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Abstract
A ν-reliable spanner of a metric space (X, d), is a (dominating) graph H, such that for any possible
failure set B ⊆ X, there is a set B+ just slightly larger |B+| ≤ (1 + ν) · |B|, and all distances
between pairs in X \ B+ are (approximately) preserved in H \ B. Recently, there have been several
works on sparse reliable spanners in various settings, but so far, the weight of such spanners has not
been analyzed at all. In this work, we initiate the study of light reliable spanners, whose weight is
proportional to that of the Minimum Spanning Tree (MST) of X.

We first observe that unlike sparsity, the lightness of any deterministic reliable spanner is huge,
even for the metric of the simple path graph. Therefore, randomness must be used: an oblivious
reliable spanner is a distribution over spanners, and the bound on |B+| holds in expectation.

We devise an oblivious ν-reliable (2 + 2
k−1 )-spanner for any k-HST, whose lightness is ≈ ν−2.

We demonstrate a matching Ω(ν−2) lower bound on the lightness (for any finite stretch). We also
note that any stretch below 2 must incur linear lightness.

For general metrics, doubling metrics, and metrics arising from minor-free graphs, we construct
light tree covers, in which every tree is a k-HST of low weight. Combining these covers with our
results for k-HSTs, we obtain oblivious reliable light spanners for these metric spaces, with nearly
optimal parameters. In particular, for doubling metrics we get an oblivious ν-reliable (1 + ε)-spanner
with lightness ε−O(ddim) · Õ(ν−2 · log n), which is best possible (up to lower order terms).
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1 Introduction

Given a metric space (X, dX), a t-spanner is a graph H over X such that for every x, y ∈ X,
dX(x, y) ≤ dH(x, y) ≤ t · dX(x, y), where dH is the shortest path metric in H. 1 The
parameter t is often referred to as the stretch. In essence, the purpose of spanners is to
represent the distance metric using a sparse graph. Spanners where introduced by Peleg
and Schäffer [34], and found numerous applications throughout computer science. For a

1 Often in the literature, the input metric is the shortest path metric of a graph, and a spanner is required
to be a subgraph of the input graph. Here we study metric spanners where there is no such requirement.
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56:2 Light, Reliable Spanners

more systematical study, we refer to the book [33] and survey [2]. In many cases, the goal is
to minimize the total weight of the spanner and not just the number of edges. E.g., when
constructing a road network, the cost is better measured by the total length of paved roads,
as opposed to their number. This parameter of interest is formalized as the lightness of a
spanner, which is the ratio between the weight of the spanner (sum of all edge weights), and
the weight of the Minimum Spanning Tree (MST) of X: w(H)

w(MST) . Note that the MST is
the minimal weight of a connected graph, and thus of a spanner with finite stretch. So the
lightness is simply a “normalized” notion of weight.

Light spanners have been thoroughly studied. It is known that general n-point metric
spaces admit a (2k − 1)(1 + ε) spanner (for k ∈ N, ε ∈ (0, 1)) with O(n1+1/k) edges and
lightness O(ε−1 · n1/k) [30, 6] (see also [4, 18, 14, 23]). Every n-point metric space with
doubling dimension2 ddim admits a (1 + ε)-spanner with n · ε−O(ddim) edges and lightness
ε−O(ddim) [8] (see also [24, 23]). Finally, the shortest path metric of a graph excluding a fixed
minor admits a (sub-graph, which already implies sparsity) (1 + ε)-spanner with lightness
Õ(ε−3) [7].

A highly desirable properly of a spanner is the ability to withstand massive node-failures.
To this end, Bose et. al. [9] introduced the notion of a reliable spanner. 3 Here, given a set
of failed nodes B ⊆ X, the residual spanner H \ B is a t-spanner for X \ B+, where B+ ⊇ B

is a set slightly larger than B. For the case of points in d-dimensional Euclidean space, for
constant d, Bose et. al. [9] constructed O(1) spanner such that |B+| ≤ O(|B|2). Later, Buchin,
Har-Peled, and Oláh [10] constructed 1 + ε reliable spanner with n · ε−O(d) · ν−6 · Õ(log n)
edges, guaranteeing that for every set of failed nodes B, |B+| ≤ (1 + ν) · |B|. This result was
generalized to metric spaces with doubling dimension ddim by Filtser and Le [21].

While reliable spanners for Euclidean and doubling metrics admit sparsity which is
comparable to their non-reliable counter-parts, the situation is very different for other metric
families. Indeed, Har-Peled et. al. [25] showed that every reliable k-spanner of the simple
uniform metric (which is also a tree metric) must have Ω(n1+1/k) edges. Nevertheless, it is
possible to construct oblivious reliable spanner for other metric spaces with good parameters,
where the bound on the size of B+ is only in expectation.

▶ Definition 1 (Reliable spanner). A weighted graph H over point set X is a deterministic
ν-reliable t-spanner of a metric space (X, dX) if dH dominates4 dX , and for every set B ⊆ X

of points, called an attack set, there is a set B+ ⊇ B, called a faulty extension of B, such
that: (1) |B+| ≤ (1 + ν)|B|. (2) For every x, y /∈ B+, dH[X\B](x, y) ≤ t · dX(x, y).

An oblivious ν-reliable t-spanner is a distribution D over dominating graphs H, such that
for every attack set B ⊆ X and H ∈ supp(D), there exist a superset B+

H ⊇ B such that, for
every x, y /∈ B+

H , dH[X\B](x, y) ≤ t · dX(x, y), and EH∼D
[
|B+

H |
]

≤ (1 + ν)|B|. We say that
the oblivious spanner D has m edges and lightness ϕ if every H ∈ supp(D) has at most m

edges and lightness at most ϕ.

For general n-point metrics, Filtser and Le [21] (improving over [25]) constructed an
oblivious ν-reliable 8k + ε-spanner with Õ(n1+ 1

k · ε−2) · ν−1 edges. For the shortest path
metric of graph excluding a fixed minor, there is oblivious ν-reliable (2 + ε)-spanner with
ε−2 · ν−1 · Õ(n) edges, while every oblivious reliable spanner with stretch t < 2 requires Ω(n2)
edges [21]. For Euclidean and doubling metrics, oblivious ν-reliable (1 + ε)-spanners can be
constructed with only n · ε−O(d) · Õ(ν−1 · log2 log n) edges [11, 21].

2 A metric space (X, d) has doubling dimension ddim if every ball of radius 2r can be covered by 2ddim

balls of radius r. The d-dimensional Euclidean space has doubling dimension Θ(d).
3 For a comprehensive discussion with the related notion of fault-tolerant spanners, see Section 1.3.
4 Metric space (X, dH) dominates metric space (X, dX) if ∀u, v ∈ X, dX(u, v) ≤ dH(u, v).
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Table 1 Our results for constructing light ν-reliable spanners for various metric spaces. All the
results in the table (other than the one specified as deterministic) are for oblivious reliable spanners.
Stretch < ∞ stands for the requirement that all the points in X \ B+ belong to the same connected
component in H \ B. ∗ stands for poly(log log n) factors.

Family Stretch Lightness Size Ref

Doubling ddim
1 + ε ε−O(ddim) · Õ(ν−2 · log n) n · ε−O(ddim) · Õ(ν−2) · ∗ FullV[20]
ddim Õ(log n · ν−2) · ddimO(1) n · Õ

(
ν−2)

· ddimO(1) · ∗ FullV[20]

General Metric
12t + ε n1/t · Õ(ν−2 · ε−4) · logO(1) n Õ

(
n1+1/t · ν−2 · ε−3)

FullV[20]
O(log n) Õ(ν−2 · log4 n) n · Õ

(
ν−2 · log3 n

)
FullV[20]

Euclidean Rd
√

d Õ
(
log n · ν−2 · d7.5)

n · Õ
(
ν−2 · d6)

· ∗ FullV[20]
Minor-Free 2 + ε Õ(ν−2 · ε−7 · log8 n) Õ(n · ν−2 · ε−6) FullV[20]
Tree < 2 Ω(n) Ω(n2) [21]
Weighted Path 1 ν−2 · Õ(log n) n · Õ(ν−1) · ∗ FullV[20]
Unweighted < ∞ Ω(ν−2 · log(ν · n)) - FullV[20]

Path < ∞ Ω(n) (deterministic) - FullV[20]
HST 2 + ε Õ(ε−4 · ν−2) · ∗ n · Õ

(
ε−3 · ν−2)

· ∗ FullV[20]
(ultrametric) < ∞ Ω(ν−2) - FullV[20]

But what about lightness? no previous work attempted to construct reliable spanners of
low total weight even though it is clearly desirable to construct reliable networks of low total
cost. The single most studied metric in the context of reliable spanners is the unweighted
path Pn. Indeed, most of the previous work [10, 11, 21, 19] focused on constructing various
reliable 1-spanners for the path graph, and then generalized it other metric spaces using
locality sensitive orderings 5. A reliable spanner should have many edges between every
two large enough sets, so that they could not be easily disconnected. Consider an attack
B consisting of the middle n

2 vertices on Pn. If there are less than n
8 crossing edges from

left to right, then an attack B′ ⊇ B that contains also one endpoint per crossing edge, will
disconnect two sets of size n

8 . Therefore a linear number of vertices should be added to
B′+. We conclude that every deterministic reliable spanner (for any finite stretch) must
have lightness Ω(n) (see full version [20] for a formal proof). Thus, all hope lies in oblivious
reliable spanners. However, even here any two large sets must be well connected. Previous
oblivious reliable spanners for Pn all had unacceptable polynomial lightness.

As reliable spanners for Pn are the main building blocks for reliable spanners for other
metric spaces, all previous constructions have inherent polynomial lightness.6

1.1 Our Results
The results of this paper are summarized in Table 1. Our results on light reliable spanners
for various metric families are based on constructing such spanners for k-HSTs, this lies in
contrast to previous results on sparse reliable spanners, which were mostly based on reliable
spanners for the path graph.

5 Locality sensitive ordering is a generic tool that “reduces” metric spaces into the line, by devising a
collection of orderings such that every two points are “nearby” in one of the orderings, see [13, 21].

6 The only previous work that did not reduced to Pn is by Har-Peled et. al. [25] who reduced to uniform
metrics. Nevertheless, their approach on Pn will have stretch 3, and lightness Ω(n).

SoCG 2024
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Roughly speaking, previous works on reliable spanners show us that the “cost” of making
a spanner ν-reliable, is often a ν−1 factor in its size. Our results in this paper offer a similar
view for light spanners: here the “cost” of reliability is a factor of ν−2 in the lightness. That
is, an Ω(ν−2) factor must be paid in the most basic cases (path graph, HST), while in more
interesting and complicated metric families, we essentially match the best non-reliable light
spanner constructions, up to this ν−2 factor (and in some cases, such as minor-free graphs,
an unavoidable constant increase in the stretch). For brevity, in the discussion that follows
we omit the bounds on the size of our spanners (which can be found in Table 1).

k-HSTs. We devise an oblivious ν-reliable 2+ O(1)
k -spanner for any k-HST , whose lightness

is Õ(ν−1 · log log n)2 (see Theorem 2). It is implicitly shown in [21, Observation 1] that with
stretch smaller than 2, the lightness must be Ω(n). So when k is large, our stretch bound is
nearly optimal.7 We also show that the lightness must be at least Ω(ν−2), regardless of the
stretch, thus nearly matching our upper bound.

Light k-HST Covers. To obtain additional results for other metric families, following [21],
we use the notion of tree covers, in which every tree is a k-HST . We design these covers for
metrics admitting a pairwise partition cover scheme (see definition in the full version [20]),
such that each k-HST in the cover has lightness O(k · log n).

General Metrics. For any metric space, by building a light k-HST cover, and applying our
oblivious reliable spanner for every k-HST in the cover, we obtain an oblivious ν-reliable
O(k)-spanner with lightness Õ(ν−2 · n1/k). Note that up to a constant in the stretch (and
lower order terms), this result is optimal, even omitting the reliability requirement.

Doubling Metrics. For any metric with doubling dimension ddim,2 and ε ∈ (0, 1), we devise
an oblivious ν-reliable (1 + ε)-spanner with lightness ε−O(ddim) · Õ

(
ν−2 · log n

)
. This result

is tight up to second order terms. Indeed, every (1 + ε)-spanner for doubling metrics must
have lightness ε−Ω(ddim) (see e.g., [8]). In the full version [20], we show that every oblivious
ν-reliable spanner (for any finite stretch) for the shortest path metric of the unweighted path
graph (which has ddim 1) must have lightness Ω(ν−2 · log(νn)). This dependence on n in the
lower bound is somewhat surprising, and does not appear in the closely related fault-tolerant
spanners for doubling metrics (see Section 1.3 for further details).

In our doubling reliable spanner construction, we adapt the framework used for general
metrics. Note that general k-HSTs must suffer stretch at least 2. Fortunately, the k-HSTs in
the cover for doubling metrics have bounded maximum degree. For such HSTs we construct
oblivious reliable 1 + O( 1

k )-spanner with lightness Õ(ν−1 · log log n)2. Whenever k ≥ 1
ε , this

is 1 + ε stretch.

High Dimensional Euclidean and Doubling Metrics. Given n points in high dimensional
Euclidean (or doubling) space, our previous construction has exponential dependence on
the dimension, which might be too large. Following our approach for general metrics, we
construct a t-spanner with lightness 2O( ddim

t ) · ddimO(1) · Õ(ν−2 · log n) , which can be further
improved to 2O( d

t2 ) · dO(1) · Õ
(
ν−2 · log n

)
for the case of d-dimensional Euclidean space.

7 We also have a similar result for every k ≥ 1, with stretch 2 + ε and lightness Õ(ε2 · ν−1 · log log n)2.
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Metrics of Minor-free Graphs. Consider a metric (X, d) arising from shortest paths of a
graph G that excludes a fixed minor. In the full version [20]we show that X admits “good”
pairwise partition cover with stretch 2, and thus by using the framework mentioned above as
a black-box, we can get oblivious ν-reliable (4 + ε)-spanner. However, the lower bound on
the stretch is the same as for k-HST, which is only 2 (whenever the lightness is sub-linear).
To obtain near optimal results, we exploit a certain property of our pairwise partition cover
for these metrics, and achieve (in a non-black-box manner) the nearly optimal oblivious
ν-reliable (2 + ε)-spanner with lightness ν−2 · poly(log n, 1/ε).

The path graph. We conclude our journey on light reliable spanners by constructing an
oblivious ν-reliable 1-spanner for the weighted path graph Pn, whose lightness is Õ(ν−2 ·log n).
As mentioned above, we prove that this bound on the lightness is optimal (up to lower order
terms), for any finite stretch. A useful8 property of our spanner is that it is hop-bounded,
that is, every pair outside B+ admits a shortest path with at most log n edges.9

1.2 Technical Overview
From a high level, our construction of light reliable spanners for various graph families has
the following structure.

We first devise light reliable spanners for k-HSTs.
We construct light tree covers for the relevant family, where all the trees in the cover are
k-HSTs.
The final step is to sample a reliable spanner for each tree in the cover, and take as a
final spanner the union of these spanners.

In what follows we elaborate more on the main ideas and techniques for each of those
steps.

1.2.1 Reliable Light Spanner for k-HSTs
Let T be the tree representing the k-HST . Our construction consists of a collection of
randomly chosen bi-cliques: For every node x ∈ T we choose at random a set Zx of ℓ ≈ ν−1

vertices from the leaves of the subtree rooted at x (denoted L(x)). Then, for every x ∈ T

with children x1, . . . , xt, add to the spanner H all edges in Zx × Zxj for every j = 1, . . . , t.
Fix a pair of leaves u, v ∈ T , let x = lca(u, v), and let xi (resp., xj) be the child of x

whose subtree contains u (resp., v). The idea behind finding a spanner path between u, v

is as follows. We will connect both u, v to a certain chosen leaf x′ ∈ Zx. To this end, we
first connect recursively u to a u′ ∈ Zxi

and v to v′ ∈ Zxj
. Now, if x, xi, and xj have all

chosen such leaves x′, u′, v′ to the sets Zx, Zxi , Zxj respectively, that survive the attack B,
and also we managed the u − u′ and v − v′ connections recursively, then we can complete the
u − v path. That path will consists of the two “long” bi-clique edges {u′, x′}, {x′, v′}, and
the recursive u − u′ and v − v′ paths. Note that since u, u′ ∈ L(xi), dT (u, u′) ≤ dT (u, v)/k

(and similarly dT (v, v′) ≤ dT (u, v)/k), so we can show inductively that the total distance
taken by these recursive paths is only O(dT (u, v)/k). See Figure 1 for an illustration of a
path in H between two vertices u, v.

8 Buchin et. al. ’s [11] oblivious reliable spanner for the path is O(log n) hop-bounded. This property
was crucial for the construction of sparse oblivious reliable spanners for Euclidean and doubling metrics
[11, 21]. Filtser and Le [21] constructed 2 hop-bounded oblivious reliable spanners for the path (and
used it in their construction of oblivious reliable spanner for general metrics).

9 Additionally, for any h ≥ 1, we can also devise a h-hop-bounded reliable spanner, while achieving
lightness ≈ ν−2 · h · n1/h .

SoCG 2024
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u v

xi xj

x

L(x)L(xi) L(xj)

u′ v′ x′

Figure 1 Illustration of the construction of spanner for a k-HST. For each internal node x we
sample a subset Zx of leaves from L(x), and connect all of Zx to Zx′ for every child x′ of x. The
path from u to v will first go from u to a surviving vertex in Zxi (using recursion), from there to a
surviving vertices in Zx and Zxj , and finally to v (again by recursion).

Having established what is needed for finding a spanner path, we say that a leaf is safe if
all its ancestors x in T have that Zx is not fully included in B. The failure set B+ consists
of B and all leaves that are not safe.

A subtle issue is that a vertex may have a linear number of ancestors, and we will need ℓ

to be at least logarithmic to ensure good probability for success in all of them. To avoid this,
we use the following approach. For any node x that has a “heavy”child y (that is, L(y) is
almost as large as L(x)), we use the sample Zy for x, instead of sampling Zx. This way, any
leaf will have only logarithmically many ancestors that are not heavy parents, which reduce
dramatically the sample size needed for success in all ancestors.

For the reliability analysis, we distinguish between leaves that have an ancestor x with
a very large 1 − ν fraction of vertices in L(x) that fall in the attack set B. These leaves
are immediately taken as failed, but there can be only ≈ ν|B| such leaves. For the other
leaves, a delicate technical analysis follows to show that only a small fraction ≈ ν · |B| new
vertices are expected to join B+. Note that if some node has a heavy child, we take the
child’s sample, so some care is needed in the analysis to account for this – roughly speaking,
the definition of “heavy” must depend on the reliability parameter ν, in order to ensure
sufficiently small failure probability.

Improved stretch for bounded degree HSTs. In the case the k-HST has bounded degree
δ, we can alter the construction slightly, and for every x with children x1, . . . , xs, also add
all edges in Zxi

× Zxj
for every 1 ≤ i < j ≤ s. While this alternative increases the lightness

and size by a factor of δ, the stretch improves to 1 + O(1)
k , since we only use one long edge.

This variation will be useful for the class of doubling metrics.

1.2.2 Reliable Spanners via Light k-HST Covers
A (τ, ρ)-tree cover of a metric space (X, d), is a collection of τ dominating trees, such that
for every pair u, v ∈ X, there exists a tree T in the cover with dT (u, v) ≤ ρ · d(u, v). Let
(X, d) be any metric that admits a (τ, ρ)-tree cover in which all trees are k-HSTs of weight
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at most O(l · w(MST (X)), then we can devise an oblivious reliable spanner for X as follows.
Sample an oblivious light ν/τ -reliable spanner HT for each tree T , and define H =

⋃
T HT

as their union. We define B+ as the union of all the failure sets B+
T over all tree spanners.

Since in every ν/τ -reliable spanner of a tree only ν/τ · |B| additional vertices fail in
expectation, the total expected number of additional failures is at most ν · |B|, as required.
Now, if a pair u, v did not fail, there is a k-HST T in which dT (u, v) ≤ ρ · d(u, v), and thus
H has stretch at most ρ · (2 + O(1)

k ) for such a pair.

Light k-HST Covers using Pairwise Partition Cover Scheme. A (τ, ρ, ε, ∆)-Pairwise
Partition Cover for a metric space (X, d) is a collection of τ partitions, each cluster in each
partition has diameter at most ∆, and every pair u, v ∈ X with ∆

2ρ ≤ d(u, v) ≤ ∆
ρ is padded

in at least one cluster C of a partition. This means that the cluster C contains u, v, and
also the balls of radius ε∆ around them . If (X, d) admits such a cover for every ∆, we say
it has a Pairwise Partition Cover Scheme (PPCS). In [21], PPCS were shown for general
metrics and doubling metrics. In this paper, for any parameter 0 < ε < 1/6, we devise a(

log n
ε , 2

1−6ε , ε
)

-PPCS for minor-free graphs.
In [21] it was shown that one can obtain a k-HST cover from a PPCS, in such a way

that every cluster of diameter ∆ in the PPCS corresponds to an internal node x of one of
the k-HSTs, with label Γx = ∆. For our purposes, we want every k-HST in the cover to be
light. To this end, we augment the reduction of [21] by a feature that allows us to bound the
lightness of the resulting k-HST. The idea is to use nets . A basic observation for a ∆-net N
of a metric space (X, d), is that w(MST (X)) ≥ Ω(|N | · ∆). On the other hand, the weight
of a k-HST T is roughly

∑
x∈T k · Γx (every node pays for the edge to its parent in T ). So as

long as the number of internal nodes with label ∆ is bounded by |N |, the k-HST will be
rather light.

Now, given some partition with diameter bound ∆, we take a ≈ ε∆-net N , and break all
clusters that do not contain a net point. Then the points in the broken clusters are joined to
a nearby remaining cluster. Since the net is dense enough, each cluster that was used for
padding remains intact, while the number of clusters is bounded by |N |. This enables us to
bound the weight of the k-HST accordingly.

1.2.3 Reliable Light Spanner for Minor-free Graphs with 2 + ε stretch
In the special case of minor-free graphs, the framework described above will lose a factor of
2 in the stretch in two places. The first is due to the padding of the PPCS, and the second
in the reliable spanners for the k-HSTs. While each of these losses is unavoidable,10 we can
still exploit a certain property of our PPCS for minor-free graphs, to improve the stretch to
near optimal 2 + ε.

In our previous approach, suppose vertices u, v are padded in some cluster C of the PPCS,
with diameter at most ∆. Then in the k-HST cover, we will have some tree with an internal
node x corresponding to C, whose label is Γx = ∆. The way we construct the spanner path
between u, v is via some chosen leaf z in L(x), and as both d(u, z), d(v, z) can be as large as
∆, we loose a factor of 2 here.

10 Stretch 2 for HST is necessary: Consider the uniform metric, every spanner with less than
(

n
2

)
edges

has stretch 2. Every PPCS for minor free graphs must have either ρ ≥ 2 or τ = Ω(n): Fix ρ < 2, and
consider the unweighted star graph. There are n − 1 leaf-center pairs, while a single partition can satisfy
at most a single pair.

SoCG 2024
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The main observation behind overcoming this loss, is that in our PPCS for minor-free
graphs, each cluster C is a ball around some center x, and whenever a pair u, v is padded,
then x is very close to the shortest u−v path, meaning that d(u, x)+d(v, x) ≤ (1+ε) ·d(u, v).
While we cannot guarantee that x, or a vertex close to x, will survive the attack B, we can
still use this to improve the stretch guarantee. Suppose that Zx contains a surviving leaf z

which is closer to x than both u, v, then

d(u, z)+d(z, v) ≤ (d(u, x)+d(x, z))+d(z, x)+d(x, v)) ≤ 2(d(u, x)+d(x, v)) ≤ 2(1+ε)·d(u, v) .

So, instead of sampling a set Zx of leaves at random from L(x), we create a bias towards
vertices closer to the center x. Concretely, order the leaves of L(x) by their distance to x,
and we would like that the probability of the j-th leaf in L(x) to join Zx will be ≈ 1

j . This
way, the expected size of Zx is still small, and if not too many vertices in the appropriate
prefix of L(x) are in B, then there is a good probability that such a z ∈ Zx exists. However,
as it turns out, this requirement it too strict, since every internal node x will force us to
move vertices to B+ that fail due many vertices in B in its induced ordering.

To avoid this hurdle, we use a global ordering for all internal nodes – a carefully chosen
preorder of T – and prove that the induced order on L(x) is a good enough approximation
of distances to x (specifically, up to an additive factor of ≈ Γx/k).

1.2.4 Reliable Light Spanner for the Path Graph

There were several construction of a reliable spanner for Pn in previous works [10, 11, 21],
none of them could provide a meaningful bound on the lightness. For instance, the first step
in the construction of [10] was to connect the first n/2 vertices to the last n/2 vertices via
a bipartite expander graph. In particular, the total weight of just this step is Ω(n2). The
method of [21] is to sample ≈ ν−1 vertices as star centers, and connect all other vertices to
each center. This construction also clearly isn’t light, as the total weight of even one such
star is Ω(n2).

Our construction of an oblivious light ν-reliable spanner for (weighted) Pn is similar
to the approach taken by [11]. It starts by sampling a laminar collection of subsets [n] =
V0 ⊇ V1 ⊇ V2 ⊇ · · · ⊇ Vlog n, where |Vi| contains n

2i points in expectation. However, the
construction of [11] used long range edges: from vertices in Vi to the nearest ≈ 2i/2 other
vertices in Vi, and thus its lightness is polynomial in n.11

To ensure bounded lightness, we take a more local approach, and each point a ∈ Vi adds
edges to only the nearest ℓ ≈ ν−1 points in Vi and Vi+1 on both its left and right sides.
We remark that the connections to the next level are crucial in order to avoid additional
logarithmic factors (since unlike [11], we cannot use the exponentially far away vertices, that
would have provided high probability for connection of every vertex to the next level). The
lightness follows as each edge e of P is expected to be “covered” ℓ2 times, in each of the log n

levels.
The reliability analysis of our spanner uses the notion of shadow, introduced by [10]. For

the path Pn, roughly speaking, a vertex u is outside the α-shadow of an attack B, if in all
intervals containing u, there is at most an α fraction of failed vertices (in B).

11 To see why the lightness is polynomial, consider just the level i = 2
3 log n, then |Vi| ≈ n1/3, but also the

number of connected neighbors is 2i/2 = n1/3, so all ≈ n2/3 edges between vertices in Vi are added.
The average length of these edges is linear in n, so the lightness is Ω(n2/3).
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The reliability argument goes as follows: a vertex a ∈ [n] \ B fails and joins B+ only if
there exists a level i in which all its connections to Vi+1 fail. That is, its ℓ closest vertices
in Vi+1 are in B. But as points are chosen to Vi+1 independently of B, this is an unlikely
event, whose probability can be bounded as a function of the largest α-shadow that does
not contain a. To obtain our tight bound, we need a delicate case-analysis for the different
regimes of α-shadows.

The stretch analysis is a refinement of [11] stairway approach. A nice feature is that each
pair in [n] \ B+ will have a shortest path of at most log n hops in the spanner H.

1.3 Related Work

Light fault-tolerant spanners. Levcopoulos et. al. [32] introduced the notion of f -fault-
tolerant spanner, where it is guaranteed that for every set F of at most f faulty nodes,
H \ F is a t-spanner of X \ F . However, the parameter f has to be specified in advance, and
both sparsity and lightness of the spanner must polynomially depend on f . Thus, unlike
reliable spanners, it is impossible to construct sparse and light fault-tolerant spanners that
can withstand scenarios where, say, half of the nodes fail.

Czumaj and Zhao [16] constructed f -fault-tolerant spanners for points in constant dimen-
sional Euclidean space with optimal O(f2) lightness (improving over [32] 2O(f) lightness).
This result was very recently generalized to doubling spaces by Le, Solomon, and Than [31],
who obtain O(f2) lightness (improving over [12] O(f2 log n) lightness, and [36] O(f2 +f log n)
lightness).

Abam et. al. [1] introduced the notion of region fault-tolerant spanners for the Euclidean
plane. They showed that one can construct a t-spanner with O(n log n) edges in such a way
that if points belonging to a convex region are deleted, the residual graph is still a spanner
for the remaining points.

More on Light spanners. Light spanners were constructed for high dimensional Euclidean
and doubling spaces [22, 30]. Subset light spanners were studied for planar and Minor free
graphs [27, 28, 29, 15], where the goal is to maintain distances only between a subset of
terminals (and the lightness is defined w.r.t. the minimum Steiner tree). Bartal et. al.
constructed light prioritized and scaling spanner [5], where only a small fraction of the vertex
pairs suffer from large distortion. Recently Le and Solomon conducted a systematic study of
efficient constructions of light spanners [30] (see also [23, 3]). Finally, light spanners were
efficiently constructed in the LOCAL [26], and CONGEST [17] distributed models.

2 Light Reliable Spanner for k-HSTs

In this section we devise a light reliable spanner for the family of k-HSTs (see defenition in
the full version [20]). Let T be the tree corresponding to the given k-HST, we refer to its
leaves as vertices, and to the interval nodes as nodes. Each node has an arbitrary order on
its children. For a node x we denote by L(x) the set of leaves in the subtree rooted at x, and
by L = [n] the set of all leaves. For an internal node x in T , let deg(x) denote the number of
children of x. We will assume that deg(x) ≥ 2 (as degree 1 nodes are never the least common
ancestor, and thus can be contracted). Our goal is to prove the following theorem.

▶ Theorem 2. For any parameters ν ∈ (0, 1/6) and k > 1, every k-HST T admits an oblivious
ν-reliable (2 + 2

k−1 )-spanner of size n · Õ(ν−1 · log log n)2 and lightness Õ(ν−1 · log log n)2.

SoCG 2024
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2.1 Decomposition of T to Heavy Paths
We apply the following decomposition of T into paths, reminiscent of the heavy-path
decomposition [35]. Each node x ∈ T is given a tag, initially σx = |L(x)|, and set D = ∅.
Go over the nodes of T in preorder, and when visiting node x with children x1, . . . , xt: If
there is 1 ≤ j ≤ t such that σxj

> (1 − ν/2)σx, set σxj
= σx and add the edge {x, xj} to

D. For example, if T contains a path (y1, y2, . . . , yq) where y1 is the closest vertex to the
root, and |L(yq)| > (1 − ν/2)|L(y2)| while |L(y2)| < (1 − ν/2)|L(y1)| then it will hold that
σy1 ̸= σy2 = σy3 = · · · = σyq = |L(y2)|.

We claim that σx ≥ |L(x)| for every node x ∈ T , because we either have equality or
x inherit the original tag of one of its ancestors. As 1 − ν/2 > 1/2, there cannot be two
different children of x with more than |L(x)|/2 leaves in their subtree, hence there can be
at most one child xj for which an edge is added to D. So indeed D is a decomposition of
T into heavy paths (some paths can be singletons). Denote by Q this collection of paths,
and for each Q ∈ Q, let f(Q) be the lowest vertex (farthest from the root) on Q. We
overload this notation, and define f(x) = f(Q), where Q is the heavy path containing x. Let
F = {f(Q)}Q∈Q be the set of lowest vertices over all paths.

▷ Claim 3. Each root-to-leaf path W intersects at most O(ν−1 log n) paths in Q.

Proof. Fix a path Q ∈ Q. Note that all nodes in Q have the same tag σQ. Whenever the
path W leaves Q, it will go to some node y with σy ≤ (1 − ν/2)σQ. The root has tag n, so
after leaving 2ν−1 ln n heavy paths, the tag will be at most

n · (1 − ν/2)2ν−1 ln n < n · e− ln n = 1 ,

since the tag of any internal node x is at least |L(x)|, we must have reached a leaf. ◁

2.2 Construction
For each node y ∈ F , we independently sample uniformly at random a set Zy of ℓ =
c · ν−1 · ln

( ln n
ν

)
vertices from L(y), where c is a constant to be determined later. If there

are less than ℓ vertices in L(y), take Zy = L(y). For each internal node x in T with children
x1, . . . , xt, and for every 1 ≤ j ≤ t, we add the edges {{y, z} : y ∈ Zf(x), z ∈ Zf(xj)} to the
spanner H.

Defining the set B+. Consider an attack B. We say that an internal node x ∈ T is good if
Zf(x) \ B ≠ ∅. A leaf u is safe if for every ancestor x of u, x is good. In other words, a leaf
is safe if every ancestor x sampled a leaf to Zf(x) which is not in B.
Define B+ as the set of all leaves which are not safe.

2.3 Analysis
Size Analysis. For each internal node x in F and each child xj of x, we added the bi-clique
Zx × Zxj

, which contains at most ℓ2 edges. Since the sum of degrees of internal nodes in
T is O(n) (recall that all degrees are at least 2), the total number of edges added to H is
O(n · ℓ2) = n · Õ(ν−1 · log log n)2.

Weight Analysis. First, we claim that the weight of the MST for the leaves of T equals to∑
x∈T

(deg(x) − 1) · Γx . (1)
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This can be verified by running Boruvka’s algorithm, say.12 Every internal node x in F , adds
at most ℓ2 · deg(x) edges of weight at most Γx to the spanner. The total weight is thus∑

x∈F

deg(x) · ℓ2 · Γx = O(w(MST ) · ℓ2) = w(MST ) · Õ(ν−1 · log log n)2 .

Stretch Analysis. The stretch analysis is based on the following lemma.

▶ Lemma 4. Let u /∈ B+ be any safe leaf. Then for any ancestor x of u and any v ∈ Zf(x)\B,
the spanner H contains a path from u to v of length at most

(
1 + 1

k−1

)
· Γx that is disjoint

from B.

Proof. The proof is by induction on |L(x)|. The base case is when x = u, then L(u) = {u}
and the statement holds trivially. Let x be an ancestor of u, and take any vertex v ∈ Zf(x) \B.
We need to find a path in H of length at most

(
1 + 1

k−1

)
· Γx from u to v that is disjoint

from B.
Let xu be the child of x whose subtree contains u. Since u is safe, we know that

Zf(xu) \ B ̸= ∅, so take any vertex u′ ∈ Zf(xu) \ B. By the induction hypothesis on xj , there
is a path P ′ in H from u to u′ of length at most

(
1 + 1

k−1

)
· Γxj

disjoint from B (note that
indeed |L(xj)| < |L(x)|, as all vertices have degree at least 2). Recall that in the construction
step for x, we added all edges from Zf(x) to Zf(xu), in particular the edge {u′, v} ∈ H. Note
that v /∈ B, that u′, v ∈ L(x) and therefore dT (u′, v) ≤ Γx, and as T is a k-HST we have
that Γxj

≤ Γx

k . It follows that the path P = P ′ ◦ {u′, v} from u to v in H is disjoint from B,
and has length at most

(
1 + 1

k−1

)
· Γxj

+ Γx ≤
( 1+ 1

k−1
k

)
· Γx + Γx =

(
1 + 1

k−1

)
· Γx ◀

Fix a pair of leaves u, v /∈ B+, and let x = lca(u, v). Since both are safe, Zf(x) \ B ̸= ∅,
and pick any z ∈ Zf(x) \ B. By Lemma 4 there are paths in H from u to z and from v to z,
both disjoint from B, of combined length at most

2 ·
(

1 + 1
k − 1

)
· Γx =

(
2 + 2

k − 1

)
· dT (u, v) .

Reliability Analysis. For every x ∈ T , denote by B(x) the set of all vertices in u ∈ L(x) \ B,
such that there is an ancestor z of u in the subtree rooted at x for which Zf(z) ⊆ B. In other
words, those are the leaves (outside B) who are not safe due to a bad ancestor in the subtree
rooted at x.

We say that a node x ∈ T is brutally attacked if |B ∩ L(x)| ≥ (1 − ν) · |L(x)|, that is at
least a 1 − ν fraction of the decedent leaves of x are in the attack B. Denote by B

(x)
1 ⊆ B(x)

the set of vertices u ∈ L(x) \ B that have a brutally attacked ancestor y in the subtree rooted
at x. Denote by B

(x)
2 = B(x) \ B

(x)
1 the rest of the vertices in B(x).

We next argue that the number of vertices added to B+ (in the worst case) due to brutally
attacked nodes is bounded by O(ν) · |B|. Let Aba be the set of T nodes which are brutally
attacked, and they are maximal w.r.t. the order induced by T . That is, x ∈ Aba if and only

12 In Boruvka’s algorithm, we start with all vertices as singleton components. In each iteration, every
component adds to the MST the edge of smallest weight leaving it (breaking ties consistently). For a
k-HST, we use a small variation – only components which are the deepest leaves in the HST participate
in the current iteration. We claim that the connected components after the j-th iteration correspond to
nodes of height j above the leaves. Thus, in the j-th iteration, any node x of height j will add deg(x) − 1
edges with weight Γx each, that connect the components corresponding to its children.

SoCG 2024
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if x is brutally attacked, while for every ancestor y of x, y is not brutally attacked. Clearly,
for every x ∈ Aba it holds that |B(x)

1 | ≤ |L(x) \ B| ≤ ν · |L(x)| ≤ ν
1−ν · |L(x) ∩ B|. In total,

for the root r of T it holds that

|B(r)
1 | =

∑
x∈Aba

|B(x)
1 | ≤

∑
x∈Aba

ν

1 − ν
· |L(x) ∩ B| ≤ ν

1 − ν
· |B| ≤ 2ν · |B| .

Next we bound the damage done (in expectation) due to non brutally attacked nodes.
Denote β = 1

ln ln n . We will prove for any node x ∈ T which is not a heavy child, by induction
on |L(x)| that

E[|B(x)
2 |] ≤ max {0, ν · β · ln ln(|L(x)|) · |B ∩ L(x)|} . (2)

The base case where |L(x)| ≤ ν−1 holds trivially as B
(x)
2 = ∅. Indeed, consider a descendent

leaf v /∈ B of x. For every ancestor internal node y of v, which is a descendent of x, it holds that
f(y) = y (y does not have heavy children as |L(y)|−1 = (1− 1

|L(y)| ) · |L(y)| < (1− ν
2 ) · |L(y)|).

In particular v ∈ Zf(y) \ B. It follows that v /∈ B
(x)
2 , and thus B

(x)
2 = ∅. In general, let

x ∈ T be an inner node, which is not a heavy child. Denote m = |L(x)| > ν−1. x is the first
vertex in a heavy path Q = (x = y1, y2, ..., ys) ∈ Q. Let x1, . . . , xt be the children of all the
nodes in Q. Observe that none of x1, . . . , xt is a heavy child, and that L(x1), . . . , L(xt) is a
partition of L(x). The main observation is that all the vertices in Q use the same sample
Zf(x), so a leaf u is in B

(x)
2 if at least one the following holds:

1. u ∈ B
(xj)
2 for some 1 ≤ j ≤ t, or

2. Zf(x) ⊆ B.

We conclude that E[|B(x)
2 |] ≤

t∑
j=1

E[|B(xj)
2 |] + |L(x)| · Pr[Zf(x) ⊆ B] . (3)

In what follows we bound each of the two summands. For the first, we use the induction
hypothesis on xj (clearly |L(xj)| < m = |L(x)|), to get that

E
[∣∣∣B(xj)

2

∣∣∣] ≤ max {0, ν · β · ln ln(|L(xj)|) · |B ∩ L(xj)|} .

By definition of a heavy path, for every 1 ≤ j ≤ t, |L(xj)| ≤ (1−ν/2)·σQ = (1−ν/2)·m. It
holds that (1− ν

2 )·m ≥ (1− ν
2 )·ν−1 ≥ ν−1− 1

2 ≥ 5.5, and in particular, ln ln
(
(1 − ν

2 ) · m
)

> 0.
It follows that

t∑
j=1

E[|B(xj)
2 |] ≤

∑t
j=1 ν · β · ln ln

((
1 − ν

2
)

· m
)

· |B ∩ L(xj)|

= ν · β · ln ln
((

1 − ν
2
)

· m
)

· |B ∩ L(x)| . (4)

For the second summand, we now analyze the probability of the event Zf(x) ⊆ B. If
|B ∩ L(x)| ≥ (1 − ν) · |L(x)|, then x is brutally attacked and thus B

(x)
2 = ∅ and (2) holds.

We thus can assume |B ∩ L(x)| < (1 − ν) · |L(x)|. By the heavy path decomposition, it holds
that |L(f(x))| > (1 − ν

2 ) · m. In the case that |L(f(x))| ≤ ℓ we take Zf(x) = L(f(x)), and as
|L(f(x))| > (1 − ν

2 ) · m > (1 − ν)m > |B ∩ L(x)|, there must be a vertex in Zf(x) \ B. In
particular, Pr

[
Zf(x) ⊆ B

]
= 0. Otherwise, we have that |L(f(x))| > ℓ. As Zf(x) is chosen

from L(f(x)) independently of B, by lemma proved in the full version [20], the probability
that all of the ℓ vertices in Zf(x) are chosen from B ∩ L(f(x)) is at most
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Pr
[
Zf(x) ⊆ B

]
=

(|B∩L(f(x))|
ℓ

)(|L(f(x))|
ℓ

) ≤ O(
√

ℓ) ·
(

|B ∩ L(f(x))|
|L(f(x))|

)ℓ

≤ O(
√

ℓ) ·
(

1 − ν

1 − ν
2

)ℓ−1
· |B ∩ L(f(x))|

m

(∗)
≤ ν2 · β

4 · ln n
· |B ∩ L(f(x))|

m
≤ ν2 · β

4 · ln m
· |B ∩ L(x)|

m
, (5)

where the inequality (∗) uses that 1−ν
1− ν

2
≤ 1 − ν

2 ≤ e−ν/2, and taking a large enough constant
c in the definition of ℓ. By plugging (4) and (5) into (3) we conclude that,

E
[∣∣∣B(x)

2

∣∣∣] ≤
t∑

j=1
E[|B(xj)

2 |] + m · Pr[Zf(x) ⊆ B]

≤ ν · β · ln ln
((

1 − ν

2

)
· m

)
· |B ∩ L(x)| + ν2 · β

4 · ln m
· |B ∩ L(x)|

(∗∗)
≤ ν · β · ln ln m · |B ∩ L(x)| ,

which concludes the proof of (2), and thus the induction step. It remains to validate (∗∗):

ln ln m − ln ln
(

(1 − ν

2 ) · m
)

= ln ln m

ln
(
(1 − ν

2 ) · m
) ≥ ln ln m

ln m − ln(1 + ν
2 )

≥ ln
(

1 +
ln(1 + ν

2 )
ln m

)
≥

ln(1 + ν
2 )

2 ln m
≥ ν

4 ln m
,

using ln(1 + x) ≥ x
2 for 0 < x < 1. Finally, by applying (2) on the root r of T , we get that

E[|B+ \ B|] = E[|B(r)
1 | + |B(r)

2 |] ≤ (2ν + ν · β · ln ln n) · |B| = 3ν · |B| .

Theorem 2 follows by rescaling ν by a factor of 3.
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