
Approximating the Maximum Independent Set of
Convex Polygons with a Bounded Number of
Directions
Fabrizio Grandoni #Ñ

IDSIA, USI-SUPSI, Lugano, Switzerland

Edin Husić #Ñ

IDSIA, USI-SUPSI, Lugano, Switzerland

Mathieu Mari #Ñ

LIRMM, University of Montpellier, CNRS, Montpellier, France

Antoine Tinguely #

IDSIA, USI-SUPSI, Lugano, Switzerland

Abstract
In the maximum independent set of convex polygons problem, we are given a set of n convex polygons
in the plane with the objective of selecting a maximum cardinality subset of non-overlapping polygons.
Here we study a special case of the problem where the edges of the polygons can take at most d

fixed directions. We present an 8d/3-approximation algorithm for this problem running in time
O((nd)O(d4d)). The previous-best polynomial-time approximation (for constant d) was a classical nε

approximation by Fox and Pach [SODA’11] that has recently been improved to a OPTε-approximation
algorithm by Cslovjecsek, Pilipczuk and Węgrzycki [SODA ’24], which also extends to an arbitrary
set of convex polygons.

Our result builds on, and generalizes the recent constant factor approximation algorithms for the
maximum independent set of axis-parallel rectangles problem (which is a special case of our problem
with d = 2) by Mitchell [FOCS’21] and Gálvez, Khan, Mari, Mömke, Reddy, and Wiese [SODA’22].

2012 ACM Subject Classification Theory of computation → Packing and covering problems; Theory
of computation → Computational geometry

Keywords and phrases Approximation algorithms, packing, independent set, polygons

Digital Object Identifier 10.4230/LIPIcs.SoCG.2024.61

Related Version Full Version: https://arxiv.org/abs/2402.07666

Funding Fabrizio Grandoni: Partially supported by the Swiss National Science Foundation (SNSF)
Grant 200021 200731/1.
Edin Husić : Supported by the Swiss National Science Foundation (SNSF) Grant 200021 200731/1.
Antoine Tinguely: Supported by the Swiss National Science Foundation (SNSF) Grant 200021
200731/1.

1 Introduction

The Maximum Independent Set of Convex Polygons problem (MISP) is a natural geometric
packing problem with many applications in map labeling [13, 40], cellular networks [35],
unsplittable flow [6], chip manufacturing [28], or data mining [18, 34]. Given a set of n

convex polygons in the plane, the goal is to select a maximum number of them such that the
polygons are pairwise non-overlapping.

MISP is NP-hard [16, 29], hence it makes sense to design approximation algorithms for it.
Disappointingly, the best (polynomial-time) approximation ratio for MISP (more precisely
for k-intersecting curves) has been nε [17], for any fixed constant ε > 0. This ratio has
recently been improved to OPTε [12].

© Fabrizio Grandoni, Edin Husić, Mathieu Mari, and Antoine Tinguely;
licensed under Creative Commons License CC-BY 4.0

40th International Symposium on Computational Geometry (SoCG 2024).
Editors: Wolfgang Mulzer and Jeff M. Phillips; Article No. 61; pp. 61:1–61:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:fabrizio@idsia.ch
https://people.idsia.ch/~grandoni
https://orcid.org/0000-0002-9676-4931
mailto:edin.husic@idsia.ch
https://zhero9.github.io
https://orcid.org/0000-0002-6708-5112
mailto:mathieu.mari@lirmm.fr
https://mimuw.edu.pl/~mmari
https://orcid.org/0000-0001-8074-0241
mailto:antoine.tinguely@idsia.ch
https://orcid.org/0009-0000-7321-5457
https://doi.org/10.4230/LIPIcs.SoCG.2024.61
https://arxiv.org/abs/2402.07666
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

61:2 Approximating MISP with a Bounded Number of Directions

Approximation Schemes. Interestingly, there is a quasi-polynomial time approximation
scheme (QPTAS) for MISP [1]. Thus, the problem is not APX-hard, assuming NP ⊈
DTIME(2polylog(n)), suggesting that it should be possible to obtain a polynomial time
approximation scheme (PTAS) for the problem.

If we assume that we are allowed to shrink the polygons by a factor 1−δ for an arbitrarily
small constant δ, then there is a PTAS for the problem [41]. Note that here the output is
compared to the optimal solution without shrinking.

When the input polygons are fat, e.g., regular polygons, then PTASes are known [9, 15].

Axis-parallel rectangles. A prominent special case of MISP that has attracted a lot of
attention over the years is the maximum independent set of axis-parallel rectangles (MISR),
where all the polygons are rectangles with their edges parallel with the axes. An O(log n)
approximation for MISR was given in [31, 39]. This was slightly improved to O(log n/ log log n)
in [10], and substantially improved to O(log log n) in [7]. In a recent breakthrough result,
Mitchell [37] presented the first constant factor approximation algorithm with approximation
ratio 10, and later 3 + ε in an updated version [38] with a considerably shorter case analysis.
Subsequently, his approach was simplified and improved to a (2 + ε)-approximation algorithm
by Gálvez, Khan, Mari, Mömke, Reddy, and Wiese [21, 22]. These approaches rely on a
dynamic program that considers all the partitions of a bounding box containing the instance
into a number of containers with constant complexity (constant number of line segments).

Our contribution. With the goal of better understanding the approximability of MISP, in
this paper, we consider the following natural special case of MISP: d-MISP is the special case of
MISP where the edges of the input polygons are parallel to a given set D of d = |D| directions.
Notice that MISR is equivalent to 2-MISP. Our main result is a constant approximation for
d-MISP when d is a constant.

▶ Theorem 1. There exists an 8d/3-approximation algorithm for d-MISP running in time
O((nd)O(d4d)).

Our result builds on the approaches in [21, 22, 38], however we have to face several additional
complications. In particular, already for d = 3 the algorithm and its analysis deviates
substantially from the known (polynomial-time) results in the literature about axis-aligned
rectangles. An overview of our approach is given in Section 3.

Related Work. One can consider a natural weighted version of MISP, where each convex
polygon has a positive weight, and the goal is to find an independent set of maximum total
weight. The weighted version of MISR was studied in the literature, and the current-best
polynomial time approximation factor is O(log log n) [8]. We remark that our approach,
likewise the approaches in [21, 22, 37], does not seem to extend to the weighted case. In
particular, finding a constant approximation for weighted MISR remains a challenging open
problem. We remark that the QPTAS in [1] extends to the weighted case, hence suggesting
that the weighted version of MISP might also admit a PTAS.

MISR was also studied in terms of parameterized algorithms. Marx [36] proved that
the problem is W[1]-hard, which rules out the existence of an EPTAS. A parameterized
approximation scheme for the problem is given in [24].

A rectangle packing problem related to MISR is the 2D Knapsack problem. Here we
are given an axis-parallel square (the knapsack) and a collection of axis-parallel rectangles.
The goal is to pack a maximum cardinality (or weight) subset of rectangles in the knapsack

F. Grandoni, E. Husić, M. Mari, and A. Tinguely 61:3

v1

v2

v3

v4

v5

v6

v7

v8
P e1(P)

e2(P)

e3(P)

e4(P)

e5(P)

e6(P)

e7(P)

e8(P)

Figure 1 A convex polygon in 4 directions. The edge e3(P) is degenerate.

(without rotations). 2D Knapsack admits a QPTAS [2] and a few constant approximation
algorithms are known [19, 20, 30]. Here as well, finding a PTAS is a challenging open
problem.

Bonsma et al. [6] established an intriguing connection between MISR and the Unsplittable
Flow on a Path problem. A PTAS for the latter problem was recently obtained [25], closing
a very long line of research (see, e.g., [3, 4, 5, 6, 26, 27]).

2 Preliminaries

In this paper, a (possibly closed) curve is always assumed to be a polygonal chain (or a
singleton point) and a polygon S is a bounded set with non-empty interior int(S) and whose
boundary ∂S is a closed curve. We denote the closure of S as S̄, so S̄ = ∂S ∪ int(S). We say
that two polygons S, T (with non-empty interior) touch if int(S)∩ int(T) = ∅ but ∂S ∩∂T ̸= ∅
and intersect if int(S) ∩ int(T) ̸= ∅. A curve f touches S if f ∩ int(S) = ∅ but f ∩ ∂S ̸= ∅.

A line segment or curve is called degenerate if it is a singleton point. A line segment
or curve is assumed to be non-degenerate unless we explicitly state the opposite. For an
(oriented) line segment e = ww′ (resp. curve γ = w1w2 · · · wk) we define the head of e (of γ)
as h(e) = w′ (h(γ) = wk) and the tail of e (of γ) as t(e) = w (t(γ) = w1) and the interior of
e (of γ) as int(e) = e \ {h(e), t(e)} (int(γ) = γ \ {h(γ), t(γ)}). For a degenerate line segment
(resp. curve), the head and the tail coincide with the line segment (resp. curve).

For a vector v = (x, y), let v⊥ := (y, −x) (which is v rotated clockwise orthogonally). For
a positive integer k, let [k] := {1, . . . , k}.

Input. For a fixed positive integer d, the input of our problem is given by a set of (pairwise
linearly independent) d direction defining vectors D = {v1, . . . , vd} ⊆ Z2 and a set I of
n convex polygons with edges oriented along the directions given in D. Polygons of this
type are sometimes called d-discrete orientation polytopes (d-DOPs) [32]. In this paper,
we will more casually refer to them as (input) polygons; the significance of the word
“polygon” will be clear from context. Without loss of generality, assume v1 = (0, 1) and
that v2, . . . , vd point to the left and are ordered by decreasing slope, see Figure 1. For
i ∈ {d + 1, . . . , 2d}, let vi := −vi−d. The indices of the directions are counted modulo 2d,
i.e., i = i + 2d = i − 2d. More explicitly, each polygon P ∈ I is encoded by 2d integers
p1(P), . . . , p2d(P) as P = {x ∈ R2 : x⊺v⊥

i < pi(P), ∀i ∈ [2d]}; and thus P̄ = {x ∈ R2 :
x⊺v⊥

i ≤ pi(P), ∀i ∈ [2d]}. We assume that those linear inequalities are all tight, including

SoCG 2024

61:4 Approximating MISP with a Bounded Number of Directions

redundant ones1, i.e., ei(P) := P̄ ∩ {x : x⊺v⊥
i = pi(P)} ≠ ∅ for every i ∈ [2d]. ei(P) is called

the edge of P in direction vi. Then, for every i ∈ [2d], ei(P) and ei+1(P) are incident and
h(ei(P)) = t(ei+1(P)). Note that e1(P)e2(P) · · · e2d(P) forms a positively oriented closed
curve.

Grid. Let L1 be the set of all lines in directions v1, . . . , vd passing through the vertices
of the input polygons. In particular, all the edges (including the degenerate ones) of all
the polygons in the input lie on the lines in L1. Notice that |L1| ≤ 2d2n. We recursively
define Vk, for k ∈ [2d] and Lk, for k ∈ {2, . . . , 2d} as follows: Vk is the set of intersection
points of any two (non-parallel) lines in Lk, and Lk is the set of all lines in directions D
passing through points in Vk−1. We define the grid Gk = (Lk, Vk). Since |Vk| ≤ |Lk|2 and
|Lk| ≤ |Vk−1| · d, it follows that |Vk| ≤ (2d3n)2k . The grid G2d form the coordinate system of
our algorithm: every geometric object appearing in the algorithm and the analysis lies on
G2d. A line segment s lies on Gk if s lies on some line in Lk and the extreme points of s lie
on Vk. Similarly, a curve or polygon lies on Gk if all of its line segments do so.

Container. Consider the grid G1. Let C∗ ∈ G1 be a parallelogram that encloses all polygons
in I; we call C∗ the bounding box.2 A container (see Figure 2(a)) is a polygon on G2d with
positively oriented boundary s1f1s2f2 . . . sκfκ where 2 ≤ κ ≤ 5, such that:

s1, s2, . . . , sκ are disjoint and possibly degenerate parallel line segments on G2d (these
will later be called cutting lines).
For all j ∈ [κ], fj is a simple curve on G2d consisting of at most 2d + 1 line segments and
t(fj) = h(sj) and h(fj) = t(sj+1) for every j ∈ [κ] (where sκ+1 = s1).
For all j ∈ [κ], int(sj) does not intersect with any other part of the boundary of the
container.
For all i, j ∈ [κ], i ≠ j, the curves fi and fj might touch but do not cross (defined below).

In particular, a container has at most 10d+10 line segments. Let C be the set of all containers
C with int(C) ⊆ int(C∗). In particular, C∗ is a container and C∗ ∈ C. A bipartition of C ∈ C
is a pair {C1, C2} ⊆ C such that C1, C2 split up C, i.e., int(C)\(∂C1∪∂C2) = int(C1)∪int(C2)
and C1 and C2 may touch but not intersect.

Crossing curves. Two curves cross (see also Figure 2(b)) if each one of them contains
a connected subcurve w0w1 · · · wk and q0q1 · · · qk, respectively, which form a crossing, i.e.,
if w0 ̸= q0, wk ≠ qk, wi = qi for 1 ≤ i ≤ k − 1 and the (non-collinear) triangles w0q0w2
and wtqtwt−2 have the same orientation (i.e., are either both positively or both negatively
oriented).3 For two curves formed by at most k line segments in total, it can be decided in
time O(k3) whether there exists a crossing among them or not [11]. With this definition, it
is guaranteed that every container has a well-defined interior [11].

The proofs and details which are omitted due to space constraints will appear in the full
version of the paper (see also [23]).

1 An inequality is redundant if we can remove it from the definition of P without affecting P .
2 It can, for example, be chosen as a parallelogram delimited by the leftmost and rightmost vertical lines and

the top and bottom v2-oriented lines in G1 (i.e., the extension of e2(P ′) where P ′ = arg maxP ∈I p2(P)
and the extension of ed+2(P ′′) where P ′′ = arg maxP ∈I pd+2(P)).

3 Any container is thus weakly simple according to the definitions in [14, Box 5.1] and [33]. The concept
of weakly simple polygons is extensively discussed in [11].

F. Grandoni, E. Husić, M. Mari, and A. Tinguely 61:5

f4

f5

f1

f2

f3

s2

s1

s3

s4

s5

(a) A container with κ = 5. The line segment s4 on
the boundary of the container is degenerate. The
curves f1 and f5, as well as f1 and f2, respectively,
touch on the green segments but do not cross.

w0

w1

w2

w4

w3

q0

q1

q2

q3 q4

w′
0

w′
1

w′
2

w′
4w′

3

q′0

q′1

q′2

q′3

q′4

(b) The curves on the left touch without
crossing: the triangles w0q0w2 and w4q4w2
have negative and positive orientation, re-
spectively. The curves on the right cross:
the triangles w′

0q′
0w′

2 and w′
4q′

4w′
2 are both

negatively orientated.

Figure 2 A container with κ = 5. An illustration of crossing and non-crossing.

3 Our Approach

First, we present the algorithm in Section 3.1, and give an overview of the analysis in
Sections 3.2 and 3.3. The detailed analysis and proofs are given in the later sections.

3.1 The algorithm

Our algorithm is a dynamic program that generalizes the algorithm in [21]. Each cell of the
dynamic program corresponds to a container C ∈ C. For each container, the dynamic program
computes a set of disjoint polygons Dyn(C) ⊆ I as follows. If C encloses no polygon in I,
set Dyn(C) = ∅. If C encloses exactly one polygon P ∈ I, set Dyn(C) = {P}. Otherwise,
the dynamic program goes through all bipartitions of C and chooses the bipartition {C1, C2}
that maximizes | Dyn(C1)| + | Dyn(C2)| and sets Dyn(C) = Dyn(C1) ∪ Dyn(C2). The final
output of the algorithm is Dyn(C∗).

▶ Lemma 2 (Running time). Let N = |V2d| be the number of points in the grid G2d. Dyn(C∗)
can be computed in time O

(
N20d+20)

= O((nd)O(d4d)).

Proof. The boundary of each container can be identified by a sequence of 10d + 10 line
segments in G2d. There are therefore at most O

(
N10d+10)

containers in C. As argued
in [21], any bipartition {C1, C2} of C is determined by the boundary between C1 and C2,
i.e., ∂C1 ∩ ∂C2, which is composed of at most 10d + 10 line segments. Thus, to compute
Dyn(C), the dynamic program does not consider more that O

(
N10d+10)

bipartitions. This
gives a total running time O

(
N20d+20)

. The lemma follows since N = O((2d3n)4d), see
Section 2. ◀

It is not hard to see that the output Dyn(C∗) is indeed an independent set, so we will focus
on showing that the algorithm has the claimed approximation guarantee.

SoCG 2024

61:6 Approximating MISP with a Bounded Number of Directions

3.2 Analysis
By construction, the output solution Dyn(C∗) is the union of the solutions of two smaller
containers, and so on. We represent this structure by a binary tree called recursive partition
defined below. We argue that Dyn(C∗) is the best solution among all the solutions repre-
sentable by a recursive partition. Then, we show the existence of a recursive partition that
respects the approximation factor claimed in Theorem 1.

▶ Definition 3. For a set R ⊆ I, a recursive partition of R is a rooted tree T with vertex
set V such that

every node u ∈ V corresponds to a pair (Cu, Pr(Cu)) where Cu ∈ C is a container, and
Pr(Cu) is the set of protected polygons of R contained in Cu,
the root r of T corresponds to (C∗, ∅), i.e., Cr = C∗ and Pr(Cr) = ∅;
every internal node has two children u1, u2 such that: Cu1 and Cu2 form a bipartition of
Cu, and Pr(Cu) ⊆ Pr(Cu1) ∪ Pr(Cu2);
for every leaf u of T , Cu contains exactly one polygon Pu ∈ R or no polygon in R at all;
for every P ∈ R, there exists a leaf u of T such that P lies in Cu.

Clearly, if R ⊆ I admits a recursive partition, it must be an independent set. It is easy
to show by induction on the height of the tree that the output Dyn(C∗) admits a recursive
partition, which leads to the following lemma.

▶ Lemma 4 ([21, Lemma 2.2]). If R ⊆ I admits a recursive partition, then | Dyn(C∗)| ≥ |R|.

Therefore, Theorem 1 is a consequence of Lemma 2 and the following proposition.

▶ Proposition 5. Let OPT be an optimal solution of an instance of MISP. There exists a
recursive partition for some set R ⊆ OPT such that |R| ≥ 3

8d | OPT |.

3.3 Informal overview of the proof of Proposition 5
Intuitively, we construct the set R by starting from an optimal solution OPT contained in
the initial container (the bounding box) Cr = C∗ and Pr(Cr) = ∅. Then, we will recursively
partition the current container Cu into two containers Cu1 and Cu2 . R is then defined as
the set of polygons of OPT that are fully contained in the leaf containers. For a polygon
P ∈ OPT contained in Cu, we say that P is lost (at Cu) if it is neither contained in Cu1 nor
in Cu2 .

Below, one of the d directions in D plays a special role: without loss of generality, we
assume that this direction is vertical/vertical-up (v1). The exact choice will be made later.

Accountable polygons. We prove that there exists a subset ACC ⊆ OPT (the accountable
polygons) with at least 3

4d | OPT | polygons, such that for each polygon P ∈ ACC lost during
partitioning of some Cu into Cu1 and Cu2 we can charge an unique polygon P ′ ∈ OPT and
P ′ lies in a leaf container of the recursive partition.

We next describe in more details the set of accountable polygons ACC and how protected
polygons are defined. For technical reasons, we replace each original polygon P ∈ OPT with
a new polygon ext(P) lying on G2d that contains P (see Figures 3 and 4). The new set of
polygons remains independent, and we will simply denote it by OPT in the following.

Let P ∈ OPT and consider its edge e1(P) in direction vertical-up. Let P ′ ∈ OPT and
consider its edge ed+1(P ′) in direction vertical-down. We say that P sees P ′ if e1(P) is
non-degenerate and h(ed+1(P ′)) ∈ int(e1(P)) ∪ {t(e1(P))}, see Figure 4. We let the set ACC
of accountable polygons be the polygons P ∈ OPT such that P sees some P ′ ∈ OPT. It is
easy to show that each polygon is seen by at most one other polygon in OPT.

F. Grandoni, E. Husić, M. Mari, and A. Tinguely 61:7

Partitioning. For C ∈ C, let OPT(C) be the set of polygons in OPT that lie on int(C).
Our construction is guided by a partitioning lemma which is stated later. Roughly speaking,
let C be a container with | OPT(C)| ≥ 2, and let Pr(C) be the set of protected polygons in
C. The partitioning lemma states that C can be bipartitioned by a curve Γ into two smaller
containers C1 and C2 such that
(P1) Γ contains a vertical line segment ℓ that intersects all the polygons in OPT(C) that

are intersected by Γ.
(P2) Γ does not intersect any polygon in Pr(C),
(P3) Pr(C) ⊆ Pr(C1) ∪ Pr(C2).
We stress that the lemma does not hold for an arbitrary set Pr(C) (e.g., if we take Pr(C) =
OPT(C)). The set of protected polygons in a container is defined below.

Charging and protecting. The recursive partition which determines R is defined by repeat-
edly applying the partitioning lemma. During the construction of the recursive partition, we
need to guarantee that the vertical line segments given by (P1) do not intersect too many
polygons from OPT; this is the only possibility of “losing” some polygons. For this, we use
the set of accountable polygons ACC ⊆ OPT. Whenever we apply the partitioning lemma,
the line ℓ intersects some polygons in ACC. For each P ∈ ACC that is intersected by ℓ, i.e.,
for each lost polygon P ∈ ACC, we charge exactly one polygon P ′ seen by P . By (P1), if ℓ

intersects P , then Γ does not intersect P ′. If P ′ is not already an element of Pr(C) and thus
an element of Pr(C1) ∪ Pr(C2), then we add the polygon P ′ to either Pr(C1) if P ′ ∈ C1 or
to Pr(C2) if P ′ ∈ C2. Moreover, if there is a polygon P ′′ ∈ OPT(C) that sees P , then P ′′ is
also added to either Pr(C1) or Pr(C2).

By (P3), adding P ′ to one of Pr(C1) and Pr(C2) means that the charged polygon P ′

will remain protected. By (P2), P ′ will not be intersected by the curves in the following
applications of the partitioning lemma. Therefore P ′ will be an element in R (our intended
recursive partition). Adding P ′′ to one of Pr(C1) and Pr(C2) is also necessary, because the
polygon P is already lost and if we were to lose P ′′ in one of the following steps, there might
not be a polygon which we could charge the loss of P ′′ to.

We conclude that for every polygon P ∈ ACC lost in the partitioning of a container, we
can guarantee that a unique polygon P ′ seen by P is charged, and it will become the protected
polygon in a leaf. At least half of the polygons in ACC are either lost or not, so there are at
least 1

2 | ACC | polygons in the leaves. Proposition 5 follows since | ACC | ≥ 3
4d | OPT |.

3.4 Comparison with previous work on MISR
Overall, we follow the same high level approach as the papers on MISR [21, 22, 38]. Yet,
to generalize the results on MISR to MISP, we encounter several technical difficulties. We
discuss a few of the more prominent ones below.

To define the set ACC, we need the following property (later referred as (E3)): for every
P ∈ OPT and every non-degenerate edge e of P , int(e) touches either another polygon
P ′ ∈ OPT or the boundary of the bounding box. This property can be obtained by
“maximally extending” OPT as in [21, 38]. The difficulty here, unlike in the case of rectangles,
is that naively extending the polygons can result in a grid of exponential size in n.

For MISR [21, 38], the accountable polygons correspond to the non-nested polygons
(both vertical and horizontal). It is essentially trivial to show that the number of non-nested
rectangles is at least half of the optimal number of rectangles. In case of convex polygons,
we require a more careful argument to show that there are at least 3

4d | OPT | accountable
polygons.

SoCG 2024

61:8 Approximating MISP with a Bounded Number of Directions

P

e

e

e

Figure 3 Illustration of the pro-
cess of extending a polygon P . We
extend P by moving the edge e of
P until int(e) touches another poly-
gon in OPT.

v1

v2

v3

v4

v5

v6

v7

v8

Figure 4 A black arrow from P to P ′ indicates that P sees
P ′ with respect to the option (v1, t), i.e., direction vertical-
up and tail. The blue (resp. red) corners represent the tails
(resp. head) of all edges with direction vertical-down (v5).
Thus, a polygon P sees a polygon P ′ if the vertical-up edge
of P is touching the red corner of P ′.

To obtain the partitioning lemma, we follow the same idea as in the case of axis-parallel
rectangles but we need to work with significantly more complex objects. Firstly, the containers
we work with have O(d)-times more line segments. Secondly, the containers that appear in
our construction might not be simple (since some parts of the boundary may touch other parts
of the boundary). These difficulties require more elaborate and more technical arguments.

4 Charging options and accountable polygons

Like the papers [21, 38] on MISR, first, we extend an optimum solution OPT.

▶ Definition 6. Let OPT be an optimal solution of a MISP instance. We say that OPT′ is
a maximal extension of OPT if:
(E1) OPT′ is an independent set of (convex) polygons on G2d and enclosed in C∗.
(E2) There exists a bijection ext : OPT → OPT′ such that P ⊆ ext(P) for every P ∈ OPT.
(E3) For every P ∈ OPT′ and every non-degenerate edge e of P , int(e) touches either

another polygon P ′ ∈ OPT′ or ∂C∗.

On a high level, a maximal extension is constructed as follows: starting with OPT, one
direction vi at a time, as long as there is a polygon P ∈ OPT with ei(P) being non-degenerate
but not satisfying (E3), we extend P by moving the edge ei(P) “outside” (i.e., by steadily
increasing pi(P)), see Figure 3. After the extension in the k-th direction, the edges of
polygons in OPT lie on Gk, so the maximal extension lies on the grid G2d.

By (E2) and (E1), it suffices to prove Proposition 5 for a maximal extension of OPT. (In
particular, (E1) implies that the polygons in OPT′ have edges in the given d directions.)
The purpose of a maximal extension is to guarantee (E3), which is helpful to bound the
number of accountable polygons. For the rest of the paper, we assume that OPT is already
“maximally extended” and thus satisfies (E3), and we work with the grid G2d.

In the rest of this section, by the term direction we mean a direction vi where i ∈ [2d],
and say that edge e is of direction vi if the points of the edge e correspond to t(e) + λ · vi,
with λ ≥ 0. A charging option is specified by a direction vi, i ∈ [2d] and a choice between t

and h. Let O = {vi}i∈[2d] × {t, h} be the set of the 2d · 2 = 4d charging options. We show
the existence of a charging option and a subset ACC ⊆ OPT of accountable polygons with
respect to this option such that (essentially) | ACC | ≥ 3

4d | OPT |.

F. Grandoni, E. Husić, M. Mari, and A. Tinguely 61:9

▶ Definition 7. Let P ∈ OPT and let e be the edge of P in direction v = vi, i ∈ [2d].
Let P ′ ∈ OPT and e′ be the (possibly degenerate) edge of P ′ of direction −v. For
a ∈ {t, h}, we say that P sees P ′ with respect to (v, a) if e is non-degenerate and if
¬a(e′) ∈ int(e) ∪ {a(e)}, where ¬t = h and ¬h = t. (See Figure 4.)
Whenever there exists P ′ ∈ OPT and a charging option (v, a), such that P sees P ′ for
(v, a) then we say that P is accountable for (v, a).

▶ Lemma 8. Let (v, a) ∈ O be a charging option. Any polygon P ′ ∈ OPT is seen by at most
one other polygon P ∈ OPT with respect to (v, a).
Proof. Assume that P ′ is seen by P1, P2 ∈ OPT with respect to (v, a). Let e1 and e2 be the
edge in direction v of P1 and P2, respectively. Then we have ¬a(e′) ∈ (int(e1) ∪ {a(e1)}) ∩
(int(e2) ∪ {a(e2)}). Since int(e1) ̸= ∅ and int(e2) ̸= ∅, it follows that int(e1) ∩ int(e2) ̸= ∅.
This implies that P1 and P2 intersect, thus P1 = P2. ◀

We say that a polygon P ∈ OPT is a corner polygon in the bounding box C∗, if all but
one of the edges of P are contained in the boundary of C∗. In particular, P is a corner
polygon if P = C∗. Similarly, if C∗ is partitioned into two convex polygons, then both
are corner polygons. Let Z ⊆ OPT be the set of corner polygons in C∗. Since C∗ is a
parallelogram, we have |Z| ≤ 4, and the polygon C ′ = C∗ \ (

⋃
Z) is convex.

▶ Lemma 9 (Good charging option). Assume that OPT satisfies (E3). Then, there exists a
charging option (v, a) ∈ O such that at least 3

4d | OPT \Z| polygons in OPT \Z are accountable
with respect to (v, a).
Proof. Let P ∈ OPT and c be a vertex of P . Let e, e′ be the two non-degenerate edges
incident to c where c = h(e) = t(e′). Denote with v (resp. v′) the direction of e (resp. e′).
▷ Claim 10. Suppose that e or e′ (or both) does not lie on the boundary of C∗. Then, P is
accountable with respect to (v, h) or (v′, t).
Proof. By (E3), each non-degenerate edge of P not contained in the boundary of the bounding
box, must touch some other polygon of OPT in its interior. By assumption either e or e′

does not lie on the boundary of C∗, without loss of generality, say e. Then P touches some
P1 ∈ OPT on int(e), i.e., int(e) ∩ e1 ̸= ∅, where e1 is the edge of P1 in direction −v (e1 could
be degenerate). See Figure 5. If P sees P1 with respect to (v, h), i.e., t(e1) ∈ int(e) ∪ {h(e)}
then the claim is true, so assume that t(e1) /∈ int(e)∪{h(e)}. This however implies c ∈ int(e1).

Since c ∈ int(e1) and C∗ is convex, it follows that e′ is not on the boundary of C∗. Then,
by (E3), there exists P2 ∈ OPT that touches P on int(e′), i.e., int(e′) ∩ e2 ≠ ∅, where e2 is
the edge of P2 in direction −v′. If P does not see P2 with respect to (v′, t), then c ∈ int(e2)
by the same argument as before. So int(e1) and int(e2) intersect in c and thus P1 and P2
intersect (as e1 and e2 have different direction) which is a contradiction. Therefore, P must
see P2 with respect to (v′, t). ◁

Consider P ∈ OPT \Z. Since P is not a corner polygon in C∗, it has at least two consecutive
non-degenerate edges such that neither of them lies on ∂C∗. By Claim 10, every vertex
of P incident to one or both of these edges, provides a charging option for which P is
accountable. Thus, the total number of pairs (P, (v, a)) with P ∈ OPT \Z and (v, a) ∈ O
such that P is accountable with respect to (v, a) is at least 3| OPT \Z|. Since |O| = 4d, there
exists an option (v, a) for which the number of accountable polygons in OPT \Z is at least
3

4d | OPT \Z|.4 ◀

4 If we could guarantee a maximal extension in which all the polygons have at least 4 sides, then we
would improve 3

4d to 1
d . In particular, when d = 2 we are in the case of axis-parallel rectangles and we

obtain a 2d = 4-approximation algorithm. This is the same approximation factor achieved in [21, 22, 38]
by charging each lost rectangle to one protected rectangle (the improved 2 + ε factor requires a more
complex charging).

SoCG 2024

61:10 Approximating MISP with a Bounded Number of Directions

P

ee
′

c

P1

e1

P

ee
′

c

P1

P1

c1

e1

Figure 5 Claim 10: the blue (red) corners represents the tail (head) of the edges in direction −v.

5 Recursive partitioning

Without loss of generality (by rotating and mirroring the initial instance if necessary), we
assume that the option (v, a) satisfying Lemma 9 is vertical-up and tail, i.e., (v1, t). In other
words, for any P ∈ OPT, if e1(P) is non-degenerate and if there is a P ′ ∈ OPT such that
h(ed+1(P ′)) ∈ int(e1(P))∪t(e1(P)), then we say that P sees P ′ (and P ′ is seen by P) and that
P is accountable. Lemma 9 states that there exists a subset ACC ⊆ OPT \Z of accountable
polygons such that | ACC | ≥ 3

4d | OPT \Z|, consequently |Z| + | ACC | ≥ 3
4d | OPT |.

We will construct a recursive partition for a specific subset R ⊆ OPT, such that |R| ≥
|Z| + 1

2 | ACC |, which proves Proposition 5. Recall that OPT(C) denotes the set of polygons
in OPT that lie on int(C). Moreover, all of the polygons in OPT and the bounding box C∗

lie on the grid G2d.

Handling corner polygons. If Z ̸= ∅, then we construct the first few nodes of the recursive
partition as follows. Take any corner polygon P ∈ Z. Recall that the root r of the recursive
partition corresponds to (C∗, ∅). We add two children u1, u2 to r and partition C∗ into
the containers Cu1 = P and Cu2 = C∗ \ P . Set Pr(Cu1), Pr(Cu2) = ∅. By construction,
OPT(Cu1) = {P} (so u1 is a leaf in the final tree and OPT(Cu2) = OPT \{P}. Notice that
C∗ \ P is convex with at most five line segments since C∗ is convex. C∗ \ P has five line
segments if P is a triangle, and less if P has more than three sides.) We recurse by treating
Cu2 as the new bounding box.

We end up with a tree on |Z| + 1 leaves, where for one leaf u, Cu is a convex polygon
such that OPT(Cu) = OPT \Z and with at most eight line segments (since |Z| ≤ 4) and
Pr(Cu) = ∅. Each of the remaining |Z| leaves coincides with a unique element in Z. Thus, it
suffices to construct the recursive partition of OPT \Z by treating Cu as the bounding box
with at most 8 line segments. Equivalently, we assume Z = ∅ and allow C∗ to have up to
eight line segments for the rest of this paper.

5.1 The partitioning lemma – formal statement
For any P ∈ OPT, let the top of P be defined as the curve top(P) = e2(P)e3(P) · · · ed(P)
and the bottom of P as the curve bot(P) = ed+2(P)ed+3(P) · · · e2d(P). We define the bottom
and top of the bounding box C∗ in the same way. The following definitions are illustrated in
Figure 6.

▶ Definition 11 (Top and bottom fences). Let P, P ′ ∈ OPT be two polygons such that P sees
P ′. A top-fence is (a segment of) the curve top(P)h(e1(P))t(ed+1(P ′)) top(P ′) such that
the first and last line segment is not vertical. Symmetrically, a bottom-fence is (a segment
of) the curve bot(P)t(e1(P))h(ed+1(P ′)) bot(P ′) such that the first and last line segment is
not vertical.

F. Grandoni, E. Husić, M. Mari, and A. Tinguely 61:11

If P ∈ OPT does not see any polygon, then a segment of its bottom (or top) is also called
a bottom-fence (resp. top-fence).

For a vertical line segment (cutting line) s, we say that a fence emerges from s if one
extreme point of the fence lies on s.

To prove the partitioning lemma, we further specialize the definition of a container (see
Section 2).

▶ Definition 12 (Structured container). A container C with ∂C = s1f1s2f2 · · · sκfκ, κ ≤ 5,
is structured if the cutting lines s1, . . . , sκ are vertical and the curves f1, . . . , fκ are fences.

We say that a cutting line is a left cutting line if it is oriented downwards (or degenerate),
and right cutting line if it is oriented upwards (or degenerate). In a structured container,
the left cutting lines (and thus right cutting lines) are consecutive (e.g., s1, . . . , sκ′ are left
and sκ′+1, . . . , sκ are right cutting lines for some κ′ ∈ [κ − 1]).

▶ Definition 13 (Protected by fences). Let C be a structured container and s be a (possibly
degenerate) cutting line on C. We say that a polygon P ∈ OPT(C) is protected from the left
in C via s if s is a left cutting line on ∂C and

there exists a top-fence γh in C emerging from s, ending in h(e1(P)), and with top(P) ⊆
γh, and
there exists a bottom-fence γt in C emerging from s, ending in t(e1(P)), and with
bot(P) ⊆ γt.

We say that P is protected by fences γh and γt. Symmetrically, we say that a polygon
P ∈ OPT(C) is protected from the right in C via s if s is a right cutting line on ∂C and

there exists a top-fence σh in C emerging from s, ending in t(ed+1(P)), and with top(P) ⊆
σh, and
there exists a bottom-fence σt in C emerging from s, ending in h(ed+1(P)), and with
bot(P) ⊆ σt.

We say that P is protected by fences σh and σt. A polygon P ∈ OPT(C) is protected by
fences in C if it is either protected from the left in C or protected from the right in C.

We will show that each polygon in Pr(C) appearing in the construction of the recursive
partition can be protected by fences in C, beginning by stating the partitioning lemma.
The lemma holds only for structured containers, which matters for the construction of the
recursive partition but it does not affect the algorithm, as it considers all possible containers.

▶ Lemma 14 (Partitioning lemma). Let C be a structured container such that | OPT(C)| ≥ 2,
and let P be a set of polygons in C protected by fences. Then, there exists a curve Γ such that
(P1) Γ partitions C into two structured containers C1, C2 ∈ C with non-empty interiors.
(P2) All the polygons in OPT(C) that are intersected by Γ are intersected by one vertical

cutting line ℓ ⊆ Γ.
(P3) Γ does not intersect any polygon protected by fences.
(P4) Any polygon protected by fences in C is protected by fences in either C1 or C2.

5.2 Construction and analysis of the recursive partition
In this section we prove Proposition 5, i.e., we provide a recursive partition for R ⊆ OPT
with |R| ≥ 1

2 | ACC |. (Recall that we already argued that we can assume Z = ∅.) We give
an iterative construction of a recursive partition with the help of the partitioning lemma.

We initialize a tree T with root node r, Cr = C∗, and Pr(Cr) = ∅. Then, iteratively,
for every childless node u ∈ V (T) with | OPT(Cu)| ≥ 2, add two children u1, u2 to u and
choose Cu1 , Cu2 ∈ C as provided by (P1) in the partitioning lemma applied to Cu and Pr(Cu).
Define the set of protected polygons Pr(Cu1) and Pr(Cu1) as follows.

SoCG 2024

61:12 Approximating MISP with a Bounded Number of Directions

P2

P3

P4

P9

P12

P10

P5

P8

P6 P11

f2

f3

f4f1
s1

s2

s3

s4

P1

P7

P14

P16

P15

P13

Figure 6 Example of a structured container with κ = 4. The black arrows represent “seeing”,
top-fences are green, bottom-fences are blue. The polygons P1, P3, P4, P5, P8 are protected (only)
from the left, P14, P16 are protected (only) from the right, P9, P11 are protected both from the left
and from the right. Notice that the fences that protect P14 (from the right) are not unique since
P14 sees P15 and P16 which are cut and touch s4, respectively. Note also that the bottom-fences
touching P8, P11 and P11, P13 overlap.

(A1) Set Pr(Cu1) = Pr(Cu) ∩ OPT(Cu1) and Pr(Cu1) = Pr(Cu) ∩ OPT(Cu1).
(A2) For each P ∈ ACC that is intersected by ℓ, i.e., each P ∈ ACC that is lost, if P sees

a polygon P ′ ∈ OPT(Cu) (if P sees more than one polygon in OPT(Cu), choose one
of them arbitrarily), add P ′ to Pr(Cu1) if P ′ is in Cu1 or to Pr(Cu2) if P ′ is in Cu2 .
Moreover, charge the loss of P to P ′.

(A3) For each Q′ ∈ OPT(Cu) intersected by ℓ for which there is a polygon Q ∈ OPT(Cu)
that sees Q′, add Q to either Pr(Cu1) or Pr(Cu2) depending whether Q is in Cu1 or
Cu2 .

We first show to that by this construction, a polygon is protected only if it is protected by
fences.

▶ Lemma 15. Let P ′ ∈ Pr(Cu) for a node u of T . There exist fences that protect P ′ in Cu.

Proof. We first argue in the case that P ′ is protected for the first time, i.e., added to Pr(Cu)
via (A2) or (A3). Let u′ be the parent of u in T .

First assume that P ′ is protected via (A2). Let P ∈ ACC ∩ OPT(Cu′) be the polygon
that sees P ′. By definition, P is intersected by the cutting line ℓu′ from (P1) during the
bipartitioning of Cu′ Let px and py be the two intersection points of ℓu′ and ∂P , where px

is above py, see Figure 7. Since P sees P ′, the curve γx on top(P) and top(P ′) from px

to h(e1(P ′)) is a top-fence and the curve γy on bot(P) and bot(P ′) from py to t(e1(P ′)) is
a bottom-fence. γx and γy both emerge from ℓu′ and thus protect P ′ from the left in Cu.
Hence, P ′ is protected by fences in Cu.

The argument is symmetric if P ′ is protected via (A3): there is a polygon Q ∈ OPT(Cu′)
seen by P ′ that is intersected by the the cutting line ℓu′ . Therefore, the curves on top(P ′)
and top(Q) from ed+1(P ′) to ℓu′ and of bot(P ′) and bot(Q) from ed+1(P ′) to ℓu′ form a pair
of fences that protect P ′ from the right in Cu.

If P ′ is protected via (A1), then it has been protected for the first time in an ancestor of
u, so the claim follows inductively from by (P3) and (P4). ◀

F. Grandoni, E. Husić, M. Mari, and A. Tinguely 61:13

P ′P e1(P
′)`u′

px

py

γx

Cu′
γy

Figure 7 Illustration for the proof of Lemma 15: P ′ is protected by fences via (A2).

With (P3) and (P4), Lemma 15 implies that protected polygons are not lost and stay
protected, i.e., Pr(Cu) ⊆ Pr(Cu1) ∪ Pr(Cu2) for every interior node u in T . This in particular
holds for every charged polygon. By the construction above, every charged polygon is
protected and charged only once by Lemma 8. To make our charging scheme work, we need
to make sure that every lost accountable polygon provides one charge, which follows by (P2)
and the following lemma.

▶ Lemma 16. Let P ∈ ACC be a polygon that is intersected by the vertical line segment ℓu

for an internal node u ∈ T . Then there exists a polygon P ′ ∈ OPT(Cu) that is seen by P .

Proof. Let P be the set of polygons seen by P . For the sake of contradiction, suppose that
P ∩ OPT(Cu) = ∅. If some P ′ ∈ P partially lies in Cu, i.e., P ′ ∩ int(Cu) ̸= ∅, then P ′

was intersected by the vertical line ℓu′ in an ancestor u′ of u, so P is protected via (A3).
Otherwise, if all polygons in P lie outside of Cu, then e1(P) lies on a cutting line in ∂Cu.
Therefore, top(P) and bot(P) form a top-fence and a bottom-fence, respectively, that protect
P by fences in Cu. ◀

Proof of Proposition 5. By Lemma 9, we have | ACC | − |Z| ≥ 3
4d | OPT | − |Z|. Recall that

we have already assigned each polygon of Z to a unique leaf of T . By the charging scheme
described above and since a protected (and thus charged) polygon is never lost, we have a
unique polygon contained in a leaf of T for each lost accountable polygon during the partition.
The proposition follows since at least half of the polygons in ACC are either lost, or at least
half of the polygons in ACC are not lost. ◀

References
1 Anna Adamaszek, Sariel Har-Peled, and Andreas Wiese. Approximation schemes for in-

dependent set and sparse subsets of polygons. J. ACM, 66(4):29:1–29:40, 2019. doi:
10.1145/3326122.

2 Anna Adamaszek and Andreas Wiese. A quasi-ptas for the two-dimensional geometric
knapsack problem. In Piotr Indyk, editor, Proceedings of the Twenty-Sixth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015,
pages 1491–1505. SIAM, 2015. doi:10.1137/1.9781611973730.98.

3 Aris Anagnostopoulos, Fabrizio Grandoni, Stefano Leonardi, and Andreas Wiese. A mazing 2+ε

approximation for unsplittable flow on a path. In Chandra Chekuri, editor, Proceedings of the
Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland,
Oregon, USA, January 5-7, 2014, pages 26–41. SIAM, 2014. doi:10.1137/1.9781611973402.3.

4 Nikhil Bansal, Amit Chakrabarti, Amir Epstein, and Baruch Schieber. A quasi-ptas for
unsplittable flow on line graphs. In Jon M. Kleinberg, editor, Proceedings of the 38th Annual
ACM Symposium on Theory of Computing, Seattle, WA, USA, May 21-23, 2006, pages 721–729.
ACM, 2006. doi:10.1145/1132516.1132617.

SoCG 2024

https://doi.org/10.1145/3326122
https://doi.org/10.1145/3326122
https://doi.org/10.1137/1.9781611973730.98
https://doi.org/10.1137/1.9781611973402.3
https://doi.org/10.1145/1132516.1132617

61:14 Approximating MISP with a Bounded Number of Directions

5 Nikhil Bansal, Zachary Friggstad, Rohit Khandekar, and Mohammad R. Salavatipour. A
logarithmic approximation for unsplittable flow on line graphs. ACM Trans. Algorithms,
10(1):1:1–1:15, 2014. doi:10.1145/2532645.

6 Paul S. Bonsma, Jens Schulz, and Andreas Wiese. A constant-factor approximation algorithm
for unsplittable flow on paths. SIAM J. Comput., 43(2):767–799, 2014. doi:10.1137/
120868360.

7 Parinya Chalermsook and Julia Chuzhoy. Maximum independent set of rectangles. In
Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 892–901. SIAM, 2009. URL: http://dl.acm.org/citation.cfm?id=1496770.1496867.

8 Parinya Chalermsook and Bartosz Walczak. Coloring and maximum weight independent set
of rectangles. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 860–868. SIAM, 2021. doi:10.1137/1.9781611976465.54.

9 Timothy M Chan. Polynomial-time approximation schemes for packing and piercing fat objects.
Journal of Algorithms, 46(2):178–189, 2003.

10 Timothy M. Chan and Sariel Har-Peled. Approximation algorithms for maximum inde-
pendent set of pseudo-disks. Discret. Comput. Geom., 48(2):373–392, 2012. doi:10.1007/
s00454-012-9417-5.

11 Hsien-Chih Chang, Jeff Erickson, and Chao Xu. Detecting weakly simple polygons. In
Proceedings of the twenty-sixth annual ACM-SIAM Symposium on Discrete Algorithms, pages
1655–1670. SIAM, 2014.

12 Jana Cslovjecsek, Michał Pilipczuk, and Karol Węgrzycki. A polynomial-time optε-
approximation algorithm for maximum independent set of connected subgraphs in a planar
graph. In Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 625–638. SIAM, 2024.

13 Leila De Floriani, Paola Magillo, and Enrico Puppo. Applications of computational geometry
to geographic information systems. Handbook of computational geometry, 7:333–388, 2000.

14 Erik D Demaine and Joseph O’Rourke. Geometric folding algorithms: linkages, origami,
polyhedra. Cambridge university press, 2007.

15 Thomas Erlebach, Klaus Jansen, and Eike Seidel. Polynomial-time approximation schemes
for geometric intersection graphs. SIAM J. Comput., 34(6):1302–1323, 2005. doi:10.1137/
S0097539702402676.

16 Robert J Fowler, Michael S Paterson, and Steven L Tanimoto. Optimal packing and covering
in the plane are np-complete. Information processing letters, 12(3):133–137, 1981.

17 Jacob Fox and János Pach. Computing the independence number of intersection graphs. In
Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1161–1165. SIAM, 2011. doi:10.1137/1.9781611973082.87.

18 Takeshi Fukuda, Yasuhiko Morimoto, Shinichi Morishita, and Takeshi Tokuyama. Data mining
with optimized two-dimensional association rules. ACM Transactions on Database Systems
(TODS), 26(2):179–213, 2001.

19 Waldo Gálvez, Fabrizio Grandoni, Salvatore Ingala, Sandy Heydrich, Arindam Khan, and
Andreas Wiese. Approximating geometric knapsack via l-packings. ACM Trans. Algorithms,
17(4):33:1–33:67, 2021. doi:10.1145/3473713.

20 Waldo Gálvez, Fabrizio Grandoni, Arindam Khan, Diego Ramírez-Romero, and Andreas
Wiese. Improved approximation algorithms for 2-dimensional knapsack: Packing into multiple
l-shapes, spirals, and more. In 37th International Symposium on Computational Geometry
(SoCG), volume 189, pages 39:1–39:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2021. doi:10.4230/LIPIcs.SoCG.2021.39.

21 Waldo Gálvez, Arindam Khan, Mathieu Mari, Tobias Mömke, Madhusudhan Reddy Pittu,
and Andreas Wiese. A 3-approximation algorithm for maximum independent set of rectangles.
In Joseph (Seffi) Naor and Niv Buchbinder, editors, Proceedings of the 2022 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2022, Virtual Conference / Alexandria, VA, USA,
January 9 - 12, 2022, pages 894–905. SIAM, 2022. doi:10.1137/1.9781611977073.38.

https://doi.org/10.1145/2532645
https://doi.org/10.1137/120868360
https://doi.org/10.1137/120868360
http://dl.acm.org/citation.cfm?id=1496770.1496867
https://doi.org/10.1137/1.9781611976465.54
https://doi.org/10.1007/s00454-012-9417-5
https://doi.org/10.1007/s00454-012-9417-5
https://doi.org/10.1137/S0097539702402676
https://doi.org/10.1137/S0097539702402676
https://doi.org/10.1137/1.9781611973082.87
https://doi.org/10.1145/3473713
https://doi.org/10.4230/LIPIcs.SoCG.2021.39
https://doi.org/10.1137/1.9781611977073.38

F. Grandoni, E. Husić, M. Mari, and A. Tinguely 61:15

22 Waldo Gálvez, Arindam Khan, Mathieu Mari, Tobias Mömke, Madhusudhan Reddy, and
Andreas Wiese. A (2 + ϵ)-approximation algorithm for maximum independent set of rectangles.
arXiv preprint, 2021. arXiv:2106.00623.

23 Fabrizio Grandoni, Edin Husić, Mathieu Mari, and Antoine Tinguely. Approximating the
maximum independent set of convex polygons with a bounded number of directions. arXiv
preprint, 2024. arXiv:2402.07666.

24 Fabrizio Grandoni, Stefan Kratsch, and Andreas Wiese. Parameterized approximation schemes
for independent set of rectangles and geometric knapsack. In Michael A. Bender, Ola Svensson,
and Grzegorz Herman, editors, 27th Annual European Symposium on Algorithms, ESA 2019,
September 9-11, 2019, Munich/Garching, Germany, volume 144 of LIPIcs, pages 53:1–53:16.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.ESA.2019.53.

25 Fabrizio Grandoni, Tobias Mömke, and Andreas Wiese. A PTAS for unsplittable flow on
a path. In Stefano Leonardi and Anupam Gupta, editors, STOC ’22: 54th Annual ACM
SIGACT Symposium on Theory of Computing, Rome, Italy, June 20 - 24, 2022, pages 289–302.
ACM, 2022. doi:10.1145/3519935.3519959.

26 Fabrizio Grandoni, Tobias Mömke, and Andreas Wiese. Unsplittable flow on a path: The
game! In Joseph (Seffi) Naor and Niv Buchbinder, editors, Proceedings of the 2022 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2022, Virtual Conference / Alexandria, VA, USA,
January 9 - 12, 2022, pages 906–926. SIAM, 2022. doi:10.1137/1.9781611977073.39.

27 Fabrizio Grandoni, Tobias Mömke, Andreas Wiese, and Hang Zhou. A (5/3 + ϵ)-approximation
for unsplittable flow on a path: placing small tasks into boxes. In Ilias Diakonikolas, David
Kempe, and Monika Henzinger, editors, Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018,
pages 607–619. ACM, 2018. doi:10.1145/3188745.3188894.

28 Dorit S Hochbaum and Wolfgang Maass. Approximation schemes for covering and packing
problems in image processing and vlsi. Journal of the ACM (JACM), 32(1):130–136, 1985.

29 Hiroshi Imai and Takao Asano. Finding the connected components and a maximum clique of
an intersection graph of rectangles in the plane. Journal of algorithms, 4(4):310–323, 1983.

30 Klaus Jansen and Guochuan Zhang. On rectangle packing: maximizing benefits. In J. Ian
Munro, editor, Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 204–213. SIAM, 2004. URL: http://dl.acm.org/citation.cfm?
id=982792.982822.

31 Sanjeev Khanna, S. Muthukrishnan, and Mike Paterson. On approximating rectangle tiling and
packing. In Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 384–393. ACM/SIAM, 1998. URL: http://dl.acm.org/citation.cfm?id=
314613.314768.

32 James T Klosowski, Martin Held, Joseph SB Mitchell, Henry Sowizral, and Karel Zikan.
Efficient collision detection using bounding volume hierarchies of k-dops. IEEE transactions
on Visualization and Computer Graphics, 4(1):21–36, 1998.

33 Yoshiyuki Kusakari, Hitoshi Suzuki, and Takao Nishizeki. A shortest pair of paths on the
plane with obstacles and crossing areas. International Journal of Computational Geometry &
Applications, 9(02):151–170, 1999.

34 Brian Lent, Arun Swami, and Jennifer Widom. Clustering association rules. In Proceedings
13th International Conference on Data Engineering, pages 220–231. IEEE, 1997.

35 Ewa Malesinska. Graph theoretical models for frequency assignment problems. Citeseer, 1997.
36 Dániel Marx. Efficient approximation schemes for geometric problems? In 13th Annual

European Symposium on Algorithms (ESA), volume 3669, pages 448–459. Springer, 2005.
doi:10.1007/11561071_41.

37 Joseph S. B. Mitchell. Approximating maximum independent set for rectangles in the plane.
CoRR, abs/2101.00326, 2021. Version 1, arXiv:2101.00326v1.

SoCG 2024

https://arxiv.org/abs/2106.00623
https://arxiv.org/abs/2402.07666
https://doi.org/10.4230/LIPIcs.ESA.2019.53
https://doi.org/10.1145/3519935.3519959
https://doi.org/10.1137/1.9781611977073.39
https://doi.org/10.1145/3188745.3188894
http://dl.acm.org/citation.cfm?id=982792.982822
http://dl.acm.org/citation.cfm?id=982792.982822
http://dl.acm.org/citation.cfm?id=314613.314768
http://dl.acm.org/citation.cfm?id=314613.314768
https://doi.org/10.1007/11561071_41
https://arxiv.org/abs/2101.00326v1

61:16 Approximating MISP with a Bounded Number of Directions

38 Joseph SB Mitchell. Approximating maximum independent set for rectangles in the plane.
In 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS), pages
339–350. IEEE, 2022.

39 Frank Nielsen. Fast stabbing of boxes in high dimensions. Theor. Comput. Sci., 246(1-2):53–72,
2000. doi:10.1016/S0304-3975(98)00336-3.

40 Bram Verweij and Karen Aardal. An optimisation algorithm for maximum independent set
with applications in map labelling. In Algorithms-ESA’99: 7th Annual European Symposium
Prague, Czech Republic, July 16–18, 1999 Proceedings 7, pages 426–437. Springer, 1999.

41 Andreas Wiese. Independent set of convex polygons: From nϵ to 1 + ϵ via shrinking. Algorith-
mica, 80(3):918–934, 2018.

https://doi.org/10.1016/S0304-3975(98)00336-3

	1 Introduction
	2 Preliminaries
	3 Our Approach
	3.1 The algorithm
	3.2 Analysis
	3.3 Informal overview of the proof of Proposition 5
	3.4 Comparison with previous work on MISR

	4 Charging options and accountable polygons
	5 Recursive partitioning
	5.1 The partitioning lemma – formal statement
	5.2 Construction and analysis of the recursive partition

