
Multicut Problems in Embedded Graphs: The
Dependency of Complexity on the Demand Pattern
Jacob Focke #

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Florian Hörsch #

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Shaohua Li #

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Dániel Marx #

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Abstract
The Multicut problem asks for a minimum cut separating certain pairs of vertices: formally,
given a graph G and a demand graph H on a set T ⊆ V (G) of terminals, the task is to find a
minimum-weight set C of edges of G such that whenever two vertices of T are adjacent in H, they
are in different components of G \ C. Colin de Verdière [Algorithmica, 2017] showed that Multicut
with t terminals on a graph G of genus g can be solved in time f(t, g)nO(

√
g2+gt+t). Cohen-Addad

et al. [JACM, 2021] proved a matching lower bound showing that the exponent of n is essentially
best possible (for every fixed value of t and g), even in the special case of Multiway Cut, where
the demand graph H is a complete graph.

However, this lower bound tells us nothing about other special cases of Multicut such as Group
3-Terminal Cut (where three groups of terminals need to be separated from each other). We
show that if the demand pattern is, in some sense, close to being a complete bipartite graph, then
Multicut can be solved faster than f(t, g)nO(

√
g2+gt+t), and furthermore this is the only property

that allows such an improvement. Formally, for a class H of graphs, Multicut(H) is the special
case where the demand graph H is in H. For every fixed class H (satisfying some mild closure
property), fixed g, and fixed t, our main result gives tight upper and lower bounds on the exponent
of n in algorithms solving Multicut(H).

In addition, we investigate a similar setting where, instead of parameterizing by the genus g of
G, we parameterize by the minimum number k of edges of G that need to be deleted to obtain a
planar graph. Interestingly, in this setting it makes a significant difference whether the graph G is
weighted or unweighted: further nontrivial algorithmic techniques give substantial improvements in
the unweighted case.

2012 ACM Subject Classification Mathematics of computing → Graphs and surfaces; Mathematics
of computing → Graph algorithms; Theory of computation → Parameterized complexity and exact
algorithms

Keywords and phrases MultiCut, Multiway Cut, Parameterized Complexity, Tight Bounds, Embed-
ded Graph, Planar Graph, Genus, Surface, Exponential Time Hypothesis

Digital Object Identifier 10.4230/LIPIcs.SoCG.2024.57

Related Version Full Version: https://arxiv.org/abs/2312.11086 [9]

1 Introduction

Computing cuts and flows in graphs is a fundamental problem in theoretical computer
science, with algorithms going back to the early years of combinatorial optimization [8, 12]
and significant new developments appearing even in recent years [35, 36]. Given two vertices
s and t in a weighted graph G, an s − t cut is a set S of edges such that G \ S has no path

© Jacob Focke, Florian Hörsch, Shaohua Li, and Dániel Marx;
licensed under Creative Commons License CC-BY 4.0

40th International Symposium on Computational Geometry (SoCG 2024).
Editors: Wolfgang Mulzer and Jeff M. Phillips; Article No. 57; pp. 57:1–57:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jacob.focke@cispa.de
https://orcid.org/0000-0002-6895-755X
mailto:florian.hoersch@cispa.de
mailto:shaohua.li@cispa.de
mailto:marx@cispa.de
https://orcid.org/0000-0002-5686-8314
https://doi.org/10.4230/LIPIcs.SoCG.2024.57
https://arxiv.org/abs/2312.11086
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

57:2 Multicut Problems in Embedded Graphs

connecting s and t. It is well known that an s − t cut of minimum total weight can be found
in polynomial time. However, the problem becomes much harder when generalized to more
than two terminals. In the Multiway Cut problem, we are given a graph G and a set
T ⊆ V (G) of terminals, and the task is to find a multiway cut S of minimum weight, that is,
a set S ⊆ E(G) such that every component of G \ S contains at most one terminal. Dahlhaus
et al. [7] showed that Multiway Cut is NP-hard even for three terminals.

The study of algorithms on planar graphs is motivated by the fact that planar graphs can
be considered a theoretical model of road networks or other physical networks where crossing
of edges can be assumed to be unlikely. While most NP-hard problems remain NP-hard on
planar graphs, there is often some computational advantage that can be gained by exploiting
planarity. In many cases, this advantage takes the form of a square root appearing in the
running time of an algorithm soving the problem [3,5,6,11,21–23,28–30,32]. Multiway Cut
remains NP-hard on planar graphs, but unlike in general graphs, where the problem is hard
for three terminals, the problem can be solved in polynomial time on planar graphs for any
fixed number of terminals. Dahlhaus et al. [7] gave an algorithm with a running time of the
form f(t)nO(t) for t terminals, which was improved to nO(

√
t) by Colin de Verdière [5] and

Klein and Marx [21]. The square root in the exponent appears to be best possible: Marx [28]
showed that, assuming the Exponential-Time Hypothesis (ETH), there is no algorithm for
Multiway Cut on planar graphs with running time f(t)no(

√
t) for any computable f .

Colin de Verdière [5] actually showed a much stronger result than just an f(t)nO(
√

t)

algorithm for Multiway Cut on planar graphs with t terminals. First, the algorithm works
not only on planar graphs, but on graphs that can be embedded on a surface of genus at
most g for some fixed constant g. The second notable feature of the algorithm of Colin de
Verdière [5] is that it considers the generalization Multicut of Multiway Cut, where
instead of requiring that all terminals have to be disconnected from each other, the input
contains a demand pattern describing which pairs of terminals have to be disconnected.

Multicut
Input: A weighted graph G together with a set T ⊆ V (G) of terminals;

and a demand graph H with V (H) = T .
Output: A minimum-weight set S ⊆ E(G) such that u and v are in distinct components

of G \ S, whenever uv is an edge of H.

Observe that the special case of Multicut when H is a complete graph on T is exactly
the same as Multiway Cut. Colin de Verdière [5] showed that the running time achieved
for Multiway Cut can be obtained also for Multicut in its full generality with arbitrary
demand pattern.

▶ Theorem 1 (Colin de Verdière [5]). Multicut can be solved in time f(g, t)nO(
√

g2+gt+t)

for some function f , where g is the Euler genus of G and t is the number of terminals.

In the following, we adopt the convention that if an instance (G, H) of Multicut is
clear from the context, then we use t = |T | for the number of terminals, g for the Euler
genus of G, g⃗ for the orientable genus of G, and n = |V (G)| for the number of vertices of G.
Furthermore, if not otherwise specified, a function f appearing in the running time means
that there exists a computable function f that can serve as the runtime bound.

The exponent O(
√

g2 + gt + t) in Theorem 1 might look somewhat arbitrary. However,
Cohen-Addad et al. [4] showed that this form of the exponent is optimal under ETH.

J. Focke, F. Hörsch, S. Li, and D. Marx 57:3

▶ Theorem 2 (Cohen-Addad et al. [4]). Assuming the ETH, there exists a universal constant
α ≥ 0 such that for any fixed choice of integers g⃗ ≥ 0 and t ≥ 4, there is no algorithm that
decides all unweighted Multiway Cut instances with orientable genus at most g⃗ and at
most t terminals, in time O(nα

√
g⃗2+g⃗t+t/ log(g⃗+t)).

Note that saying orientable genus in Theorem 2 makes the lower bound statement stronger:
if we consider Euler genus instead, then we would consider a parameter that is always at
most two times larger than orientable genus, hence we would obtain the same lower bound
(with a factor-2 loss in the exponent, which can be accounted for by reducing α by a factor
of 2). In similar way, the statement implies an analogous lower bound for nonorientable
surfaces. The lower bounds below (for Multiway Cut and Multicut) will be formulated
in terms of orientable genus, as this is the strongest form of the lower bound.

1.1 Our Contributions
Bounded-genus graphs. While Theorem 2 appears to give a fairly tight lower bound,
showing the optimality of Theorem 1 in every parameter range, it has its shortcomings. First,
as a minor issue, it works only for t ≥ 4 (this will be resolved in the current paper). More
importantly, while Theorem 1 solves the Multicut problem in its full generality, Theorem 2
gives a lower bound for the special case Multiway Cut (that is, when H is a clique). This
is a general issue when interpreting tight bounds: algorithmic results solve all instances of a
problem, while lower bounds show the hardness of a specific type of instances. This leaves
open the possibility that there exist nontrivial classes of instances (“islands of tractability”)
that can be solved significantly faster than the known upper bound. In our case, Theorem 2
shows that Theorem 1 is optimal in the case when the demand graph H is a clique. The
main goal of this paper is to understand whether Theorem 1 is optimal for other classes of
patterns as well.

Are there nontrivial classes of demand pattern graphs where the algorithm of
Theorem 1 is not optimal, that is, the exponent can be better than O(

√
g2 + gt + t)?

There is a simple, trivial case when Theorem 1 is not optimal: if the demand graph is a
biclique (complete bipartite graph), then the Multicut instance can be solved in polynomial
time (as then the task reduces to separating two sets T1 and T2 of terminals from each other).
But what happens if we consider, say, demand patterns that are complete tripartite graphs?
This special case is also known as Group 3-Terminal Cut: given a graph G with three
sets of terminals T1, T2, T3, the task is to find a set S of edges of minimum total weight
such that G \ S has no path between any vertex of Ti and any vertex of Tj for i ̸= j. Does
the lower bound of Theorem 2 for Multiway Cut hold for Group 3-Terminal Cut as
well? Previous work does not give an answer to this question. One can imagine many other
classes of demand patterns where we have no answer yet, for example, patterns obtained as
the disjoint union of a biclique and a triangle. Our goal is to exhaustively investigate every
such pattern class and provide an answer for each of them.

Formally, let H be a class of graphs. Then we denote by Multicut(H) the special case of
Multicut that contains only instances (G, H) where H ∈ H. For example, if H is the class
of cliques, then Multicut(H) is exactly Multiway Cut. The formal question that we are
investigating is if, for a given H, Theorem 1 gives an optimal algorithm for Multicut(H).

Let us first ask a simpler qualitative question: in an algorithm for Multicut(H), do
parameters g and/or t have to appear in the exponent of n? The notion of W[1]-hardness is
an appropriate tool to answer this question. A problem is said to be fixed-parameter tractable
(FPT) with respect to some parameter k appearing in the input if there is an algorithm with

SoCG 2024

57:4 Multicut Problems in Embedded Graphs

Figure 1 Reducing a Multicut instance (G′, H ′) to (G, H) where H ′ is a projection of H.

running time f(k)nO(1) for some computable function f [6]. If a problem is W[1]-hard, then
this is interpreted as strong evidence that it is not FPT, which means that the parameter
has to appear in the exponent of n.

If H is a biclique, then Multicut corresponds to the problem of separating two sets of
terminals, which can be reduced to a minimum s − t cut problem. If H has only two edges,
then a similar reduction is known [16,33]. Isolated vertices of H clearly do not play any role
in the problem. We say that H is a trivial pattern if, after removing isolated vertices, it is
either a biclique or has at most two edges. We show that in case of nontrivial patterns, the
genus has to appear in the exponent.

▶ Theorem 4. Let H be a computable class of graphs.
1. If every graph in H is a trivial pattern, then Multicut(H) is polynomial-time solvable.
2. Otherwise, Multicut(H) is W[1]-hard parameterized by g⃗, even when restricted to

instances for which the number of terminals is bounded by some constant depending on H.

For the parameter t, the number of terminals, we find nontrivial cases where it does
not have to appear in the exponent of the running time. An extended biclique is a graph
that consists of a complete bipartite graph together with a set of isolated vertices. Let µ be
the minimum number of vertices that need to be deleted to make a graph H an extended
biclique. Then we say that H has distance µ to extended bicliques. Moreover, we say that a
graph class H has bounded distance to extended bicliques if there is a constant µ such that
every H ∈ H has distance at most µ to extended bicliques.

▶ Theorem 5. Let H be a computable class of graphs.
1. If H has bounded distance to extended bicliques, then Multicut(H) can be solved in time

f(t, g)nO(g).
2. Otherwise, Multicut(H) is W[1]-hard parameterized by t, even on planar graphs.

The lower bounds in Theorem 4 and Theorem 5 start with the following simple observation.
Let H be a graph and let H ′ be obtained by identifying two nonadjacent vertices u and v in
H into a new vertex w. We observe that an instance (G′, H ′) of Multicut can be reduced
to some instance (G, H) in a very simple way: let us obtain G by replacing the vertex w in
G′ with u, and connect to u a new vertex v with an edge of sufficiently large weight.

Intuitively, this means that the demand pattern H ′ is not harder than the pattern H, so if
H contains H, then we might as well assume that H contains H ′. More formally, in the case of
W[1]-hardness, it can be shown that adding H ′ to H does not change whether Multicut(H)

J. Focke, F. Hörsch, S. Li, and D. Marx 57:5

is W[1]-hard. We can argue similarly about the graph H ′ obtained by removing a vertex
v of H (in this case, the reduction simply extends G′ with the isolated vertex v). We
say that H ′ is a projection of H if H ′ can be obtained from H by deleting vertices and
identifying pairs of independent vertices (see Figure 1). Moreover, a class of graphs H
is projection-closed if, whenever H ∈ H and H ′ is a projection of H, then H ′ ∈ H also
holds. Due to the observations above, it is sufficient to show the W[1]-hardness results
of Theorem 4 and Theorem 5 for projection-closed classes H. In particular, the proof of
Theorem 5 uses Ramsey-theoretic arguments to show that a projection-closed class either
has bounded distance to extended bicliques, or contains all cliques, or contains all complete
tripartite graphs. Thus, the hardness results essentially boil down to two cases: cliques (i.e.,
Multiway Cut) and complete tripartite graphs (i.e., Group 3-Terminal Cut).

Let us turn our attention now to quantitative lower bounds of the form of Theorem 2.
Unfortunately, the reduction from (G′, H ′) to (G, H) increases the number t of terminals,
hence formally cannot be used to obtain lower bounds on the exact dependence on t.
Nevertheless, one feels that this reduction should be somehow “free.” To obtain a more
robust setting, we express this feeling by restricting our attention to projection-closed classes.
For such classes H, we obtain tight bounds showing that Multicut(H) can have two types
of behavior, depending on whether H has bounded distance to extended bicliques.

▶ Theorem 6. Let H be a computable projection-closed class of graphs. Then the following
holds for Multicut(H).
1. If every graph in H is a trivial pattern, then there is a polynomial time algorithm.
2. Otherwise, if H has bounded distance to extended bicliques, then

a. There is an f(g, t)nO(g) time algorithm.
b. Assuming ETH, there is a universal constant α > 0 such that for any fixed choice of

g⃗ ≥ 0, there is no O(nα(g⃗+1)/ log(g⃗+2)) algorithm, even when restricted to unweighted
instances with orientable genus at most g⃗ and t = 3 terminals.

3. Otherwise,
a. There is an f(g, t)nO(

√
g2+gt+t) time algorithm.

b. Assuming ETH, there is a universal constant α > 0 such that for any fixed choice of
g⃗ ≥ 0 and t ≥ 3, there is no O(nα

√
g⃗2+g⃗t+t/ log(g⃗+t)) algorithm, even when restricted

to unweighted instances with orientable genus at most g⃗ and at most t terminals.

Statement 3(a) follows from Theorem 1, while statement 2(a) is a new nontrivial algo-
rithmic statement. Observe that in the special case when H is all cliques, statement 3(b)
recovers Theorem 2 on Multiway Cut, with the strengthening that it works also for t = 3,
which was previously left as an open problem by Cohen-Addad et al. [4].

▶ Corollary 7. Assuming ETH, there exists a universal constant α > 0 such that for any
fixed choice of integers g⃗ ≥ 0 and t ≥ 3, there is no algorithm that decides all unweighted
Multiway Cut instances with orientable genus at most g⃗ and at most t terminals, in time
O(nα

√
g⃗2+g⃗t+t/ log (g⃗+t)).

Let us remark that, in Theorem 6, one reason to require the condition that H be
projection-closed is to avoid instances where most terminals are artificial and do not play any
role. For example, consider the class H that contains all graphs H that consist of a clique
of size log(|V (H)|) and a collection of isolated vertices. This means that Multicut(H) is
equivalent to solving Multiway Cut on the clique part and ignoring the isolated vertices.
Intuitively, this suggests that Multicut(H) should not be easier than Multiway Cut, but
it will turn out, see Theorem 12, that there is an algorithm solving Multicut(H) whose
running time is better than the lower bound in Theorem 6 3(b).

SoCG 2024

57:6 Multicut Problems in Embedded Graphs

Planar graphs with extra edges. One can argue that even if a graph has bounded genus,
this can mean a fairly significant violation of planarity: arbitrarily many edges can go through
a handle, creating many connections between two distant parts of the graph. Let us study
a graph parameter that models a much smaller deviation from planarity. Given a graph
class F , Cai [2] introduced the class F + πe that contains every graph that can be made a
member of F by the removal of at most π edges. If some algorithmic problem is easy or well
understood on a graph class F , then we can explore how it gets harder as we move away from
this class by considering F + πe for larger and larger π. This viewpoint of parameterizing by
the “distance from triviality” has been studied in the combination of different algorithmic
problems, graph classes, and distance measures [1, 10,13–15,17,18,24,25,34].

In the following, we denote by planar + πe the class of graphs that can be made planar by
the removal of at most π edges. As a convention, given an instance (G, H), we will denote
by π the smallest integer such that the graph is in planar + πe.

So far, we have mostly ignored the question of whether the graph G is weighted or
unweighted. If G has polynomially large integer weights, then it is easy to reduce the problem
to unweighted graphs with a transformation that does not change genus. However, it is not
clear at all if an edge-weighted problem on a graph in planar + πe can be reduced to an
unweighted problem without significantly increasing the distance from planarity.

For weighted planar + πe graphs, we get similar results as for bounded-genus graphs, but
with quantitative bounds of somewhat different form.

▶ Theorem 8. Let H be a computable class of graphs.
1. If every graph in H is a trivial pattern, then edge-weighted Multicut(H) is polynomial-

time solvable.
2. Otherwise, edge-weighted Multicut(H) is W[1]-hard parameterized by π, even when

restricted to instances for which the number of terminals is bounded by some constant
depending on H.

We also prove the analog of Theorem 2, where the optimal exponent is now O(
√

π) instead
of O(g), and O(

√
π + t) instead of O(

√
g2 + gt + t).

▶ Theorem 9. Let H be a computable projection-closed class of graphs. Then the following
holds for edge-weighted Multicut(H).
1. If every graph in H is a trivial pattern, then there is a polynomial-time algorithm.
2. Otherwise, if H has bounded distance to extended bicliques, then

a. There is an f(π, t)nO(
√

π) time algorithm.
b. Assuming ETH, there is a universal constant α > 0 such that for any fixed choice of

π ≥ 0, there is no O(nα
√

π) algorithm, even when restricted to instances in planar + πe

with t = 3 terminals.
3. Otherwise,

a. There is an f(π, t)nO(
√

π+t) algorithm.
b. Assuming ETH, there is a universal constant α > 0 such that for any fixed choice of

π ≥ 0 and t ≥ 3, there is no O(nα
√

π+t) algorithm, even when restricted to planar + πe

instances with at most t terminals.

In unweighted graphs, the situation is different and we can achieve better running times.

▶ Theorem 10. Unweighted Multicut can be solved in time f(π, t)nO(
√

t).

1.2 Our Techniques
Our contributions consist of upper bounds, combinatorial results, and lower bounds.

J. Focke, F. Hörsch, S. Li, and D. Marx 57:7

Figure 2 An example of a multicut dual. The yellow squares represent the terminals. The blue
dashed curves represent the edges of H. The cyan graph represents a multicut dual.

Algorithmic results. Similarly to earlier work [5], we may assume that if the input graph
G has Euler genus g, then we have an embedding of G into a surface N of Euler genus g:
there are algorithms for finding such an embedding whose running time is dominated by the
time bound we want to achieve [20, 31]. We say that an instance (G, H) of Multicut is
N-embedded if G is given in the form of a graph embedded in a surface N of Euler genus
g. The main insight behind the algorithmic results for Multicut is a simple consequence
of duality: if S ⊆ E(G) is a solution in a connected graph G, then in the dual graph G∗

the edges of S create a graph where the terminals that need to be separated are in different
faces (that is, any curve connecting them crosses some edge of S in G∗). This motivates
the following definition: a multicut dual for (G, H) is a graph C embedded on N that is in
general position with G and, for every t1, t2 ∈ V (H) with t1t2 ∈ E(H), it holds that t1 and
t2 are contained in different faces of C (see Figure 2). Here “general position” means that
the drawings of C and G intersect in finitely many points, none of which is a vertex of either
graph. We define the weight w(C) of a multicut dual to be the total weight of the edges of
G crossed by C. The minimum weight of a multicut for (G, H) is the same as the minimum
weight of a multicut dual.

The algorithm of Theorem 1 proceeds by guessing the topology of an optimal multicut
dual, finding a minimum-weight multicut dual C with this topology, and then arguing that
the edges crossed by C form indeed a minimum solution of the Multicut instance (G, H). It
is argued that the multicut dual C has O(t + g) vertices, which implies that it has pathwidth
O(

√
g2 + gt + t). The exponent of n in the algorithm is determined by this pathwidth bound.

One can observe that if we have some other way of bounding the pathwidth of the
multicut dual C (perhaps because of some extra conditions on the instance (G, H)), then
the algorithm can be made to run in time with that pathwidth bound in the exponent.
Furthermore, by modifying the algorithm, we can also use a bound on treewidth instead of
pathwidth. The following statement can be extracted from the proof of Theorem 1:

▶ Theorem 11. On N -embedded instances (G, H) of Multicut for which every minimum-
weight inclusionwise minimal multicut dual has treewidth at most β, Multicut can be solved
in time f(t, g)nO(β).

We believe that formulating Theorem 11 gives a useful tool: as we will see, it allows more
efficient algorithms in certain cases. Let us quickly remark that Theorem 11 can be used to
recover Theorem 1. It can be shown that every face of an inclusionwise minimal multicut

SoCG 2024

57:8 Multicut Problems in Embedded Graphs

Figure 3 An example of an extended biclique partition.

contains a terminal and that a graph with at most t faces drawn on a surface of Euler genus
g has treewidth O(

√
g2 + gt + t). Thus if there are t terminals, then every minimum-weight

inclusionwise minimal multicut dual has treewidth O(
√

g2 + gt + t), and then Theorem 11
gives the required running time.

Our first application of Theorem 11 is to prove Theorem 6 (2a), the algorithm for
Multicut(H) when H has bounded distance to extended bicliques.

▶ Theorem 12. Let H be a class of graphs whose distance to extended bicliques is at most µ.
Then Multicut(H) can be solved in time f(t, g)nO(µ+gµ).

An extended biclique partition of a graph H is a partition (B1, B2, I, X) of its vertices such
that H − X is an extended biclique with a complete bipartite graph with bipartition (B1, B2)
and isolated vertices X (see Figure 3). Consider an instance (G, H) and an extended biclique
partition (B1, B2, I, X) of H with |X| being at most some constant µ. Let us consider a
minimum-weight inclusionwise minimal multicut dual C (see Figure 4). There are at most µ

faces of C that contain a terminal of X. Let us consider a face F that is not adjacent to
any of these at most µ faces. Let Z be the set of terminals in face F . If Z ⊆ I, then we
can remove all the edges of C between F and a neighboring face F ′: this would create only
connections between I and B1 ∪ B2 ∪ I, which are not forbidden. Thus this would contradict
the inclusionwise minimality of C. Assume, without loss of generality, that Z ∩ B1 ̸= ∅. With
a similar argument, we can assume that if Z ′ is the set of terminals in the faces adjacent to
F , then Z ′ ⊆ B2 ∪ I.

The key observation is the following. Let us consider the set M of edges of C on the
boundary of F . What can go wrong if we omit M from the multicut dual, i.e., consider C \M?
Then F gets merged with the adjacent faces, which creates two kinds of new connections
between the terminals: (1) between terminals in Z and Z ′, and (2) between terminals in Z ′.
However, as Z ′ ⊆ B2 ∪ I, which is an independent set in H, new connections inside Z ′ are
not a problem. Furthermore, connections between Z and Z ′ can be resolved by extending the
solutions given by C \ M with a minimum cut separating Z from the rest of the terminals.
As in particular M gives such a cut, the weight of this modified solution is not larger than
the original one. That is, the optimal multicut for (G, H) can be decomposed into a solution
S1 for the problem (G, H − Z) and a minimum cut S2 separating Z and V (H) \ Z.

This suggests the following win/win approach. Let D be the set of at most µ faces of
the optimal multicut dual C that contains terminals from X. If there is a face of C that is
not adjacent to a face in D, then a decomposition is possible. Otherwise, D is a dominating
set of size at most µ in the dual of C, which implies, using known results on bounded-genus

J. Focke, F. Hörsch, S. Li, and D. Marx 57:9

Figure 4 An example of a Z-reducible instance. The terminals in B1, B2, I, and X are represented
by yellow, blue, gray, and rotated dark squares, respectively. The rotated dark squares represent the
terminals of X. Let F be the face whose adjacent faces do not contain a terminal from X and let Z

be the terminals of F .

graphs, a bound on the treewidth of C. Formally, we say that (G, H) is Z-reducible if for
every minimum-weight (Z, V (H) − Z)-cut S1 and every minimum-weight multicut S2 of
(G, H − Z), we have that S1 ∪ S2 is a minimum-weight multicut of (G, H).

▶ Lemma 13. Let (G, H) be an N -embedded instance of Multicut and let (B1, B2, I, X)
be an extended biclique partition of V (H) with |X| ≤ µ. Then one of the following holds:
(1) there is some i ∈ [2] and Z ⊆ Bi ∪ I such that (G, H) is Z-reducible,
(2) tw(C) = O(µ + gµ) for every minimum-weight inclusionwise minimal multicut dual C

for (G, H).

As a second application of Theorem 11, let us sketch the proof of Theorem 10: an
algorithm for unweighted planar + πe graphs where the exponent of the running time does not
contain π. Let (G, H) be an instance of Multicut with t terminals and let Eπ be a set of π

edges such that G \ Eπ is planar. Let G0 = G \ Eπ and let W be the endpoints of Eπ. First,
we guess how, for some hypothetical optimum solution S, the components of G0 \ S partition
T ∪ W (there are O(2(t+π) log(t+π)) such partitions). Let (P1, . . . , Pℓ) be this partition and
let H ′ be the corresponding ℓ-partite graph on T ∪ W . Let E0 ⊆ Eπ contain those edges for
which both endpoints are in the same Pi. Clearly, every solution for (G, H ′) should include
every edge of Eπ \ E0 (as they go between two different Pi’s) and the edges in E0 do not
change the solution. Thus we can ignore the edges in Eπ and solve the instance (G0, H ′) on
the planar graph G0. If we try to solve this instance using Theorem 1, then the exponent
of the running time would be O(

√
t + π) as we now have |T ∪ W | = O(t + π) terminals.

Our goal is to preprocess this instance such that if S′ is an optimum solution of (G0, H ′),
then every component of G0 \ S′ contains one of the original terminals in T . The fact that
every face of every minimum-weight inclusionwise minimal multicut dual contains a vertex
of T means that the multicut dual has treewidth O(

√
|T |) = O(

√
t), and then Theorem 11

delivers the required running time.
Consider an optimum solution S′ of the instance (G0, H ′) and let Q be a component of

G0 \ S′ that is disjoint from T . We consider two cases. Suppose first that more than tπ

edges of G0 leave Q. Then we can argue that a solution for (G, H) can be obtained from
S′ by including every edge of Eπ and omitting π + 1 edges leaving Q, contradicting the

SoCG 2024

57:10 Multicut Problems in Embedded Graphs

optimality of S (this is the point where we exploit that the edges are unweighted). Suppose
now that at most tπ edges leave Q. Then we can use the technique of important cuts [26],
[6, Chapter 8] to precisely locate this set of edges (or something equivalent to it). We can
show that removing these edges from G makes it planar + (π − 1)e, thus we are making
progress with this step. This way, after branching into f(t, π) possible directions, we can
arrive at a planar instance (G0, H ′) where every multicut dual has treewidth O(

√
t), making

it possible to invoke Theorem 11.
Our last application of Theorem 11 is to give a simple way of proving the algorithmic

statements in Theorem 9. More concretely, Theorem 9 2(a) and 3(a) directly follow from the
following result. The main idea is that the extra π edges violating planarity can be ignored if
the endpoints of these edges are treated as extra terminals. Then the corresponding planar
instances can be solved using

Combinatorial results. Theorem 4 considers two cases depending on whether every graph
in H is a trivial pattern or not. It is easy to show that the triangle is a projection of every
graph that is not trivial, so part (2) of Theorem 4 can be proved under the assumption that
the triangle is the projection of some H ∈ H.

▶ Lemma 16. Let H be a graph that is not a trivial pattern. Then the triangle is a projection
of H.

The statements of Theorems 5, 6, 9, and 10 contain case distinctions depending on
whether H has bounded distance to extended bicliques. We prove a combinatorial result
showing that either this distance is bounded, or H contains all cliques, or H contains all
complete tripartite graphs.

▶ Theorem 17. If H is a projection-closed class of graphs, then either (i) it contains Kt for
every t ≥ 1, or (ii) contains Kt,t,t for every t ≥ 1, or (iii) there is a µ ≥ 0 such that every
H ∈ H has distance at most µ to extended bicliques.

The proof of Theorem 17 considers two cases, depending on the distance of a graph
H ∈ H to being a cograph. A graph is cograph if it does not contain the 4-vertex path P4
as an induced subgraph. Suppose that “many” vertices are needed to be deleted to obtain
a cograph from H. By a standard connection between hitting and packing, this means
that there are many vertex disjoint induced copies of P4 in H. This implies that H has a
projection that contains many vertex-disjoint triangles. We analyze the connections between
these triangles using a Ramsey-theoretic argument, and conclude that either a large clique
or a large complete tripartite graph can be obtained as a projection. Now consider the case
when a cograph H ′ can be obtained from H by removing a few vertices. We observe two
simple alternative characterizations of a cograph being bipartite: (1) it is triangle free or (2)
every component is a biclique. If H ′ contains many vertex disjoint triangles, then we argue
as above in the other case. Otherwise, H ′ (and hence H) can be turned into a bipartite
cograph by the deletion of a few vertices. Thus H is a collection of bicliques with a few extra
vertices, and then it is easy to argue that one of the conclusions of Theorem 17 holds.

Complexity results. Theorem 17 shows that to obtain our main lower bound, Theorem 6 (3b),
it is sufficient to consider two cases: when H is the class of all cliques and when H is the
class of all tripartite graphs. For the former problem, Theorem 2 almost provides a lower
bound, except that the case t = 3 needs to be resolved. Then we show how the proof can be
adapted to the latter problem.

J. Focke, F. Hörsch, S. Li, and D. Marx 57:11

Let us review the proof of Theorem 2 by Cohen-Addad et al. [4]. This lower bound uses a
gadget by Marx [28] for the Multiway Cut problem on planar graphs. Let us briefly recall
the properties of this gadget. For some integer ∆, the gadget G∆ has a planar embedding,
where the following distinguished vertices appear on the infinite face (in clockwise order)
UL, u1, . . . , u∆+1, UR, r1, . . . , r∆+1, DR, d∆+1, . . . , d1, DL, ℓ∆+1, . . . , ℓ1. Here the four
vertices UL, UR, DR, DL are considered terminals. Let M ⊆ E(G∆) be a set of edges such
that the removal of these edges disconnects the four terminals from each other. We say that
M represents the pair (x, y) ∈ [∆] × [∆] if G∆ \ M has exactly four components and each
component contains the terminals in precisely one of the following sets:

{UL, u1, . . . , uy, ℓ1, . . . , ℓx}, {UR, uy+1, . . . , u∆+1, r1, . . . , rx},
{DL, d1, . . . , dy, ℓx+1, . . . , ℓ∆+1}, {DR, dy+1, . . . , d∆+1, rx+1, . . . , r∆+1}.

That is, there is a cut between ℓx and ℓx+1 on the left side and there is a cut at precisely
the same location, between rx and rx+1, on the right side, etc.

The gadget G∆ can be constructed in such a way that every minimum set of edges
separating the four terminals is a cut representing some pair (x, y). Moreover, given a set
S ⊆ [∆] × [∆], we can construct a gadget GS where every such cut actually represents a
pair (x, y) ∈ S, and conversely, for every pair (x, y) ∈ S there is a minimum cut representing
(x, y). This gadget GS can be used the following way in a hardness proof. Suppose that
the solution contains a set of edges that is a minimum cut M separating the four terminals
of the gadget; by the properties of the gadget GS , the cut M represents a pair (x, y) ∈ S.
Then, intuitively, the gadget transmits the information “x” between the left and right sides,
transmits the information “y” between the upper and lower sides, and at the same time
enforces that the two pieces of information are compatible, that is, (x, y) ∈ S should hold.

Our first observation is that the construction of this gadget GS , as described by Marx [28],
has some stronger property that was not exploited before. Namely, the conclusion about the
cut M representing some pair (x, y) ∈ S holds even if we do not require that M separate
all four terminals, but we allow that DL and UR are in the same component of GS \ M .
In other words, it turns out that every “cheap” cut that satisfies this weaker separation
property separates DL and UR as well. We formalize this observation in the following way.
A good cut of GS is a subset M of its edges such that the connected components of GS \ M

that contain one of UL or DR do not contain any other corners of GS . We show that the
following statement can be obtained by slightly modifying the proof of correctness.

▶ Lemma 20. Given a subset S ⊆ [∆]2, the grid gadget GS can be constructed in time
polynomial in ∆, and it has the following properties:
1. For every (x, y) ∈ S, the gadget GS has a cut of weight W ∗ representing (x, y).
2. If a good cut of GS has weight W ∗, then it represents some (x, y) ∈ S.
3. Every good cut of GS has weight at least W ∗.

The proof of Theorem 2 by Cohen-Added et al. [4] considers two regimes: (1) t = O(g)
and (2) t = Ω(g). For the regime t = O(g), they prove the lower bound already for t = 4:
clearly, this shows the same lower bound for every t > 4, as the problem cannot get easier
with more terminals. The lower bound is proved by a reduction from binary Constraint
Satisfaction Problems (CSP). An instance of a binary CSP is a triple (V, D, K), where V

is a set of variables, D is a domain of values, K is a set of constraints, each of which is
a triple ⟨u, v, R⟩ with u, v ∈ V and R ⊆ D2. A solution to a CSP instance (V, D, K) is a
function f : V → D such that (f(u), f(v)) ∈ R holds for each constraint ⟨u, v, R⟩. The
primal graph of the instance (V, D, K) is the undirected graph with vertex set V where u

SoCG 2024

57:12 Multicut Problems in Embedded Graphs

and v are adjacent if there is a constraint ⟨u, v, R⟩. Cohen-Added et al. [4] proved a lower
bound for a special case of binary CSP called 4-Regular Graph Tiling, where the primal
graph is a 4-regular bipartite graph and the constraints are of a special form.

Algorithm 1 4-Regular Graph Tiling.

Input: A tuple (k, ∆, Γ, {Sv}), where
k and ∆ are positive integers,
Γ is a 4-regular graph (parallel edges allowed) on k vertices in which the edges
are labeled U , D, L, R in a way that each vertex is adjacent to exactly one of
each label,
for each vertex v of Γ, we have Sv ⊆ [∆] × [∆].

Output: For each vertex v of Γ, a pair sv ∈ Sv such that, if sv = (i, j),
the first coordinates of sL(v) and sR(v) are both i, and
the second coordinates of sU(v) and sD(v) are both j,

where U(v), D(v), L(v), and R(v) denote the vertex of Γ that is connected to v

via the edge labeled by U , D, L, and R, respectively.

Lower bounds on general binary CSP [19,27] can be translated to this problem:

▶ Theorem 21 (Cohen-Addad et al. [4]). Assuming ETH, there exists a universal constant α

such that for any fixed integer k ≥ 2, there is no algorithm that decides all the 4-Regular
Graph Tiling instances whose underlying graph is bipartite and has at most k vertices, in
time O(∆α·k/ log k).

The gadgets GS defined above offer a very convenient reduction from 4-Regular Graph
Tiling. We represent each variable v by a gadget GSv

and, for each edge of Γ, we identify the
distinguished vertices on two appropriate sides of two gadgets. By our intuitive interpretation
of the gadgets, if we consider a minimum cut, then each gadget GSv represents two pieces
of information (x, y) ∈ Sv. Furthermore, if two sides are identified, then the fact that the
cut happens on these two sides at the same place implies that the corresponding pieces
of information in the two gadgets are equal – precisely as required by the definition of
4-Regular Graph Tiling. Thus we obtain a reduction from 4-Regular Graph Tiling
to Multiway Cut with 4|V (Γ)| = 2|E(Γ)| terminals. Observe that each gadget is planar
and identification of two sides increases genus by at most one: all the identifications can
be done in parallel on a single handle. The final step in the proof of Theorem 21 is to
identify every copy of UL in every gadget (and similarly for the copies of UR, DR, and DL).
One can observe that these identifications do not change the validity of the reduction and
increase genus by O(|E(Γ)|). Thus we get a reduction from 4-Regular Graph Tiling to
Multiway Cut with 4 terminals (4-Terminal Cut). The stronger property of Lemma 20
allows us to further identify DL and UR without changing the validity of the reduction.
Thus we can improve the lower bound from 4 terminals to 3 terminals.

▶ Theorem 22.
1. 3-Terminal Cut on instances with orientable genus g⃗ is W[1]-hard parameterized by g⃗.
2. Assuming the ETH, there exists a universal constant α such that for any fixed integer

g⃗ ≥ 0, there is no algorithm that decides all unweighted 3-Terminal Cut instances with
orientable genus g⃗ in time O(nα·(g⃗+1)/ log(g⃗+2)).

By Lemma 16, the triangle is a projection of every nontrivial pattern. Thus Theorem 22
proves Theorem 6 (2b) and the t ≤ g⃗ case of Theorem 6 (3b).

J. Focke, F. Hörsch, S. Li, and D. Marx 57:13

For the regime t = Ω(g⃗), Cohen-Addad et al. [4] present a reduction from CSP with a
4-regular constraint graph having orientable genus g⃗. The first part of their reduction can be
expressed as a lower bound for CSP the following way:

▶ Theorem 23. There is a universal constant α such that for every choice of nonnegative
integers s and g⃗ with s ≥ g⃗ + 1, there exists a 4-regular multigraph P with |V (P)| ≤ s of
orientable genus at most g⃗ and the property that, unless ETH fails, there is no algorithm
deciding the CSP instances (V, D, K) of CSP whose primal graph is P and that runs in
O(|D|α

√
g⃗s+s/ log (g⃗+s)).

The gadgets of Marx [28] reduce CSP to Multiway Cut by introducing one gadget
for each variable and a constant number of gadgets for each constraint. This results in
an instance of Multiway Cut with the same genus g⃗ as the CSP instance and t = O(s)
terminals. The t > g⃗ case of Theorem 2 now follows from Theorem 23 and this reduction.

We observe that essentially the same proof can be used to prove a lower bound for Group
3-Terminal Cut if we use Lemma 20.

▶ Theorem 24. Assuming ETH, there is a universal constant α > 0 such that for any
g⃗ ≥ 0 and t ≥ 3, there is no O(nα

√
g⃗2+g⃗t+t/ log (g⃗+t)) algorithm that solves unweighted

Group 3-Terminal Cut, even when restricted to instances with orientable genus at most
g⃗ and at most t terminals.

By Theorem 17, if H is projection-closed and has unbounded distance to extended
bicliques, then H contains either all cliques or all complete tripartite graphs. Thus in the
t > g regime, Theorem 6 (3b) follows from the lower bound for Multiway Cut (Theorem 22)
and for Group 3-Terminal Cut (Theorem 24) in the two cases, respectively.

References
1 Pranav Arora, Aritra Banik, Vijay Kumar Paliwal, and Venkatesh Raman. List-coloring –

Parameterizing from triviality. Theor. Comput. Sci., 821:102–110, 2020. doi:10.1016/J.TCS.
2020.02.022.

2 Leizhen Cai. Parameterized complexity of vertex colouring. Discret. Appl. Math., 127(3):415–
429, 2003. doi:10.1016/S0166-218X(02)00242-1.

3 Rajesh Hemant Chitnis, Andreas Emil Feldmann, Mohammad Taghi Hajiaghayi, and Dániel
Marx. Tight bounds for planar strongly connected Steiner subgraph with fixed number of
terminals (and extensions). SIAM J. Comput., 49(2):318–364, 2020. doi:10.1137/18M122371X.

4 Vincent Cohen-Addad, Éric Colin de Verdière, Dániel Marx, and Arnaud de Mesmay. Almost
tight lower bounds for hard cutting problems in embedded graphs. J. ACM, 68(4):30:1–30:26,
2021. doi:10.1145/3450704.

5 Éric Colin de Verdière. Multicuts in planar and bounded-genus graphs with bounded number
of terminals. Algorithmica, 78:1206–1224, 2017. URL: https://api.semanticscholar.org/
CorpusID:686950.

6 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

7 Elias Dahlhaus, David S. Johnson, Christos H. Papadimitriou, Paul D. Seymour, and Mihalis
Yannakakis. The complexity of multiterminal cuts. SIAM J. Comput., 23(4):864–894, 1994.
doi:10.1137/S0097539792225297.

SoCG 2024

https://doi.org/10.1016/J.TCS.2020.02.022
https://doi.org/10.1016/J.TCS.2020.02.022
https://doi.org/10.1016/S0166-218X(02)00242-1
https://doi.org/10.1137/18M122371X
https://doi.org/10.1145/3450704
https://api.semanticscholar.org/CorpusID:686950
https://api.semanticscholar.org/CorpusID:686950
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1137/S0097539792225297

57:14 Multicut Problems in Embedded Graphs

8 Jack Edmonds and Richard M. Karp. Theoretical improvements in algorithmic efficiency for
network flow problems. J. ACM, 19(2):248–264, 1972. doi:10.1145/321694.321699.

9 Jacob Focke, Florian Hörsch, Shaohua Li, and Dániel Marx. Multicut problems in embedded
graphs: The dependency of complexity on the demand pattern. CoRR, abs/2312.11086, 2023.
doi:10.48550/arXiv.2312.11086.

10 Fedor V. Fomin and Petr A. Golovach. Subexponential parameterized algorithms and ker-
nelization on almost chordal graphs. Algorithmica, 83(7):2170–2214, 2021. doi:10.1007/
S00453-021-00822-X.

11 Fedor V. Fomin, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk,
and Saket Saurabh. Subexponential parameterized algorithms for planar and apex-minor-
free graphs via low treewidth pattern covering. In Irit Dinur, editor, IEEE 57th Annual
Symposium on Foundations of Computer Science, FOCS 2016, 9-11 October 2016, Hyatt
Regency, New Brunswick, New Jersey, USA, pages 515–524. IEEE Computer Society, 2016.
doi:10.1109/FOCS.2016.62.

12 L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian Journal of
Mathematics, 8:399–404, 1956. doi:10.4153/CJM-1956-045-5.

13 Guilherme C. M. Gomes and Vinícius Fernandes dos Santos. On structural parameterizations of
the selective coloring problem. In Carlos E. Ferreira, Orlando Lee, and Flávio Keidi Miyazawa,
editors, Proceedings of the XI Latin and American Algorithms, Graphs and Optimization
Symposium, LAGOS 2021, Online Event / São Paulo, Brazil, May 2021, volume 195 of
Procedia Computer Science, pages 77–85. Elsevier, 2021. doi:10.1016/J.PROCS.2021.11.013.

14 Jiong Guo, Falk Hüffner, and Rolf Niedermeier. A structural view on parameterizing problems:
Distance from triviality. In Rodney G. Downey, Michael R. Fellows, and Frank K. H. A.
Dehne, editors, Parameterized and Exact Computation, First International Workshop, IWPEC
2004, Bergen, Norway, September 14-17, 2004, Proceedings, volume 3162 of Lecture Notes in
Computer Science, pages 162–173. Springer, 2004. doi:10.1007/978-3-540-28639-4_15.

15 Gregory Z. Gutin, Diptapriyo Majumdar, Sebastian Ordyniak, and Magnus Wahlström.
Parameterized pre-coloring extension and list coloring problems. SIAM J. Discret. Math.,
35(1):575–596, 2021. doi:10.1137/20M1323369.

16 T. C. Hu. Multi-commodity network flows. Operations Research, 11(3):344–360, 1963.
17 Lars Jaffke and Bart M. P. Jansen. Fine-grained parameterized complexity analysis of graph

coloring problems. Discret. Appl. Math., 327:33–46, 2023. doi:10.1016/J.DAM.2022.11.011.
18 Bart M. P. Jansen and Hans L. Bodlaender. Vertex cover kernelization revisited - upper

and lower bounds for a refined parameter. Theory Comput. Syst., 53(2):263–299, 2013.
doi:10.1007/S00224-012-9393-4.

19 Karthik C. S., Dániel Marx, Marcin Pilipczuk, and Uéverton S. Souza. Conditional lower
bounds for sparse parameterized 2-CSP: A streamlined proof. CoRR, abs/2311.05913, 2023.
doi:10.48550/arXiv.2311.05913.

20 Ken-ichi Kawarabayashi, Bojan Mohar, and Bruce A. Reed. A simpler linear time algorithm
for embedding graphs into an arbitrary surface and the genus of graphs of bounded tree-
width. In 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008,
October 25-28, 2008, Philadelphia, PA, USA, pages 771–780. IEEE Computer Society, 2008.
doi:10.1109/FOCS.2008.53.

21 Philip N. Klein and Dániel Marx. Solving planar k-terminal cut in O(nc
√

k) time. In Artur
Czumaj, Kurt Mehlhorn, Andrew M. Pitts, and Roger Wattenhofer, editors, Automata,
Languages, and Programming - 39th International Colloquium, ICALP 2012, Warwick, UK,
July 9-13, 2012, Proceedings, Part I, volume 7391 of Lecture Notes in Computer Science, pages
569–580. Springer, 2012. doi:10.1007/978-3-642-31594-7_48.

22 Philip N. Klein and Dániel Marx. A subexponential parameterized algorithm for subset
TSP on planar graphs. In Chandra Chekuri, editor, Proceedings of the Twenty-Fifth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January
5-7, 2014, pages 1812–1830. SIAM, 2014. doi:10.1137/1.9781611973402.131.

https://doi.org/10.1145/321694.321699
https://doi.org/10.48550/arXiv.2312.11086
https://doi.org/10.1007/S00453-021-00822-X
https://doi.org/10.1007/S00453-021-00822-X
https://doi.org/10.1109/FOCS.2016.62
https://doi.org/10.4153/CJM-1956-045-5
https://doi.org/10.1016/J.PROCS.2021.11.013
https://doi.org/10.1007/978-3-540-28639-4_15
https://doi.org/10.1137/20M1323369
https://doi.org/10.1016/J.DAM.2022.11.011
https://doi.org/10.1007/S00224-012-9393-4
https://doi.org/10.48550/arXiv.2311.05913
https://doi.org/10.1109/FOCS.2008.53
https://doi.org/10.1007/978-3-642-31594-7_48
https://doi.org/10.1137/1.9781611973402.131

J. Focke, F. Hörsch, S. Li, and D. Marx 57:15

23 Daniel Lokshtanov, Saket Saurabh, and Magnus Wahlström. Subexponential parameterized
odd cycle transversal on planar graphs. In Deepak D’Souza, Telikepalli Kavitha, and Jaikumar
Radhakrishnan, editors, IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science, FSTTCS 2012, December 15-17, 2012, Hyderabad, India,
volume 18 of LIPIcs, pages 424–434. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2012.
doi:10.4230/LIPIcs.FSTTCS.2012.424.

24 Federico Mancini. Minimum fill-in and treewidth of split+ke and split+kv graphs. Discret.
Appl. Math., 158(7):747–754, 2010. doi:10.1016/J.DAM.2008.11.006.

25 Dániel Marx. Parameterized coloring problems on chordal graphs. Theor. Comput. Sci.,
351(3):407–424, 2006. doi:10.1016/J.TCS.2005.10.008.

26 Dániel Marx. Parameterized graph separation problems. Theor. Comput. Sci., 351(3):394–406,
2006. doi:10.1016/J.TCS.2005.10.007.

27 Dániel Marx. Can you beat treewidth? Theory Comput., 6(1):85–112, 2010. doi:10.4086/
TOC.2010.V006A005.

28 Dániel Marx. A tight lower bound for planar multiway cut with fixed number of terminals. In
Artur Czumaj, Kurt Mehlhorn, Andrew M. Pitts, and Roger Wattenhofer, editors, Automata,
Languages, and Programming - 39th International Colloquium, ICALP 2012, Warwick, UK,
July 9-13, 2012, Proceedings, Part I, volume 7391 of Lecture Notes in Computer Science, pages
677–688. Springer, 2012. doi:10.1007/978-3-642-31594-7_57.

29 Dániel Marx, Marcin Pilipczuk, and Michal Pilipczuk. On subexponential parameterized
algorithms for Steiner tree and directed subset TSP on planar graphs. In Mikkel Thorup,
editor, 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018,
Paris, France, October 7-9, 2018, pages 474–484. IEEE Computer Society, 2018. doi:10.
1109/FOCS.2018.00052.

30 Dániel Marx and Michal Pilipczuk. Optimal parameterized algorithms for planar facility
location problems using Voronoi diagrams. ACM Trans. Algorithms, 18(2):13:1–13:64, 2022.
doi:10.1145/3483425.

31 Bojan Mohar. A linear time algorithm for embedding graphs in an arbitrary surface. SIAM J.
Discret. Math., 12(1):6–26, 1999. doi:10.1137/S089548019529248X.

32 Jesper Nederlof. Detecting and counting small patterns in planar graphs in subexponential
parameterized time. In Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam
Kamath, and Julia Chuzhoy, editors, Proccedings of the 52nd Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 1293–1306.
ACM, 2020. doi:10.1145/3357713.3384261.

33 Paul D. Seymour. A short proof of the two-commodity flow theorem. J. Comb. Theory, Ser.
B, 26(3):370–371, 1979. doi:10.1016/0095-8956(79)90012-1.

34 Yasuhiko Takenaga and Kenichi Higashide. Vertex coloring of comparability+ke and -ke graphs.
In Fedor V. Fomin, editor, Graph-Theoretic Concepts in Computer Science, 32nd International
Workshop, WG 2006, Bergen, Norway, June 22-24, 2006, Revised Papers, volume 4271 of
Lecture Notes in Computer Science, pages 102–112. Springer, 2006. doi:10.1007/11917496_10.

35 Jan van den Brand, Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst
Gutenberg, Sushant Sachdeva, and Aaron Sidford. A deterministic almost-linear time algorithm
for minimum-cost flow. CoRR, abs/2309.16629, 2023. doi:10.48550/arXiv.2309.16629.

36 Jan van den Brand, Yu Gao, Arun Jambulapati, Yin Tat Lee, Yang P. Liu, Richard Peng,
and Aaron Sidford. Faster maxflow via improved dynamic spectral vertex sparsifiers. In
Stefano Leonardi and Anupam Gupta, editors, STOC ’22: 54th Annual ACM SIGACT
Symposium on Theory of Computing, Rome, Italy, June 20–24, 2022, pages 543–556. ACM,
2022. doi:10.1145/3519935.3520068.

SoCG 2024

https://doi.org/10.4230/LIPIcs.FSTTCS.2012.424
https://doi.org/10.1016/J.DAM.2008.11.006
https://doi.org/10.1016/J.TCS.2005.10.008
https://doi.org/10.1016/J.TCS.2005.10.007
https://doi.org/10.4086/TOC.2010.V006A005
https://doi.org/10.4086/TOC.2010.V006A005
https://doi.org/10.1007/978-3-642-31594-7_57
https://doi.org/10.1109/FOCS.2018.00052
https://doi.org/10.1109/FOCS.2018.00052
https://doi.org/10.1145/3483425
https://doi.org/10.1137/S089548019529248X
https://doi.org/10.1145/3357713.3384261
https://doi.org/10.1016/0095-8956(79)90012-1
https://doi.org/10.1007/11917496_10
https://doi.org/10.48550/arXiv.2309.16629
https://doi.org/10.1145/3519935.3520068

	1 Introduction
	1.1 Our Contributions
	1.2 Our Techniques

