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—— Abstract

We define and investigate the Fréchet edit distance problem. Given two polygonal curves 7 and o and

a threshhold value § > 0, we seek the minimum number of edits to o such that the Fréchet distance
between the edited o and 7 is at most §. For the edit operations we consider three cases, namely,
deletion of vertices, insertion of vertices, or both. For this basic problem we consider a number
of variants. Specifically, we provide polynomial time algorithms for both discrete and continuous
Fréchet edit distance variants, as well as hardness results for weak Fréchet edit distance variants.
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1 Introduction

1.1 Motivation

We consider the general problem of shape matching between polygonal curves. In a standard
formulation of this problem, one is given two sequences of points embedded in a common
ambient space like R? with d a constant. Depending on the specific application, these inputs
may be interpreted directly as the discrete point sequences they are or as the vertices of
continuous curves obtained by interpolating between contiguous sequence points.

The computational geometry community has strongly promoted the use of the Fréchet
distance to handle determining similarity of the curves and matching corresponding portions.
The continuous Fréchet distance is often presented using the walks of a person and their dog
along the curves; both entities move at any positive variable speed from the beginning to the
end of their respective curve, and one seeks the smallest length of a leash needed to keep
them connected during their walks. For the discrete variant, the person and dog are replaced
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by a leashed pair of frogs that iteratively hop between contiguous vertices, either individually
or at the same time, and the length of the leash is only considered during the moments
between hops. Some prior works have also considered the weak variants of continuous and
discrete Fréchet, where the entities are allowed to move backwards at times to keep their
leashes short. Beyond its theoretical interest, the Fréchet distance has seen use in mapping
and map construction [2, 10], handwriting recognition [23], and protein alignment [20].

We naturally consider two curves to be similar if their Fréchet distance does not exceed
some predetermined threshold value 0. This notion of similarity allows for a single choice of §
that can be used regardless of the curves’ length, and it is resilient to differing sampling rates
(as long as the sequences are sufficiently dense in the case of discrete Fréchet). Unfortunately,
this intuitively satisfying notion of similarity has some severe issues once we start applying
it to noisy real world data such as GPS traces from individuals’ phones or vehicles. In
particular, nearly all variants of the Fréchet distance are extremely sensitive to outliers.
Adding even a single point to one of the input curves can increase their distance by an
arbitrarily high amount if that point lies far away from the other curve, and this issue is
present regardless of how many points are present in the curves’ input sequences. Similarly, a
sparsely sampled continuous curve can change dramatically if even a single vertex is ignored.

1.2 The Fréchet Edit Distance

Multiple modifications of and even alternatives to the Fréchet distance have been proposed
to address the issue described above, and we review the most relevant of these alternatives in
Section 1.4. At the end of the day, though, we want to keep that our final notion of similarity
is based on the standard definitions of Fréchet distance as it remains the best tool we have
for working with continuous and densely sampled discrete curves.

We take inspiration from the string edit distance (Levenstein distance). Viewing the
input curves’ point sequences as a pair of strings, we ask for the minimum number of edits
(point deletions and/or insertions) needed to bring one curve within Fréchet distance ¢ of the
other. Intuitively, the fewer edits needed, the more likely it is that the input curves really do
represent two instances of the same or at least very similar trajectories through the ambient
space. Depending on which of the above variants of the Fréchet distance we use and which
edit operations we allow, we obtain one of several specific similarity measures between the
curves. However, we refer to any of these combinations under the general term Fréchet edit
distance. We give the formal definitions and notation for these measures in Section 2.

1.3 Our Results

We describe polynomial time algorithms and NP-hardness results for nearly every variant of

Fréchet edit distance proposed above. Let m and n denote the number of points in the two

input sequences, with n denoting the number of points in the sequence that can be edited.

1. We describe polynomial time algorithms for certain cases of Fréchet edit distance using
the strong continuous Fréchet distance. When limited to deletions, in any R? we
can compute the Fréchet edit distance in O(mn?) time. If only k deletions are needed,
our algorithm can be made to run in O(k*mn) time. Further, we can also handle the
case when we allow deletions on either input curve, and the corresponding running
times respectively become O(m?n?®) or O(k*mmn). In the plane, R?, for insertions only
we describe algorithms with times O(nm®), or O(nm?(k? + mlog®m)) when limiting
to k insertions. When we allow both deletions and insertions these times become
O((m + n)*nm?3) and O(knm?(k* + mlog® m)).
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All of our algorithms for strong continuous Fréchet distance include an embedding of
the curve(s) being edited into a DAG complez [19], a geometrically embedded directed
acyclic graph that represents the different routes one can take through a curve and its
optionally edited portions. For deletions, we include every direct vertex-to-vertex segment
in the complex. Insertions require substantially more care, because it is not clear ahead of
time where one should place the new vertices or where the new subcurves they determine
will map to. In fact, a newly inserted subcurve may map to a portion on the curve not
being edited that starts or ends on the interior of a segment. Despite this challenge, we
can argue that one can restrict attention to a bounded set of canonical subcurves, and
these subcurves can be computed with the aid of a result from [18] who describe how to
compute minimum vertex curves lying within small Fréchet distance to another curve,
via the computation of so-called minimum link stabbers.

2. For the strong discrete Fréchet distance with edits limited to deletions, we describe
an O(mn) time algorithm for any pair of curves in R?. This result cannot be improved
upon by any polynomial factor without violating a conditional lower bound known for the
discrete Fréchet distance itself [5, 6]. For insertions (with or without deletions as well),
the running time becomes O(m? + mn). These algorithms use relatively straightforward
dynamic programming recurrences, although we do some non-trivial precomputation to
compute a small set of positions in which to insert new points.

3. We show that the variant with weak discrete Fréchet distance is NP-hard even for
curves in R! when attempting to minimize the number of deletions, minimize the number
of insertions, and minimize the number of either kind of edit. In fact, even determining if
any number of deletions leads to small weak discrete Fréchet distance is NP-hard. These
results can be extended to weak continuous Fréchet distance after moving to the
plane R?. All of our hardness results are shown by a reduction from 3SAT using a similar
argument to that used in [7] for the hardness of finding a minimum weak discrete Fréchet
distance realization for uncertain curves in R*.

In addition to deletions and insertions, our results can be extended in a straightforward
manner to include substitutions as a third possible edit operations for the Fréchet edit
distance. We defer the details to the future journal version of the paper.

1.4 Related and Improved Upon Prior Work

As far as we are aware, we are the first to consider this particular measure of similarity
in full generality, although there is past work that comes close. The most relevant large
body of work concerns the shortcut Fréchet distance between curves where one asks for
the minimum Fréchet distance possible after replacing disjoint subcurves with line segment
shortcuts [14, 8, 13, 4, 15]. For continuous curves, one can either allow the shortcuts to go
between any two (interpolated) points on the curve, or restrict the shortcuts to be between
vertices of the curve. This vertex-to-vertex shortcut restriction is similar to the deletion only
version of Fréchet edit distance, except deletion of multiple contiguous points counts as a
single shortcut operation. (By default we assume the shortcut problem is defined without
a bound on the number of shortcuts allowed, though the bounded version has also been
considered before, and prominently so in [13].)

Most relevant to the current work is a known O(n®logn) time algorithm for deciding
if the continuous Fréchet distance with vertex-to-vertex shortcuts on one of two n-vertex
curves is at most a given value 6. This algorithm is restricted to curves in R? [8]. A slight
modification to our first algorithm improves the running time to O(n®) and works for curves
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in any R?. We note that the equivalent shortcut problem for the discrete Fréchet distance has
a known linear time solution in the plane [4]. (Recall our discrete deletion only edit distance
algorithm minimizes the number of point deletions, and thus its running time cannot see a
substantial improvement without violating conditional lower bounds [5, 6].) Surprisingly, the
shortcut problem becomes NP-hard when shortcuts are allowed between any two points on
the continuous curve [8]. Further developing the hardness picture, our Section 6 result for
any number of deletions implies even vertex-to-vertex shortcutting is NP-hard if we switch
from the strong to the weak Fréchet distance, with the interpretation that the curve must be
shortcut before the traversal (i.e. one cannot shortcut a subset of vertices and then later go
back to a vertex in the subset, which is automatically not possible in the strong version).

Buchin and Plétz [9] proposed an alternative to the above problem where one seeks the
minimum Fréchet distance possible between discrete or continuous curves after removing up
to k vertices on one or both curves. By wrapping them in a binary search, their algorithms
can be used to solve the deletion only strong Fréchet distance versions of our problem. Our
algorithms are faster than theirs by at least a logn factor in every case except allowing
deletions from two continuous curves where their algorithm uses one fewer factor of k.

Leaving behind the Fréchet distance allows one to consider other distance measures
that are best defined over the discrete input sequences as opposed to their interpolated
curves [1, 16, 17, 12, 11, 21, 22, 24, 25]. Of particular note is the so-called geometric edit
distance where one attempts to edit one sequence to look exactly like the other one, assigning
smaller costs for substitutions between nearby points [1, 16, 17]. As opposed to the above
measures for discrete sequences, our use of Fréchet distance allows us to work with continuous
interpolations of the input sequences. Even when considering the discrete Fréchet distance,
we avoid the issue of two nearly identical but offset curves from having a high distance just
because they contain a large number of input points. If an input resembling two such curves
results in a high Fréchet edit distance, it must be because there is a large number of outlier
points that need to be cleaned up before similarity is evident.

2 Preliminaries

Throughout, given points p,q € R?, |[p — ¢|| denotes their Euclidean distance. Moreover,
given two (closed) sets P,Q C R?, ||P — Q|| = minyepqeq |Ip — ¢|| denotes their distance,
where for a single point * € R? we write ||z — P|| = |[{z} — P||. B(x,r) will be used to
denote the closed ball of radius r centered at x. We use angled brackets to denote an ordered
list (x1,...,x,), and use L; o Ly to denote the concatenation of ordered lists Ly and Lo,
where for a single item x we sometimes write z o L = (z) o L.

Fréchet Distance. A polygonal curve of length m is a sequence of m points 7 = (71, ..., Tpm)
where 7; € R? for all 4. Such a sequence induces a continuous mapping from [1,m] to R?,
which we also denote by 7, such that for any integer 1 < i < m, the restriction of 7 to the
interval [4,4 + 1] is defined by (i + o) = (1 — a)m; + am;4q for any a € [0, 1], i.e. a straight
line segment. We will view 7 as both a discrete point sequence and a continuous function
interchangeably, and when it is clear from the context, we also may use 7 to denote the
image 7([1,m]). We use [i, j], for ¢ < j, to denote the restriction of 7 to the interval [, j].
Given a curve m = (71, ..., Ty), we write || = m to denote its size.

A reparameterization for a curve 7 of length m is a continuous non-decreasing bijection
f:10,1] — [1,m] such that f(0) = 1, f(1) = m. Given reparameterizations f,g of an m
length curve m and an n length curve o, respectively, the width between f and g is defined as
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widthy 4(m,0) = maxaepq ||7(f()) — o(g())||. The (standard, i.e. continuous and strong)
Fréchet distance between m and o is then dg (7, 0) = inf sy widthy 4(m, o) where f, g range
over all possible reparameterizations of 7 and o.

The discrete Fréchet distance is similar to the above defined Fréchet distance, except that
we do not traverse the edges but rather discontinuously jump to adjacent vertices. Specifically,
define a monotone correspondence as a sequence of index pairs ((i1,j1), ..., (ik, jx)) such
that (i1,71) = (1,1), (ig, k) = (m,n), forany 1 < z < k we have 1 <4, <mand 1< j, <n,
and for any 1 < z < k we have (i,41,j.41) € {(i= + 1,7.), (42,4 + 1), (i + 1,5. + 1)}. Let
C denote the set of all monotone correspondences, then the discrete Fréchet distance is
dpg(m,0) = infeec max(; jec || — 0l

Both the Fréchet distance and the discrete Fréchet distance have a corresponding weak
variant, which is defined analogously except that one is allowed to backtrack on the curves.
Specifically, the weak Fréchet distance, denoted d¥(, o), is defined similarly to the standard
Fréchet distance above, except that when defining the width f and ¢ are no longer required to
be non-decreasing bijections, but are still required to be continuous and have f(0) = 1,¢(0) =1
and f(1) = m, g(1) = n. Similarly, the weak discrete Fréchet distance, denoted d¥+(m, o), is
defined similarly to the discrete Fréchet distance above, except that we no longer require
the correspondence to be monotone. Specifically, a (non-monotone) correspondence is a
sequence of index pairs ((i1,71),- .-, (i, jr)) such that (i1,71) = (1,1), (ig,jr) = (m,n),
forany 1 < z<kwehave 1l <i, <mand 1< j, <n,and for any 1 < z < k we have
(iz+lajz+1) € {('Lz + 1»jz)a (iz;jz + 1)’ (iz =+ 1ajz + 1)}

Free Space. To compute the Fréchet distance one normally looks at the so called free
space. For the continuous case, the § free space between curves m and o, of sizes m and n
respectively, is defined as

Fs ={(a,p) € [L,m] x [Lin] | ||m(c) — o (B)]] < 0}

Alt and Godau [3] observed that any x, y monotone path in the 0 free space from (1,1) to

(m,n) corresponds to a pair of reparameterizations f, g of m, ¢ such that widths 4(m,0) < 4.
The converse also holds and hence dx(m,0) < § if and only if such a monotone path exists.

Thus in order to determine if dz(m,0) < 4, we define the reachable free space,
Rs ={(a,p) € F5 | there exists an z,y monotone path from (1,1) to («, 3)}.

Hence dr(m,0) < ¢ if and only if (m,n) € R;.

For the case of the discrete Fréchet distance, the free space can still be considered, and
is simply described by an m x n grid graph. Specifically, the vertices are all pairs (3, j)
such that 1 <4 <m and 1 < j < n, and for any vertex (¢,;) we create the directed edges
(i,7) = (i+1,9), (4,4) = (4,5 + 1), and (4,5) — (i + 1,5+ 1) (whenever the corresponding
destination vertex exists). A vertex (i,7) is then called free if ||m; — o;|| < d. Analogous to
the continuous case, we then have that dpg(m, o) < § if and only if there is a path in this
directed graph from (1, 1) to (m,n) which only uses free vertices.

For the weak discrete Fréchet distance the free space is described by the undirected graph
on the same set of vertices, where vertex (¢,7) and vertex (i/,j’) are adjacent if and only
if i —4'| <1and |j—j| <1. Again, d¥}j4(7m,0) < § if and only if there is a path in this
undirected graph from (1,1) to (m,n) which only uses free vertices. Analogously, the free
space for the weak continuous Fréchet distance is the same as that for the strong continuous

Fréchet distance, but now we no longer require the path through the free space be monotone.
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Fréchet Edit Distance. Given a curve o = (01, ...,0,), a deletion of the vertex o; produces
the n — 1 vertex curve o/ = (01,...,0i—1,0i+1,...,0p). Conversely the insertion of a vertex
p into o at position ¢ produces the n + 1 vertex curve ¢’ = (01,...,05-1,p, 04, ..., 0n). Both

deletions and insertions are referred to as edits. Let § > 0 be a fixed threshold distance.
Then given polygonal curves m = (7y,...,m,) and ¢ = (o1,...,0,) define the §-threshold
Fréchet edit distance from o to 7 as the minimum number of edits to o, producing a new
curve o', such that dg(m,0’) <. As § > 0 is some fixed value, and the term “Fréchet” is
implicit, throughout we refer to this more simply as the edit distance from o to w, and we
denote it as edy(m,0). We analogously define the weak edit distance, denoted edy(m, o),
the discrete edit distance, denoted edp(m, o), and the weak discrete edit distance, denoted
edy 5 (7, o), by replacing the condition dg (7, 0’) < § with d¥(7r,0") <6, dpg(m,o’) <6, and
d¥4(m,0") < 6, respectively.

For any one of these variants we may consider the case when only deletions or only
insertions are allowed. In this case we prepend D for deletion only, or I for insertion only.
(For example, eds(m, o) becomes Deds(m, o) or leds(m,0).) Note that by considering only
deletions or only insertions, there may be no valid edit sequence, in which case we define the
edit distance as co. Conversely, if we allow both deletions and insertions, there is always a
solution of cost m + n by deleting all vertices of o and inserting all vertices of .

3 DAG Complexes

[19] define the following generalization of a curve. Consider a directed acyclic graph (DAG)
with vertices in R?, where a directed edge p — q is realized by the directed segment pq.
We refer to such an embedded graph as being a DAG complex, denoted C, with embedded
vertices V(C) (i.e. points) and embedded edges E(C) (i.e. line segments). We assume the
underlying graph is weakly connected and thus write |C| = |E(C) |. Note also that a DAG
complex is allowed to have crossing edges or overlapping vertices (i.e. it is not necessarily an
embedding in R?). Call a polygonal curve 7 = (my,...,m%) compliant with C if m; € V(C)
for all ¢ and m;m;11 € E(C) for all 1 <4 < k. (Note this implies 7 traverses each edge in the
direction compliant with its orientation from the DAG.) [19] considered the following.

» Problem 1. Given two DAG complexes C1 and Ca, start vertices s; € V(C1),s2 € V(Ca),
end vertices t1 € V(Cy1) ,ta € V(C2), and a value 0, determine if there exists two polygonal
curves Ty, T, such that:

(a) m; is compliant with C; fori=1,2.

(b) m; starts at s; and ends at t; in C;, fori=1,2.

(C) d:}‘(’ﬂ'l,ﬂ'g) é d.

[19] solve Problem 1 in O(|C1]|C2|) time by considering the free space of the product
complex of C; and Cy. This is analogous to the standard procedure used for the Fréchet
distance between curves. In the full version, we describe this standard procedure for curves
and then how the proceedure extends to this more general product complex. This in turn
allows us to remark how the procedure from [19] can easily be extended to the more general
setting where we allow multiple starting and ending points, resulting in the following theorem.

» Theorem 2. Given two DAG complexes C1 and Cs, starting vertices S1 C V(Cy) and
Sy C V(Ca), target vertices Ty C V(C1) and Ty C V(C3), and a value 6, then in O(|C1]|Ca|)
time one can determine the set of all pairs t1 € T and ty € Ts, such that there are curves my
and w9 such that

(a) m; is compliant with C; fori=1,2.

(b) m; starts at some s; € S; and ends at t;, for i =1,2.

(C) dg(ﬂ'l,ﬂg) < 0.
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4 Continuous Fréchet Distance

We give algorithms to compute Deds(mw, o), leds(m, o), and edg(m,0). The high level
approach in each case is to convert m and ¢ into DAG complexes and apply Theorem 2.

Recall that in the Fréchet edit distance problems, we are only editing o, not w. As
remarked above, 7 is itself a DAG complex, and using this complex directly represents that 7
is not modified. Thus in the following the task is to model edits to ¢ with an appropriate
DAG complex. (For Dedg (7, o) we will remark that creating such DAG complexes for both =
and o allows modelling the problem where deletion is allowed on either curve.)

4.1 Deletion Only

Given a curve o = (07, ..., 0y), consider the DAG complex produced by adding all possible
forward edges to o, namely all directed edges o;0; for all 1 < i < j < n. We will refer to
this as the complete DAG complex induced by o. Observe that any curve that is compliant
with the complete DAG complex is defined precisely by the subsequence of vertices from o it
contains. Thus the set of curves that are compliant with the complete DAG complex is in one
to one correspondence with the set of subsequences of 0. Conversely, any curve obtained by
deleting a subset of vertices from o, is defined by the subsequence of ¢ that remains. Thus
one concludes that the set of all curves that are compliant with the complete DAG complex

of o are in one to one correspondence with the set of curves obtainable from o by deletions.

The above tells us that the complete DAG complex encodes all possible curves produced

by deletion, however, it needs to be further modified to also encode the cost of these deletions.

To account for this cost we make k additional copies of o, where k is some bound on the
number of allowed deletions (which may be as large as n). Intuitively, the copy number of a
given vertex encodes the number of deletions made so far. So let o/ = (cf,...,c%) denote
the /th copy. Then to construct the DAG complex, for all 0 < £ < k and all 4 < j such that
L+ (j— (i+1)) <k, we add the directed edge Ufaf+(j7(i+1)). Such edges are added since if

we wish to delete all vertices between o; and o; (and hence use the edge o;0,) then we pay

for these (j — (i + 1)) deletions by advancing from the copy ¢ to copy £+ (j — (i + 1)) of o.

Call the resulting complex the complete weighted DAG complex of o.

Now given m = (m1,...,7n) and o = (01, ...,0,), our goal is to decide if Deds (7, o) < k.

As discussed above, the directed edges of m immediately define a DAG complex, and thus
we refer to this complex simply as w. On the other hand, for o we construct the complete
weighted DAG complex for o, denoted C,. Now for m we must start at m; and end at m,,
however, for ¢ the optimal solution may delete some prefix of vertices o1, ..., o;, which would
correspond to starting at vertex ol ; in Cy. Thus the set S, of starting vertices consists
of all vertices o 41+ Similarly, the optimal solution may delete some suffix of vertices from
0. To handle this case, however, we simply consider all possible ending vertices, namely
T, = V(C,). Then we call Theorem 2, which in O(k?mn) time (since |7| = O(m) and
|Cs| = O(k?n)) computes the set of all pairs in ,, x V(C,) such that there are compliant
paths from allowable starting vertices whose Fréchet distance is < §. If no such pair exists
then Dedy(m,0) > k. Otherwise, let (m,,,0) be one of the computed ending pairs. Then
reaching this pair corresponds to deleting « vertices before o;, plus deleting all n — ¢ vertices
after o;. Thus for each such pair (m,,c%) we check if oo+ (n — i) < k, and if this holds for
some pair then Dedy (7, o) < k, and otherwise Dedy (7, o) > k.

Before stating our summarizing theorem, we observe several easy extensions. First, if
deletions are allowed on both curves, then the same procedure works where instead of using
7w as one of the DAG complexes, we use the complete weighted DAG complex C,, yielding
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O(k*mmn) time in total. Alternatively, again only allow deletions on o, but consider the
problem of computing Dedg (7, ¢), rather than determine if Deds (7, 0) < k for some k. In
this case, the same procedure works by setting £ = n (as one cannot delete more vertices than
the curve contains), and then finding the pair (7, of*) of allowable end vertices minimizing
a + (n — i), resulting in an O(mn?) running time. Finally, applying this same idea to
computing Deds (7, o) when deletions are allowed on both curves gives an O(m3n?) time, as
there can be at most n deletions on ¢ and at most m on 7.

» Theorem 3. Given curves 1 = (m1,...,my) and 0 = {01,...,0,), a threshold §, and an
integer parameter k > 0, in O(k®*mn) time one can determine if Dedg(m, o) < k.

If deletions are allowed on both 7 and o, then in O(k*mn) time one can determine if
Deds (7, 0) < k. Finally, one can compute Dedg(m,a) in O(mn3) time if deletions are only
allowed on o, and in O(m3n3) time if deletions are allowed on both curves.

A slight variation of the above algorithm can be used to solve the vertex restricted
shortcut Fréchet distance problem as described in [14, 8], improving the result in [8] for R?
by a logn factor while also extending it to R?. Details appear in the full version.

» Corollary 4. Given a threshold §, a fized curve m = (m1,...,Tm), and a curve o =
(01,...,0,) which allows shortcuts, then in O(mn?) time one can determine if the vertex
restricted shortcut Fréchet distance is < 4.

4.2 Insertions

Applying the above approach for insertions only or both deletions and insertions is considerably
more difficult. We sketch the main argument here, and give the full details in the full version.
For this section, we assume both 7 and o are in R?, since we use the results in R? from [18].
For simplicity, we will first assume there are no insertions before o; nor after o,,.

Observe that if it is beneficial to insert a subcurve between two consecutive vertices of
o, then this subcurve should be a minimum vertex curve with Fréchet distance § to some
portion of w.  Unfortunately, the portion of = that we are matching to may not begin
and end on vertices of m. Regardless, it suffices to consider a bounded number of canonical
starting and ending location pairs.

» Definition 5. Given a curve m = (m1,...,mp), a value 8, and points s and t such that
[|s = m1|| <6 and ||t — mm|| < 0, let mvs(s,t, ) denote the curve o = {(o1,...,0,) with the
minimum number of vertices such that dg(m,socot) < 9.

For an ordered segment q1q2 and a point p such that B(p,d) Nqiqz # 0, let enters(p, q1q2)
denote the point in B(p,d) N q1q2 closest to q1, and similarly let leaves(p,q1q2) denote

the point in B(p,d) N qi1ge closest to qa. Finally, given a curve m = (my,...,Tm) where
m > 2, and points s and t such that ||s — mma|| < 6 and ||t — Tm—17m|| < 0, define
clips(s,t, ) = (leaves(s, m1m2), T2, .. ., Tm—1, enters(t, Tm—17Tm))

Let mvs(m) be the analogue of mvs(s,t, ) from Definition 5, except where we require
dy(m,0) < 0 instead of dg(m,s00 ot) <4, i.e. the starting points s and ¢ are not specified.
[18] compute mvs(m) in their Theorem 14. The full version reduces mvs(s,t,m) to mvs(m).

» Theorem 6 ([18]). Given m = (m1,...,7Tm), a value §, and points s and t such that
l|s —m1|| < & and ||t — T || < 8, then mvs(s,t,m) can be computed in O(m?log® m) time.
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For insertions only, instead of adding directed edges between pairs of vertices of copies of
o, we compute and insert copies of the following O(nm?) canonical subcurves.

i<n, a<f-1<m-1,
CS(’]RO—) = mV5(0i7U'i+17Clip5(0i70i+17ﬂ—[a7ﬁ])) i,O[,B € Z+a ||01 - 7T047T04+1|| S 57

loisr — mp1mpl| <0

Computing CS(, o) takes O(nm*log? m) time. The complex for 7 has size O(m), and the
insertion weighted complex constructed for o has size O(k*nm?). Thus the total time to
construct the complexes and find nearby curves within them is O(nm?(k? + mlog®m)). We
can argue that Teds (7, o) = O(m). Therefore, O(nm?(k* + mlog® m)) = O(nm?). Deletions
and insertions together are handled similarly by extending CS(mw, o) to be defined over all
pairs on o. See the full version for details.

» Theorem 7. Given curves m = (m1,...,Tp) and o = {(oy,...,0,) in R?, a threshold §,
and an integer k > 0, in O(nm?(k?* + mlog®m)) time one can determine if leds(m,0) < k.
Moreover, one can compute leds(m,a) in O(nm?®) time.

» Theorem 8. Given curves ™ = (m1,...,my) and 0 = (01,...,0,) in R?, a threshold §,
and an integer k > 0, in O(knm?(k* + mlog®m)) time one can determine if edg(m, o) < k.
Moreover, one can compute eds(m,c) in O((m + n)3nm?) time.

5 Discrete Fréchet Distance

We now discuss the discrete analogs Dedpg(m, o), ledpg(w, o), and edpg(m, o) of the prob-
lems in the previous section. The extra structure afforded by considering discrete point
sequences allows us to more directly apply standard dynamic programming techniques and
achieve faster running times for all three problems and in any constant dimension.

5.1 Deletion Only

The deletion only variant Dedns(m, o) serves as an easy warm up. Let DedDP(i,j) :=
Dedp(m([l,i],0[1,]) (with ¢ = 0 and j = 0 denoting empty prefixes, and DedDP(0,0) = 0).
Suppose there is a set of deletions changing o[1, j] into a curve o’ such that dps(7[1,4],0") < 4.

If 4 > 1, then we must have j > 1 as well. Suppose further that ||o; — m;|| < J. Now,
any monotone correspondence between 7[1,] and ¢’ already includes or can be extended
to include the pair (m;, 0;) without increasing the maximum distance of a pair beyond .
Therefore, we may assume o’ ends with ;. As in the normal dynamic programming solution
for the discrete Fréchet distance, we may further assume the rest of the correspondence
matches all of curves 7[1,4] and o’ except for the last point of one or both of them.

If i =0 and j > 1 then clearly o; must be deleted as there is no vertex of 7 to match it
to. Similarly, if ¢, 7 > 1 and ||o; — m;|| > 4, then again o; must be deleted as all monotone
correspondences between 7[1,¢] and ¢’ end with a pair containing the last point of both.
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From the above discussion, we conclude

0 ifi=0and j=0
00 ifi>1land j=0
1+ DedDP(i,j — 1) if (i=0and j>1)
DedDP (i, j) = or (i,j > 1 and ||o; — 7| > 9) -

DedDP(i,j — 1),
min DedDP(i — 1,7),
DedDP(i — 1,5 — 1)

otherwise

Dedpg(m, o) = DedDP(m, n) can be computed easily in O(mn) time using this recurrence.

» Theorem 9. Given curves ™ = (Ty,...,Tm) and 0 = (01, ...,0,) in R? and a threshold §,
one can compute Dedpg(m,0) in O(mn) time.

5.2 Insertions

We now consider the insertion only case Iedps(m, o). Let IedDP(3, j) := Iedpg(n[1, 1], o[1, 4]).
As before, assume there is a set of insertions changing o[1, j] to ¢’ where dps(7[1,1],0") < 4.

Suppose o’ ends with ¢;, implying ||o; — m;|| < . (It is important to note for later that
if ||o; — m|| < ¢ it does not imply ¢’ ends with o;.) We get the three standard cases for
computing the discrete Fréchet distance as before.

Now suppose ¢’ does not end with o; and instead ends with a newly inserted point. Let
x denote this final point of ¢’. There exists some k € {1,...,i} such that the monotone
correspondence with maximum distance at most § between o’ and 7[1, ] ends with pairs
between points of (7, ..., m;) and x. These points of (7, ..., ;) all live in B(z,d), the ball
of radius § centered at x. Accordingly, let 1(i) denote the smallest ¢ € {1,...,i} such that
the radius of the minimum enclosing ball of (7, ..., 7;) is at most §. We may assume x is
the center of the ball defining p(7) and that p(i) < k < i. We have the following recurrence.

0 ifi=0and j=0
00 ift=0andj>1
1 + min,,;)<x<; ledDP(k — 1, j) if (i >1and j=0)

or (i,j > 1 and ||lo; — ;|| > )
IedDP(i, j) = TedDP(i.j 1) .
TIedDP(i — 1,7),
min TedDP(i — 1,/ — 1) otherwise
J

1+ min IedDP(k —1,

p(8)<k<i

/)
After O(m?) preprocessing time and through careful use of simple data structures, we are

able to solve all the relevant subproblems in O(mn) time. A similar recurrence and dynamic
programming strategy works for edps(m, o). See the full version for details.

» Theorem 10. Given curves ™ = (r1,...,7Ty) and o = (01,...,0,) in R? for constant d
and a threshold &, one can compute ledpg(m, o) in O(m? + mn) time.

» Theorem 11. Given curves ™ = (m1,..., ) and 0 = (01, ...,0,) in R? for constant d
and a threshold §, one can compute edpg(m, o) in O(m? + mn) time.
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6 Hardness

In this section we prove that a number of variants of the weak edit Fréchet distance are
NP-hard. For these variants we will first focus on the discrete Fréchet distance case, showing
NP-hardness even when the curves are restricted to points in R!. Afterwards we show
how the NP-hardness proofs easily extend to the continuous case for curves in R2. All the
NP-hardness proofs will be by a reduction from 3SAT, inspired by the reduction in [7].

For this section, let 7 and ¢ be polygonal curves in R! unless otherwise stated, and let
d = 1 be the given threshold with no loss to generality. Since 7 and ¢ are curves in R!, we
directly label column ¢ (resp. row j) of the free space with m; (resp. o;). When modifications
are restricted to one curve, they will be on o, which then becomes ¢’/. We also define an
arbitrary 3SAT instance as I, with ¢ clauses and v variables.

6.1 Abstract Framework
Paths and Gaps

Recall from Section 2 that for d¥;(m, o) the free space is an m x n grid graph, where
vertex (i, 7) and vertex (i/,j') are adjacent if and only if |i — /| < 1 and |j — j’| < 1. Then
determining if d¥},(7,0) < 1 is equivalent to determining if a path exists from (1,1) to
(m,n) in the free space graph which only uses free vertices, namely vertices (i, j) such that
|m;i — ;| < 1. See Figure la, for an example when such a path exists.

Consider the highlighted pair of free vertices in Figure 1b. While their horizontal distance
is 1, their vertical distance is 2, which we will refer to as a vertical gap as it prevents a path

through these vertices. Observe, however, that a deletion of the third vertex from o (i.e.

the third row) removes this gap, creating a path from the lower left corner to the upper
right corner, and thus Dedy 4 (7, o) = 1. Conversely, observe that if we were only allowed
insertions on o, then there is no way to bridge this vertical gap. Now consider the highlighted
pair of free vertices in Figure 1c, where now instead there is a horizontal gap. If we are only
allowed deletions on o then there is no way to bridge this gap (though deletions on 7 would
bridge the gap). However, if we allow insertions on o, then inserting a value of 20 at the

third row would create a path between these two vertices, showing that Ied}4(m, o) = 1.

Thus in summary, deletion could be used to bridge a vertical gap but not a horizontal one,
and insertion could be used to bridge a horizontal gap but not a vertical one.

25 O T O 24 O O 26 O
15 O 20 24 Fo)
o i g o
2 o T 16 o 16 T
14 O , 14 O 14 Ot
14 24 25 26 14 16 24 25 14 16 20 25
™ ™ s

(a) The Weak Fréchet distance  (b) Deletion can close the ver-  (c) Insertion can close the hori-
is already 1. tical gap. zontal gap.

Figure 1 Three free spaces diagrams with free spaces represented by circles, and edits permitted
on o only. The values along the axes are the curve coordinates in R!.
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Consider the example in Figure 2, where there are two vertical gaps, and suppose we
are considering the deletion only problem. Now the first vertical gap can be removed by
deleting 03 = 16. However, doing this creates a horizontal gap at mg = 16, where the other
vertical gap was, and this horizontal gap cannot be bridged by deletion(s). Similarly, if we
start by trying to close the second vertical gap with deletion of row oo = 14 then we get an
insurmountable horizontal gap at mo = 14. We thus refer to such a pair of vertical gaps as
opposing. Ultimately, our goal is to use the decision to create a path by bridging a gap as
deciding to set a literal in the given 3SAT instance to True. Intuitively, by creating such
opposing gaps we can make setting a literal to True correspond to setting instances of the
negated literal to False.

25 ,L O ,L O

20 O J (J>7

0— lG )
SRARER
100 O

1 1
10 14 20 25 20 15 10 16 20 25
s

C

O
A4

Figure 2 Opposing vertical gaps, where bridging one with a row deletion creates a horizontal gap
at the other.

Reduction Framework

We now describe the abstract structure, shown in Figure 3, which we use to represent any
3SAT instance as an instance of weak discrete edit Fréchet distance. First, we make a
rectangular free space gadget for each clause, which are then placed in series. Within a given
clause gadget, the rows can intuitively be partitioned into three layers, and each layer can
be partitioned into three sections of columns. Thus overall the clause gadget consists of
9 logical (roughly square) regions, where, as shown in Figure 3, each region consists of an
orange diagonal path of free vertices, which we simply refer to as a diagonal. Now for the top
and bottom layers, their three diagonals will be unobstructed and connect to each other to
allow traversal through these regions. The middle layer will also consist of three diagonals,
however, we create gaps on these diagonals to encode the given clause. Namely, the three
diagonals will correspond to the three literals of the clause, and choosing to bridge a gap on
one of these diagonals will correspond to setting that literal to True.

As mentioned above, the clause gadgets are placed in series. Observe that we enter the
first clause gadget at its bottom left corner, and exit at its top right corner. Thus in order to
have the second clause gadget start where the first clause gadget ends, we invert the second
clause gadget so that it must be traversed from its upper left corner to its lower right corner.
In general, the odd clause gadgets must be traversed up and to the right, and the even ones
down and to the right. (If there are an even number of clauses, we can insert one more
gadget at the end that allows traversing from the lower left to the upper right.) Furthermore,
when going from an odd to an even gadget, there will be a column inbetween with only a
single free space at the top row (resp. bottom row when going from even to odd), to ensure
this is the only point of connection between the gadgets.

Let L := (15,25,...10v 4+ 5) be an ordered sequence of values, and let L’ denote L in
reverse order. An ascending diagonal path is realized by setting portions of 7 and ¢ to both
L or both L®. Similarly, a descending diagonal path is created by setting a portion of 7 to
L (resp. L) and a portion of o to L (resp. L).



E. Fox, A. Nayyeri, J. J. Perry, and B. Raichel 58:13

(X V Xy vV As) | nva V —X5) (X VXV A,

) End/

Start :

Figure 3 Abstract free space structure. This example is satisfied by setting Xo, X5 = True.

Consider a clause gadget, which consists of 9 diagonals, 3 in each layer, alternating
between ascending and descending, creating a zigzag pattern. Within a layer, when two
diagonals meet we insert a value in between them such that they are “glued” together by a
column which locally has no free vertices except at the one location where the diagonals come
together. If the end of one diagonal (correspondingly the beginning of the next one) is the
value 10v + 5, then this can be achieved by placing the value 10(v + 1) between the diagonals,
as it is larger than any value in L. Similarly if the diagonal ends at the value 15 then we
insert the value 10 before the next diagonal. These inserted values will also similarly act to
glue the layers of the clause gadget together. Let 7’ denote the portion of 7 corresponding
to the ith clause. Then the basic clause gadget, shown in Figure 4, is defined by setting

7 =0 =(0,10) 0o Lo (10(v + 1)) o L 0 (10) o L o (10(v + 1),10(v + 2)).

LE{35 (o) o o

0 10 15 25 35 45 55 60 55 45 35 25 15 10 15 25 35 45 55 60 70
—_— — —_—
L LR L

Figure 4 Basic clause gadget, consisting of 9 (highlighted) diagonals made by pairs of L’s and
L™'s which have been glued together such that the free-space has 3 paths.

Observe that we appended the value 0 at the beginning and 10(v + 2) at the end of each
curve. This serves to glue the successive clause gadgets together at single free vertices, in
the same way we glued diagonals within a clause gadget together. Again, the values 0 and
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10(v +2) achieve this by respectively being smaller or larger than any value used internally in
the clause gadget. Note that the above values used to create the basic clause gadget do not
create any gaps in the variable layer. Depending on the edit operation allowed, we modify
the construction to create the appropriate gaps. The details for these modifications are given
in the full version. We summarize the full suite of results in the following two theorems.

» Theorem 12. Given a value § and curves © and o in RY, determining if the weak discrete
Fréchet distance between the curves can be made less than or equal to § by any of the following
processes is NP-hard:

(a) deleting any number of points from o;

(b) deleting up to k points from 7, o, or both;

(c) inserting up to k points into o; and

(d) performing up to k deletions or insertions from/into o.

Further, determining if the weak discrete vertex-restricted shortcut Fréchet distance is less
than or equal to § is NP-hard.

» Theorem 13. Given a value § and curves ™ and o in R?, determining if the weak continuous
Fréchet distance between the curves can be made less than or equal to § by any of the following
processes s NP-hard:

(a) deleting any number of points from o;

(b) deleting up to k points from «, o, or both;

(c) inserting up to k points into o; and

(d) performing up to k deletions or insertions from/into o.

Further, determining if the weak continuous vertex-restricted shortcut Fréchet distance is less
than or equal to § is NP-hard.
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