most $\log n$ edges.\(^8\)

1.2 Technical Overview

From a high level, our construction of light reliable spanners for various graph families has the following structure.

- We first devise light reliable spanners for k-HSTs.
- We construct light tree covers for the relevant family, where all the trees in the cover are k-HSTs.
- The final step is to sample a reliable spanner for each tree in the cover, and take as a final spanner the union of these spanners.

In what follows we elaborate more on the main ideas and techniques for each of those steps.

1.2.1 Reliable Light Spanner for k-HSTs

Let T be the tree representing the k-HST. Our construction consists of a collection of randomly chosen bi-cliques: For every node $x \in T$ we choose at random a set Z_x of $l \approx \nu^{-1}$ vertices from the leaves of the subtree rooted at x (denoted $L(x)$). Then, for every $x \in T$ with children x_1, \ldots, x_t, add to the spanner H all edges in $Z_x \times Z_{x_j}$, for every $j = 1, \ldots, t$.

Fix a pair of leaves $u, v \in T$, let $x = \text{lca}(u, v)$, and let x_1 (resp., x_j) be the child of x whose subtree contains u (resp., v). The idea behind finding a spanner path between u, v is as follows. We will connect both u, v to a certain chosen leaf $x' \in Z_x$. To this end, we first connect recursively u to a $u' \in Z_{x_1}$ and v to $v' \in Z_{x_j}$. Now, if $x, x_1,$ and x_j have all chosen such leaves x', u', v' to the sets Z_x, Z_{x_1}, Z_{x_j} respectively, that survive the attack B, and also we managed the $u - u'$ and $v - v'$ connections recursively, then we can complete the $u - v$ path. That path will consists of the two “long” bi-clique edges $\{u', x'\}, \{x', v'\}$, and the recursive $u - u'$ and $v - v'$ paths. Note that since $u, u' \in L(x_1), d_T(u, u') \leq d_T(u, v)/k$ (and similarly $d_T(v, v') \leq d_T(u, v)/k$), so we can show inductively that the total distance taken by these recursive paths is only $O(d_T(u, v)/k)$. See Figure 1 for an illustration of a path in H between two vertices u, v.

\(^8\) Buchin et. al. ’s [11] oblivious reliable spanner for the path is $O(\log n)$ hop-bounded. This property was crucial for the construction of sparse oblivious reliable spanners for Euclidean and doubling metrics [11, 21]. Filtser and Le [21] constructed 2 hop-bounded oblivious reliable spanners for the path (and used it in their construction of oblivious reliable spanner for general metrics).

\(^9\) Additionally, for any $h \geq 1$, we can also devise a h-hop-bounded reliable spanner, while achieving lightness $\approx \nu^{-2} \cdot h \cdot n^{1/h}$.
Having established what is needed for finding a spanner path, we say that a leaf is safe if all its ancestors \(x \) in \(T \) have that \(Z_x \) is not fully included in \(B \). The failure set \(B^+ \) consists of \(B \) and all leaves that are not safe.

A subtle issue is that a vertex may have a linear number of ancestors, and we will need \(\ell \) to be at least logarithmic to ensure good probability for success in all of them. To avoid this, we use the following approach. For any node \(x \) that has a “heavy”child \(y \) (that is, \(L(y) \) is almost as large as \(L(x) \)), we use the sample \(Z_y \) for \(x \), instead of sampling \(Z_x \). This way, any leaf will have only logarithmically many ancestors that are not heavy parents, which reduce dramatically the sample size needed for success in all ancestors.

For the reliability analysis, we distinguish between leaves that have an ancestor \(x \) with a very large \(1 - \nu \) fraction of vertices in \(L(x) \) that fall in the attack set \(B \). These leaves are immediately taken as failed, but there can be only \(\approx \nu|B| \) such leaves. For the other leaves, a delicate technical analysis follows to show that only a small fraction \(\approx \nu \cdot |B| \) new vertices are expected to join \(B^+ \). Note that if some node has a heavy child, we take the child’s sample, so some care is needed in the analysis to account for this – roughly speaking, the definition of “heavy” must depend on the reliability parameter \(\nu \), in order to ensure sufficiently small failure probability.

Improved stretch for bounded degree HSTs. In the case the \(k \)-HST has bounded degree \(\delta \), we can alter the construction slightly, and for every \(x \) with children \(x_1, \ldots, x_s \), also add all edges in \(Z_{x_i} \times Z_{x_j} \) for every \(1 \leq i < j \leq s \). While this alternative increases the lightness and size by a factor of \(\delta \), the stretch improves to \(1 + O(1/k) \), since we only use one long edge. This variation will be useful for the class of doubling metrics.

1.2.2 Reliable Spanners via Light \(k \)-HST Covers

A \((\tau, \rho)\)-tree cover of a metric space \((X, d)\), is a collection of \(\tau \) dominating trees, such that for every pair \(u, v \in X \), there exists a tree \(T \) in the cover with \(d_T(u, v) \leq \rho \cdot d(u, v) \). Let \((X, d)\) be any metric that admits a \((\tau, \rho)\)-tree cover in which all trees are \(k \)-HSTs of weight
at most $O(l \cdot w(MST(X)))$, then we can devise an oblivious reliable spanner for X as follows. Sample an oblivious light ν/τ-reliable spanner H_T for each tree T, and define $H = \bigcup_T H_T$ as their union. We define B^+ as the union of all the failure sets B^+_{T} over all tree spanners.

Since in every ν/τ-reliable spanner of a tree only $\nu \cdot |B|$ additional vertices fail in expectation, the total expected number of additional failures is at most $\nu \cdot |B|$, as required. Now, if a pair u, v did not fail, there is a k-HST T in which $d_T(u, v) \leq \rho \cdot d(u, v)$, and thus H has stretch at most $\rho \cdot (2 + \frac{O(1)\nu}{k})$ for such a pair.

Light k-HST Covers using Pairwise Partition Cover Scheme. A $(\tau, \rho, \varepsilon, \Delta)$-Pairwise Partition Cover for a metric space (X, d) is a collection of τ partitions, each cluster in each partition has diameter at most Δ, and every pair $u, v \in X$ with $\frac{\Delta}{\rho} \leq d(u, v) \leq \frac{\Delta}{\rho}$ is padded in at least one cluster C of a partition. This means that the cluster C contains u, v, and also the balls of radius $\varepsilon \Delta$ around them. If (X, d) admits such a cover for every Δ, we say it has a Pairwise Partition Cover Scheme (PPCS). In [21], PPCS were shown for general metrics and doubling metrics. In this paper, for any parameter $0 < \varepsilon < 1/6$, we devise a $\left(\frac{\log n}{\varepsilon}, \frac{2}{1-6\varepsilon}, \varepsilon\right)$-PPCS for minor-free graphs.

In [21] it was shown that one can obtain a k-HST cover from a PPCS, in such a way that every cluster of diameter Δ in the PPCS corresponds to an internal node x of one of the k-HSTs, with label $\Gamma_x = \Delta$. For our purposes, we want every k-HST in the cover to be light. To this end, we augment the reduction of [21] by a feature that allows us to bound the lightness of the resulting k-HST. The idea is to use nets. A basic observation for a Δ-net \mathcal{N} of a metric space (X, d), is that $w(MST(X)) \geq \Omega(|\mathcal{N}| \cdot \Delta)$. On the other hand, the weight of a k-HST T is roughly $\sum_{x \in T} k \cdot \Delta_x$ (every node pays for the edge to its parent in T). So as long as the number of internal nodes with label Δ is bounded by $|\mathcal{N}|$, the k-HST will be rather light.

Now, given some partition with diameter bound Δ, we take a $\approx \varepsilon \Delta$-net \mathcal{N}, and break all clusters that do not contain a net point. Then the points in the broken clusters are joined to a nearby remaining cluster. Since the net is dense enough, each cluster that was used for padding remains intact, while the number of clusters is bounded by $|\mathcal{N}|$. This enables us to bound the weight of the k-HST accordingly.

1.2.3 Reliable Light Spanner for Minor-free Graphs with $2 + \varepsilon$ stretch

In the special case of minor-free graphs, the framework described above will lose a factor of 2 in the stretch in two places. The first is due to the padding of the PPCS, and the second in the reliable spanners for the k-HSTs. While each of these losses is unavoidable, we can still exploit a certain property of our PPCS for minor-free graphs, to improve the stretch to near optimal $2 + \varepsilon$.

In our previous approach, suppose vertices u, v are padded in some cluster C of the PPCS, with diameter at most Δ. Then in the k-HST cover, we will have some tree with an internal node x corresponding to C, whose label is $\Gamma_x = \Delta$. The way we construct the spanner path between u, v is via some chosen leaf z in $L(x)$, and as both $d(u, z), d(v, z)$ can be as large as Δ, we loose a factor of 2 here.

\[\text{Stretch 2 for HST is necessary: Consider the uniform metric, every spanner with less than } \binom{n}{2} \text{ edges has stretch 2. Every PPCS for minor free graphs must have either } \rho \geq 2 \text{ or } \tau = \Theta(n). \text{ Fix } \rho < 2, \text{ and consider the unweighted star graph. There are } n-1 \text{ leaf-center pairs, while a single partition can satisfy at most a single pair.}\]
Light, Reliable Spanners

The main observation behind overcoming this loss, is that in our PPCS for minor-free graphs, each cluster \(C \) is a ball around some center \(x \), and whenever a pair \(u, v \) is padded, then \(x \) is very close to the shortest \(u - v \) path, meaning that \(d(u, x) + d(v, x) \leq (1 + \epsilon) \cdot d(u, v) \). While we cannot guarantee that \(x \), or a vertex close to \(x \), will survive the attack \(B \), we can still use this to improve the stretch guarantee. Suppose that \(Z_x \) contains a surviving leaf \(z \) which is closer to \(x \) than both \(u, v \), then

\[
d(u, z) + d(z, v) \leq (d(u, x) + d(x, z)) + d(z, x) + d(x, v)) \leq 2(d(u, x) + d(x, v)) \leq 2(1+\epsilon) \cdot d(u, v) .
\]

So, instead of sampling a set \(Z_x \) of leaves at random from \(L(x) \), we create a bias towards vertices closer to the center \(x \). Concretely, order the leaves of \(L(x) \) by their distance to \(x \), and we would like that the probability of the \(j \)-th leaf in \(L(x) \) to join \(Z_x \) will be \(\approx \frac{1}{j} \). This way, the expected size of \(Z_x \) is still small, and if not too many vertices in the appropriate prefix of \(L(x) \) are in \(B \), then there is a good probability that such a \(z \in Z_x \) exists. However, as it turns out, this requirement it too strict, since every internal node \(x \) will force us to move vertices to \(B^+ \) that fail due many vertices in \(B \) in its induced ordering.

To avoid this hurdle, we use a global ordering for all internal nodes – a carefully chosen preorder of \(T - \) and prove that the induced order on \(L(x) \) is a good enough approximation of distances to \(x \) (specifically, up to an additive factor of \(\approx \Gamma_x / k \)).

1.2.4 Reliable Light Spanner for the Path Graph

There were several construction of a reliable spanner for \(P_n \) in previous works [10, 11, 21], none of them could provide a meaningful bound on the lightness. For instance, the first step in the construction of [10] was to connect the first \(n/2 \) vertices to the last \(n/2 \) vertices via a bipartite expander graph. In particular, the total weight of just this step is \(\Omega(n^2) \). The method of [21] is to sample \(\approx \nu^{-1} \) vertices as star centers, and connect all other vertices to each center. This construction also clearly isn’t light, as the total weight of even one such star is \(\Omega(n^2) \).

Our construction of an oblivious light \(\nu \)-reliable spanner for (weighted) \(P_n \) is similar to the approach taken by [11]. It starts by sampling a laminar collection of subsets \([n] = V_0 \supseteq V_1 \supseteq V_2 \supseteq \cdots \supseteq V_{\log n} \), where \(|V_i| \) contains \(\frac{n}{2^i} \) points in expectation. However, the construction of [11] used long range edges: from vertices in \(V_i \) to the nearest \(\approx 2^{i/2} \) other vertices in \(V_i \), and thus its lightness is polynomial in \(n \).

To ensure bounded lightness, we take a more local approach, and each point \(a \in V_i \) adds edges to only the nearest \(\ell \approx \nu^{-1} \) points in \(V_i \) and \(V_{i+1} \) on both its left and right sides. We remark that the connections to the next level are crucial in order to avoid additional logarithmic factors (since unlike [11], we cannot use the exponentially far away vertices, that would have provided high probability for connection of every vertex to the next level). The lightness follows as each edge \(e \) of \(P \) is expected to be “covered” \(\ell^2 \) times, in each of the \(\log n \) levels.

The reliability analysis of our spanner uses the notion of shadow, introduced by [10]. For the path \(P_n \), roughly speaking, a vertex \(u \) is outside the \(\alpha \)-shadow of an attack \(B \), if in all intervals containing \(u \), there is at most an \(\alpha \) fraction of failed vertices (in \(B \)).

11 To see why the lightness is polynomial, consider just the level \(i = \frac{3}{2} \log n \), then \(|V_i| \approx n^{1/3} \), but also the number of connected neighbors is \(2^{i/2} = n^{1/3} \), so all \(\approx n^{2/3} \) edges between vertices in \(V_i \) are added. The average length of these edges is linear in \(n \), so the lightness is \(\Omega(n^{2/3}) \).
The reliability argument goes as follows: a vertex $a \in [n] \setminus B$ fails and joins B^+ only if there exists a level i in which all its connections to V_{i+1} fail. That is, its ℓ closest vertices in V_{i+1} are in B. But as points are chosen to V_{i+1} independently of B, this is an unlikely event, whose probability can be bounded as a function of the largest α-shadow that does not contain a. To obtain our tight bound, we need a delicate case-analysis for the different regimes of α-shadows.

The stretch analysis is a refinement of [11] stairway approach. A nice feature is that each pair in $[n] \setminus B^+$ will have a shortest path of at most $\log n$ hops in the spanner H.

1.3 Related Work

Light fault-tolerant spanners. Levcopoulos et al. [32] introduced the notion of f-fault-tolerant spanner, where it is guaranteed that for every set F of at most f faulty nodes, $H \setminus F$ is a t-spanner of $X \setminus F$. However, the parameter f has to be specified in advance, and both sparsity and lightness of the spanner must polynomially depend on f. Thus, unlike reliable spanners, it is impossible to construct sparse and light fault-tolerant spanners that can withstand scenarios where, say, half of the nodes fail.

Czumaj and Zhao [16] constructed f-fault-tolerant spanners for points in constant dimensional Euclidean space with optimal $O(f^2)$ lightness (improving over [32] $2^{O(f)}$ lightness). This result was very recently generalized to doubling spaces by Le, Solomon, and Than [31], who obtain $O(f^2)$ lightness (improving over [12] $O(f^2 \log n)$ lightness, and [36] $O(f^2 + f \log n)$ lightness).

Abam et al. [1] introduced the notion of region fault-tolerant spanners for the Euclidean plane. They showed that one can construct a t-spanner with $O(n \log n)$ edges in such a way that if points belonging to a convex region are deleted, the residual graph is still a spanner for the remaining points.

More on Light spanners. Light spanners were constructed for high dimensional Euclidean and doubling spaces [22, 30]. Subset light spanners were studied for planar and Minor free graphs [27, 28, 29, 15], where the goal is to maintain distances only between a subset of terminals (and the lightness is defined w.r.t. the minimum Steiner tree). Bartal et al. constructed light prioritized and scaling spanner [5], where only a small fraction of the vertex pairs suffer from large distortion. Recently Le and Solomon conducted a systematic study of efficient constructions of light spanners [30] (see also [23, 3]). Finally, light spanners were efficiently constructed in the LOCAL [26], and CONGEST [17] distributed models.

2 Light Reliable Spanner for k-HSTs

In this section we devise a light reliable spanner for the family of k-HSTs (see definition in the full version [20]). Let T be the tree corresponding to the given k-HST, we refer to its leaves as vertices, and to the interval nodes as nodes. Each node has an arbitrary order on its children. For a node x we denote by $L(x)$ the set of leaves in the subtree rooted at x, and by $L = [n]$ the set of all leaves. For an internal node x in T, let $\deg(x)$ denote the number of children of x. We will assume that $\deg(x) \geq 2$ (as degree 1 nodes are never the least common ancestor, and thus can be contracted). Our goal is to prove the following theorem.

▶ Theorem 2. For any parameters $\nu \in (0, 1/6)$ and $k > 1$, every k-HST T admits an oblivious ν-reliable $(2 + \frac{2}{\nu-1})$-spanner of size $n \cdot O(\nu^{-1} \cdot \log \log n)^2$ and lightness $O(\nu^{-1} \cdot \log \log n)^2$.

2.1 Decomposition of \(T \) to Heavy Paths

We apply the following decomposition of \(T \) into paths, reminiscent of the heavy-path decomposition \cite{2012Zahur}. Each node \(x \in T \) is given a tag, initially \(\sigma_x = |L(x)| \), and set \(D = \emptyset \). Go over the nodes of \(T \) in preorder, and when visiting node \(x \) with children \(x_1, \ldots, x_t \): If there is \(1 \leq j \leq t \) such that \(\sigma_{x_j} > (1 - \nu/2)\sigma_x \), set \(\sigma_{x_j} = \sigma_x \) and add the edge \(\{x, x_j\} \) to \(D \). For example, if \(T \) contains a path \((y_1, y_2, \ldots, y_q) \) where \(y_1 \) is the closest vertex to the root, and \(|L(y_q)| > (1 - \nu/2)|L(y_2)| \) while \(|L(y_2)| < (1 - \nu/2)|L(y_1)| \) then it will hold that \(\sigma_{y_1} \neq \sigma_{y_2} = \sigma_{y_3} = \cdots = \sigma_{y_q} = |L(y_2)| \).

We claim that \(\sigma_x \geq |L(x)| \) for every node \(x \in T \), because we either have equality or \(x \) inherit the original tag of one of its ancestors. As \(1 - \nu/2 > 1/2 \), there cannot be two different children of \(x \) with more than \(|L(x)|/2 \) leaves in their subtree, hence there can be at most one child \(x_j \) for which an edge is added to \(D \). So indeed \(D \) is a decomposition of \(T \) into heavy paths (some paths can be singletons). Denote by \(Q \) this collection of paths, and for each \(Q \in Q \), let \(f(Q) \) be the lowest vertex (farthest from the root) on \(Q \). We overload this notation, and define \(f(x) = f(Q) \), where \(Q \) is the heavy path containing \(x \). Let \(F = \{f(Q)\} \subseteq Q \) be the set of lowest vertices over all paths.

\(\triangleright \) Claim 3. Each root-to-leaf path \(W \) intersects at most \(O(\nu^{-1} \log n) \) paths in \(Q \).

Proof. Fix a path \(Q \in Q \). Note that all nodes in \(Q \) have the same tag \(\sigma_Q \). Whenever the path \(W \) leaves \(Q \), it will go to some node \(y \) with \(\sigma_y \leq (1 - \nu/2)\sigma_Q \). The root has tag \(n \), so after leaving \(2\nu^{-1} \ln n \) heavy paths, the tag will be at most

\[
n \cdot (1 - \nu/2)^{2\nu^{-1} \ln n} < n \cdot e^{-\ln n} = 1,
\]

since the tag of any internal node \(x \) is at least \(|L(x)| \), we must have reached a leaf. \(\triangleright \)

2.2 Construction

For each node \(y \in F \), we independently sample uniformly at random a set \(Z_y \) of \(\ell = c \cdot \nu^{-1} \cdot \ln \left(\frac{\ln n}{\nu} \right) \) vertices from \(L(y) \), where \(c \) is a constant to be determined later. If there are less than \(\ell \) vertices in \(L(y) \), take \(Z_y = L(y) \). For each internal node \(x \in T \) with children \(x_1, \ldots, x_t \), and for every \(1 \leq j \leq t \), we add the edges \(\{y, z\} : y \in Z_{f(x)}, z \in Z_{f(x_j)} \) to the spanner \(H \).

Defining the set \(B^+ \). Consider an attack \(B \). We say that an internal node \(x \in T \) is good if \(Z_{f(x)} \setminus B \neq \emptyset \). A leaf \(u \) is safe if for every ancestor \(x \) of \(u \), \(x \) is good. In other words, a leaf is safe if every ancestor \(x \) sampled a leaf to \(Z_{f(x)} \) which is not in \(B \).

Define \(B^+ \) as the set of all leaves which are not safe.

2.3 Analysis

Size Analysis. For each internal node \(x \in F \) and each child \(x_j \) of \(x \), we added the bi-clique \(Z_x \times Z_{x_j} \), which contains at most \(\ell^2 \) edges. Since the sum of degrees of internal nodes in \(T \) is \(O(n) \) (recall that all degrees are at least 2), the total number of edges added to \(H \) is \(O(n \cdot \ell^2) = n \cdot \tilde{O}(\nu^{-1} \cdot \log \log n)^2 \).

Weight Analysis. First, we claim that the weight of the MST for the leaves of \(T \) equals to

\[
\sum_{x \in T} (\deg(x) - 1) \cdot \Gamma_x.
\] (1)
This can be verified by running Boruvka’s algorithm, say.12 Every internal node x in F, adds at most $\ell^2 \cdot \deg(x)$ edges of weight at most Γ_x to the spanner. The total weight is thus
\[
\sum_{x \in F} \deg(x) \cdot \ell^2 \cdot \Gamma_x = O(w(MST) \cdot \ell^2) = w(MST) \cdot \tilde{O}(\nu^{-1} \cdot \log \log n)^2.
\]

Stretch Analysis. The stretch analysis is based on the following lemma.

\textbf{Lemma 4.} Let $u \notin B^+$ be any safe leaf. Then for any ancestor x of u and any $v \in Z_{f(x)} \setminus B$, the spanner H contains a path from u to v of length at most \((1 + \frac{1}{k-1}) \cdot \Gamma_x\) that is disjoint from B.

Proof. The proof is by induction on $|L(x)|$. The base case is when $x = u$, then $L(u) = \{u\}$ and the statement holds trivially. Let x be an ancestor of u, and take any vertex $v \in Z_{f(x)} \setminus B$.

We need to find a path in H of length at most \((1 + \frac{1}{k-1}) \cdot \Gamma_x\) from u to v that is disjoint from B.

Let x_0 be the child of x whose subtree contains u. Since u is safe, we know that $Z_{f(x_0)} \setminus B \neq \emptyset$, so take any vertex $u' \in Z_{f(x_0)} \setminus B$. By the induction hypothesis on x_0, there is a path P' in H from u to u' of length at most \((1 + \frac{1}{k-1}) \cdot \Gamma_{x_0}\) disjoint from B (note that indeed $|L(x)| < |L(x_0)|$, as all vertices have degree at least 2). Recall that in the construction step for x, we added all edges from $Z_{f(x)}$ to $Z_{f(x_0)}$, in particular the edge $(u', v) \in H$. Note that $v \notin B$, that $u', v \in L(x)$ and therefore $d_T(u', v) \leq \Gamma_x$, and as T is a k-HST we have that $\Gamma_x \leq \frac{\Gamma}{k}$. It follows that the path $P = P' \cup \{u', v\}$ from u to v in H is disjoint from B, and has length at most \((1 + \frac{1}{k-1}) \cdot \Gamma_{x_0} + \Gamma_x \leq \left(1 + \frac{1}{k-1}\right) \cdot \Gamma_x\).

Fix a pair of leaves $u, v \notin B^+$, and let $x = \text{lca}(u, v)$. Since both are safe, $Z_{f(x)} \setminus B \neq \emptyset$, and pick any $z \in Z_{f(v)} \setminus B$. By Lemma 4 there are paths in H from u to z and from v to z, both disjoint from B, of combined length at most
\[
2 \cdot \left(1 + \frac{1}{k-1}\right) \cdot \Gamma_x = \left(2 + \frac{2}{k-1}\right) \cdot d_T(u, v).
\]

Reliability Analysis. For every $x \in T$, denote by $B^{(x)}$ the set of all vertices in $u \in L(x) \setminus B$, such that there is an ancestor z of u in the subtree rooted at x for which $Z_{f(z)} \subseteq B$. In other words, those are the leaves (outside B) who are not safe due to a bad ancestor in the subtree rooted at x.

We say that a node $x \in T$ is \textit{brutally attacked} if $|B \cap L(x)| \geq (1 - \nu) \cdot |L(x)|$, that is at least a $1 - \nu$ fraction of the decedent leaves of x are in the attack B. Denote by $B_1^{(x)} \subseteq B^{(x)}$ the set of vertices $u \in L(x) \setminus B$ that have a brutally attacked ancestor y in the subtree rooted at x. Denote by $B_2^{(x)} = B^{(x)} \setminus B_1^{(x)}$ the rest of the vertices in $B^{(x)}$.

We next argue that the number of vertices added to B^+ (in the worst case) due to brutally attacked nodes is bounded by $O(\nu) \cdot |B|$. Let A_{ba} be the set of T nodes which are brutally attacked, and they are maximal w.r.t. the order induced by T. That is, $x \in A_{\text{ba}}$ if and only

12In Boruvka’s algorithm, we start with all vertices as singleton components. In each iteration, every component adds to the MST the edge of smallest weight leaving it (breaking ties consistently). For a k-HST, we use a small variation – only components which are the deepest leaves in the HST participate in the current iteration. We claim that the connected components after the j-th iteration correspond to nodes of height j above the leaves. Thus, in the j-th iteration, any node x of height j will add $\deg(x) - 1$ edges with weight Γ_x each, that connect the components corresponding to its children.
if x is brutally attacked, while for every ancestor y of x, y is not brutally attacked. Clearly, for every $x \in A$ it holds that $|B_1^{(x)}| \leq |L(x) \setminus B| \leq \nu \cdot |L(x)| \leq \frac{\nu}{1-\nu} \cdot |L(x) \cap B|$. In total, for the root r of T it holds that

$$|B_1^{(r)}| = \sum_{x \in A} |B_1^{(x)}| \leq \sum_{x \in A} \frac{\nu}{1-\nu} \cdot |L(x) \cap B| \leq \frac{\nu}{1-\nu} \cdot |B| \leq 2\nu \cdot |B| .$$

Next we bound the damage done (in expectation) due to non brutally attacked nodes. Denote $\beta = \frac{1}{\ln \ln n}$. We will prove for any node $x \in T$ which is not a heavy child, by induction on $|L(x)|$ that

$$E[|B_2^{(x)}|] \leq \max \{0, \nu \cdot \beta \cdot \ln \ln(|L(x)|) \cdot |B \cap L(x)| \} . \quad (2)$$

The base case where $|L(x)| \leq \nu^{-1}$ holds trivially as $B_2^{(x)} = \emptyset$. Indeed, consider a descendent leaf $v \notin B$ of x. For every ancestor internal node y of v, which is a descendent of x, it holds that $f(y) = y$ (as y does not have heavy children as $|L(y)| \leq 1 = (1 - \frac{1}{|L(y)|}) \cdot |L(y)| \leq (1 - \frac{\nu}{2}) \cdot |L(y)|$).

In particular $v \in Z_{f(x)} \setminus B$. It follows that $v \notin B_2^{(x)}$, and thus $B_2^{(x)} = \emptyset$. In general, let $x \in T$ be an inner node, which is not a heavy child. Denote $m = |L(x)| > \nu^{-1}$. x is the first vertex in a heavy path $Q = (x = y_1, y_2, \ldots, y_k) \in Q$. Let x_1, \ldots, x_t be the children of all the nodes in Q. Observe that none of x_1, \ldots, x_t is a heavy child, and that $L(x_1), \ldots, L(x_t)$ is a partition of $L(x)$. The main observation is that all the vertices in Q use the same sample $Z_{f(x)}$, so a leaf u is in $B_2^{(x)}$ if at least one the following holds:

1. $u \in B_2^{(x)}$ for some $1 \leq j \leq t$, or
2. $Z_{f(x)} \subseteq B$.

We conclude that

$$E[|B_2^{(x)}|] \leq \sum_{j=1}^t E[|B_2^{(x_j)}|] + |L(x)| \cdot Pr[Z_{f(x)} \subseteq B] . \quad (3)$$

In what follows we bound each of the two summands. For the first, we use the induction hypothesis on x_j (clearly $|L(x_j)| < m = |L(x)|$), to get that

$$E \left[|B_2^{(x_j)}|\right] \leq \max \{0, \nu \cdot \beta \cdot \ln \ln(|L(x_j)|) \cdot |B \cap L(x_j)| \} .$$

By definition of a heavy path, for every $1 \leq j \leq t$, $|L(x_j)| \leq (1 - \nu/2) \cdot \sigma_Q = (1 - \nu/2) \cdot m$. It follows that $(1 - \frac{\nu}{2}) \cdot m \geq (1 - \frac{\nu}{2}) \cdot \nu^{-1} \geq \nu^{-1} - \frac{1}{2} \geq 5.5$, and in particular, $\ln \left((1 - \frac{\nu}{2}) \cdot m\right) > 0$. It follows that

$$\sum_{j=1}^t E[|B_2^{(x_j)}|] \leq \sum_{j=1}^t \nu \cdot \beta \cdot \ln \ln \left((1 - \frac{\nu}{2}) \cdot m\right) \cdot |B \cap L(x_j)| = \nu \cdot \beta \cdot \ln \ln \left((1 - \frac{\nu}{2}) \cdot m\right) \cdot |B \cap L(x)| . \quad (4)$$

For the second summand, we now analyze the probability of the event $Z_{f(x)} \subseteq B$. If $|B \cap L(x)| \geq (1 - \nu) \cdot |L(x)|$, then x is brutally attacked and thus $B_2^{(x)} = \emptyset$ and (2) holds. We thus can assume $|B \cap L(x)| < (1 - \nu) \cdot |L(x)|$. By the heavy path decomposition, it holds that $|L(f(x))| > (1 - \frac{\nu}{2}) \cdot m$. In the case that $|L(f(x))| \leq \ell$ we take $Z_{f(x)} = L(f(x))$, and as $|L(f(x))| > (1 - \frac{\nu}{2}) \cdot m > (1 - \nu)m > |B \cap L(x)|$, there must be a vertex in $Z_{f(x)} \setminus B$. In particular, $Pr \left[Z_{f(x)} \subseteq B\right] = 0$. Otherwise, we have that $|L(f(x))| > \ell$. As $Z_{f(x)}$ is chosen from $L(f(x))$ independently of B, by lemma proved in the full version [20], the probability that all of the ℓ vertices in $Z_{f(x)}$ are chosen from $B \cap L(f(x))$ is at most
where the inequality \((\ast)\) uses that \(\frac{1 - \nu}{2} \leq 1 - \nu/2 \leq e^{-\nu/2}\), and taking a large enough constant \(c\) in the definition of \(\ell\). By plugging (4) and (5) into (3) we conclude that,

\[
\mathbb{E} \left[|B_2(x)| \right] \leq \sum_{j=1}^\ell \mathbb{E}[|B_2(x_j)|] + m \cdot \Pr[Z_{f(x)} \subseteq B] \\
\leq \nu \cdot \beta \cdot \ln \left(\left(1 - \frac{\nu}{2} \right) \cdot m \right) \cdot |B \cap L(x)| + \frac{\nu^2 \cdot \beta}{4 \cdot \ln m} \cdot |B \cap L(x)| \\
\leq \nu \cdot \beta \cdot \ln m \cdot |B \cap L(x)| ,
\]

which concludes the proof of (2), and thus the induction step. It remains to validate \((**):\)

\[
\ln \ln m - \ln \left(1 - \frac{\nu}{2} \cdot m \right) = \ln \frac{\ln m}{\ln \left(1 - \frac{\nu}{2} \cdot m \right)} \geq \ln \frac{\ln m}{\ln m - \ln (1 + \frac{\nu}{2})} \\
\geq \ln \left(1 + \frac{\ln (1 + \frac{\nu}{2})}{2 \ln m} \right) \geq \ln \frac{1}{2} \ln m \geq \frac{\nu}{4 \ln m} ,
\]

using \(\ln (1 + x) \geq \frac{x}{2}\) for \(0 < x < 1\). Finally, by applying (2) on the root \(r\) of \(T\), we get that

\[
\mathbb{E}[|B^+ \setminus B|] = \mathbb{E}[|B_1^+\{\nu\}| + |B_2^\prime\{\nu\}|] \leq (2\nu + \nu \cdot \beta \cdot \ln \ln n) \cdot |B| = 3\nu \cdot |B| .
\]

Theorem 2 follows by rescaling \(\nu\) by a factor of 3.

References

