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Abstract
The Fréchet distance is a popular distance measure for curves. Computing the Fréchet distance
between two polygonal curves of n vertices takes roughly quadratic time, and conditional lower
bounds suggest that even approximating to within a factor 3 cannot be done in strongly-subquadratic
time, even in one dimension. The current best approximation algorithms present trade-offs between
approximation quality and running time. Recently, van der Horst et al. (SODA, 2023) presented an
O((n2/α) log3 n) time α-approximate algorithm for curves in arbitrary dimensions, for any α ∈ [1, n].
Our main contribution is an approximation algorithm for curves in one dimension, with a significantly
faster running time of O(n log3 n + (n2/α3) log2 n log log n). Additionally, we give an algorithm for
curves in arbitrary dimensions that improves upon the state-of-the-art running time by a logarithmic
factor, to O((n2/α) log2 n). Both of our algorithms rely on a linear-time simplification procedure
that in one dimension reduces the complexity of the reachable free space to O(n2/α) without making
sacrifices in the asymptotic approximation factor.
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1 Introduction

Comparing curves is an important task in for example trajectory analysis [11], handwriting
recognition [19] and matching time series in data bases [18]. To compare curves, one needs a
suitable distance measure. The Hausdorff distance is a commonly used distance measure
when comparing sets of points. However, although each curve corresponds to a set of points,
a point set by itself does not capture the order in which points appear along the curve. This
may lead to curves having low Hausdorff distance, even when they are clearly very different.
The Fréchet distance is a distance measure that does take the ordering of points along the
curves into account, and hence compares curves more accurately.

The first algorithm for computing the Fréchet distance between polygonal curves was
given by Godau [16], who presented an O(n3 log n) time algorithm for two curves with
n vertices in total. Alt and Godau [2] later improved the result to an O(n2 log n) time
algorithm. The discrete version of the problem was first studied by Eiter and Mannila [15],
who gave an O(n2) time algorithm. While small polylogarithmic improvements have since
been achieved (see for example [1, 7]), there is strong evidence that these results cannot
be improved significantly, since Bringmann [4] showed that a strongly-subquadratic (i.e.,
n2−Ω(1)) time algorithm would refute the Strong Exponential Time Hypothesis (SETH).
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63:2 Faster Fréchet Distance Approximation Through Truncated Smoothing

Due to the conditional lower bound, we focus on efficient approximation algorithms.
When the curves are from certain families of “realistic” curves, strongly-subquadratic time
(1 + ε)-approximation algorithms are known to exist. For example, if the curves are either κ-
bounded or backbone curves, the algorithm by Aronov et al. [3] gives a (1+ε)-approximation to
the discrete Fréchet distance in O(n4/3 log n/ε2) time. Later on, Driemel et al. [13] presented
(1 + ε)-approximate algorithms for the continuous Fréchet distance that take near-linear time,
given that the curves are from one of four realistic curve classes. These four classes include
κ-bounded curves, but also c-packed, φ-low density and κ-straight curves. Their result on
c-packed curves was improved by Bringmann and Künnemann [5], whose algorithm matches
conditional lower bounds.

When approximating the Fréchet distance between arbitrary curves however, SETH again
gives conditional lower bounds. The lower bound by Bringmann [4] holds not only for exact
algorithms, but for 1.001-approximate algorithms as well. Buchin et al. [8] later improved
this bound, showing that under SETH, no strongly-subquadratic (3 − ε)-approximation
algorithm exists, even for curves in one dimension. For the current strongly-subquadratic
algorithms, the best known approximation factor is polynomial (nε) for both the discrete
and the continuous Fréchet distance [6, 10, 21]. Whether a strongly-subquadratic constant
factor approximation algorithm exists remains open.

In the discrete setting, Bringmann and Mulzer [6] presented the first strongly-subquadratic
time algorithm with polynomial approximation factor. For any α ∈ [1, n/ log n], their
algorithm gives an α-approximation in O(n2/α) time. This result was later improved by
Chan and Rahmati [10], who gave an O(n2/α2) time algorithm, for any α ∈ [1,

√
n/ log n].

For continuous Fréchet distance, the first polynomial approximation algorithm running
in strongly-subquadratic time is due to Colombe and Fox [12]. They gave an α-approximate
algorithm running in O((n3/α2) log n) time, for α ∈ [

√
n, n]. Recently, van der Horst et al. [21]

presented the first algorithm that supports arbitrarily small polynomial approximation factors
in strongly-subquadratic time. Their achieved running time is O((n2/α) log3 n), for α ∈ [1, n].

Results. The basis of our results is a curve simplification algorithm. We use the resulting
simplified versions of two curves to efficiently approximate the Fréchet distance between the in-
put curves. Doing so, we improve the running time of the algorithm by van der Horst et al. [21]
significantly for curves in one dimension, and by a logarithmic factor in higher dimensions.
Our running time in one dimension is O(n log3 n + (n2/α3) log2 n log log n), in contrast to
our O((n2/α) log2 n) time algorithm for higher dimensions. We summarize our algorithms in
Section 2, but first we define the Fréchet distance and some useful notation.

Preliminaries

A d-dimensional (polygonal) curve is a piecewise-linear function P : [0, 1]→ Rd, connecting
a sequence p1, . . . , pn of d-dimensional points, which we refer to as vertices. The linear
interpolation between pi and pi+1, whose image is equal to the directed line segment pipi+1,
is called an edge. A vertex pi that lies on the segment pi−1pi+1 is degenerate. We denote by
P [x1, x2] the subcurve of P over the domain [x1, x2]. We write |P | to denote the number of
vertices of P .

Fréchet distance. A reparameterization of [0, 1] is a non-decreasing, continuous surjection
f : [0, 1]→ [0, 1]. Two reparameterizations f, g describe a matching (f, g) between two curves
P and Q, where any point P (f(t)) is matched to Q(g(t)). A matching (f, g) between P and
Q is said to have cost

max
t
∥P (f(t))−Q(g(t))∥.
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Figure 1 An illustration of the approximate decision algorithm.

It is common to use the Euclidean norm ∥P (f(t))−Q(g(t))∥2 to measure the cost of a matching.
For our purposes however, it is more convenient to use the L∞ norm ∥P (f(t))−Q(g(t))∥∞.
Since we aim for at least polynomial approximation factors, and the norms differ by at most
a factor

√
d, approximations using the L∞ norm implies the same asymptotic approximation

factor for the Euclidean norm, as long as d is constant. A matching with cost at most δ is
called a δ-matching. The (continuous) Fréchet distance dF (P, Q) between P and Q is the
minimum cost over all matchings.

Free space diagram and matchings. The free space diagram of P and Q is the parameter
space [0, 1]2 of P × Q, denoted D(P, Q). Any point (x, y) ∈ D(P, Q) corresponds to the
pair of points P (x) and Q(y) on the two curves. Any pair of edges (P [x1, x2], Q[y1, y2])
corresponds to a cell [x1, x2]× [y1, y2] of D(P, Q).

For δ ≥ 0, a point (x, y) ∈ D(P, Q) is δ-close if ∥P (x) − Q(y)∥∞ ≤ δ. The δ-free
space F≤δ(P, Q) of P and Q is the subset of D(P, Q) containing all δ-close points. A point
z2 = (x2, y2) ∈ F≤δ(P, Q) is δ-reachable from a point z1 = (x1, y1) if there exists a bimonotone
path in F≤δ(P, Q) from z1 to z2. Points that are δ-reachable from (0, 0) are simply called
δ-reachable points. Alt and Godau [2] observe that the Fréchet distance between P [x1, x2]
and Q[y1, y2] is at most δ if and only if there is a bimonotone path in F≤δ(P, Q) from z1 to
z2. We therefore abuse terminology slightly and refer to a bimonotone path from z1 to z2 as
a δ-matching between P [x1, x2] and Q[y1, y2].

2 Algorithmic outline

Let P and Q be our two d-dimensional input curves with a total of n vertices. Given
a parameter α ≥ 1, we describe an α-approximate decision algorithm for the continuous
Fréchet distance. Such an algorithm takes as input an additional parameter δ ≥ 0, and

SoCG 2024



63:4 Faster Fréchet Distance Approximation Through Truncated Smoothing

must correctly report that dF (P, Q) ≤ αδ or that dF (P, Q) > δ. If dF (P, Q) ∈ (δ, αδ], the
algorithm may report either. We thus either confirm that an αδ-matching exists, or assert
that no δ-matching exists. Refer to Figure 1 for a diagram illustrating our algorithm. We
turn our decision algorithms into approximation algorithms for the Fréchet distance with
the procedure of Colombe and Fox [12] (with logarithmic overhead in the running time and
arbitrarily small increase in approximation ratio).

Recall that a δ-matching between P and Q represents a bimonotone path from (0, 0)
to (1, 1) in the δ-free space F≤δ(P, Q). Our algorithms search for such a path. However,
exploring all of the free space, which may have Θ(n2) complexity, does not result in a
subquadratic time algorithm. Still, the worst-case complexity of the reachable free space, the
part of free space containing all δ-reachable points, is smaller for certain types of curves. We
explore this in Section 3, where we investigate the relation between the complexity of the
reachable free space and the number of narrow pieces on the curves. If the number of such
pieces is k, then the reachable free space complexity is only O(kn) blocks. Here, a block is a
generalization of cells, that instead of edges considers monotone pieces. Specifically, a block
is the rectangular region of the free space diagram corresponding to two monotone pieces,
one of P and one of Q.

Given that a sublinear number of narrow pieces implies a subquadratic complexity of
the reachable free space, we present a simplification procedure in Section 4 that reduces the
number of narrow pieces to at most dn/α, at an additive 2α cost in the approximation ratio,
see Figure 1 (a–b). The simplification takes linear time, and results in a reachable free space
complexity of only O(n2/α) blocks, see Figure 1 (c). Intuitively, the proportion of the free
space diagram that we need to explore is inversely proportional to the approximation factor.

The complexity of the free space inside a block Bi,j corresponding to monotone pieces
Pi, Qj is O(|Pi| · |Qj |). This is too large even when considering only the O(n2/α) blocks
containing the reachable free space, as these blocks may still have a combined complexity of
Θ(n2). However, the free space inside a block is ortho-convex,1 see Figure 1 (d). We use
this fact in Section 6 to construct a data structure on P and Q for traversing Bi,j in just
O((|Pi|+ |Qj |) log n) time, after O(n) time preprocessing. This gives an O(n + (n2/α) log n)
time algorithm for traversing all O(n2/α) blocks, and hence gives an O(n + (n2/α) log n)
time (2α + 1)-approximate decision algorithm.

We use the technique of Colombe and Fox [12] to turn the decision algorithm into an
approximation algorithm for the Fréchet distance, while increasing the running time by only
a logarithmic factor.

In Section 5 we give a faster algorithm for when P and Q are one-dimensional curves.
Figure 2 illustrates this algorithm. The core of the algorithm is a subroutine for constructing
approximate exit sets (see the bottom diagram of Figure 2). Given a set of points S ⊆
{0} × [0, 1] on the left side of the free space diagram, an (α, δ)-exit set for S is a set of
points Eα(S) ⊆ {1} × [0, 1] on the right side of the diagram that contains all points that are
δ-reachable from S, and only points that are αδ-reachable from S. If (1, 1) ∈ Eα({(0, 0)}),
then dF (P, Q) ≤ αδ, and otherwise dF (P, Q) > δ. Computing such exit sets thus generalizes
the approximate decision problem.

We construct approximate exit sets in the full paper [20]. For this we use the ideas
of Chan and Rahmati [10] for the current state-of-the-art discrete approximate decision
algorithm. They construct a graph approximately representing the free space, which can be
used to construct approximate exit sets (in the discrete setting). These exit sets take only
O(n log n + n2/α2) time to construct.

1 A region S is ortho-convex if every line parallel to a coordinate axis intersects S in at most one connected
component.
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Figure 2 An illustration of the approximate decision algorithm for one-dimensional curves.
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63:6 Faster Fréchet Distance Approximation Through Truncated Smoothing

To achieve a similar running time in the continuous setting, we first note that continuous
matchings in one dimension are relatively discrete. In particular, signature vertices, special
vertices introduced by Driemel et al. [14], must match in an almost discrete manner, matching
to points close to vertices of the other curve. With this in mind, we apply the techniques of
Chan and Rahmati [10] to the signature vertices of P .

We construct an infinite grid G with few bad vertices of both P and Q. See Figure 2
(f–g). This grid has cellwidth αδ, and we classify a point as bad if it is within distance 7δ of
the boundary of G. Chan and Rahmati [10] show that by shifting P and Q, the number of
bad vertices can be made as low as O(n/α). We say that a signature vertex of P is bad if it
is within distance 6δ of the boundary of G, rather than within distance 7δ. These vertices
must match to points close to bad vertices of Q, and hence have essentially only O(n/α)
possible ways to match to points.

Between two bad signature vertices of P , the signature vertices are all sufficiently far from
the boundary of G that we can represent them by the gridcells containing them, after which
matchings become effectively diagonal. We can detect such matchings with the exact string
matching data structure by Chan and Rahmati [10], and use an additional data structure
to handle the matchings around bad signature vertices. For a single entrance, we can then
efficiently compute an (α, δ)-exit sets for any subcurve between two subsequent bad signature
vertices, see Figure 2 (h–i). The data structure constructs such a set in only O(log n log log n)
time. Applied to all O(n2/α2) possible matchings with a bad signature vertex of P , we get
an O((n2/α2) log n log log n) time algorithm for constructing (α, δ)-exit sets of general sets
of points, after O(n log2 n) time preprocessing.

The above algorithm is already an improvement over the higher-dimensional case, but
we can improve the algorithm by taking advantage of the lower-complexity reachable free
space. Given that the reachable free space stays within O(n/α) cells of the diagonal, we
cover this region by α rectangles of size O(n/α) × O(n/α) cells. See Figure 2 (c–d). In
each rectangle we construct an (α, δ)-exit set for a given set of entrance points, which
depend on the exit set of the rectangle to the left of the current one. These exit sets take
only O((n/α) log2 n + (n2/α4) log n log log n) time to construct for a rectangle, totalling
O(n log2 n + (n2/α3) log n log log n) time. This is a factor α improvement, which we would
expect given the lower complexity of the reachable free space.

The technique by Colombe and Fox [12] turns our algorithm for constructing a (α, δ)-exit
set into an O(n log3 n+(n2/α3) log2 n log log n) time α-approximate algorithm for the Fréchet
distance.

3 Bounding the reachable free space

The complexity of the δ-free space can be as high as Θ(n2), meaning that explicitly traversing
the free space does not give a strongly-subquadratic time algorithm. As an improvement, we
aim to bound the complexity of the reachable δ-free space, the subset of δ-free space that is
reachable by a bimonotone path from (0, 0). This subset contains all bimonotone paths to
(1, 1), so it suffices to consider only this subset.

Like the complexity of free space, the complexity of the reachable free space can be
quadratic. Still, there are special cases of curves for which we can check if the top-right
point (1, 1) is reachable in as little as linear time. One example is when the edges of one of
the curves are long, meaning their lengths are all strictly greater than 4δ (see the work of
Gudmundsson et al. [17]). Under the L∞ norm, which is the chosen norm in this work, van
der Horst et al. [21] generalize the result to the case where one curve is the concatenation of
long monotone curves.
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Figure 3 From left to right: two 2δ-narrow curves, a short curve (which is 4δ-narrow) and a
curve that is not 4δ-narrow (which is long).

A curve is monotone if in every coordinate it is either non-increasing or non-decreasing.
A curve P is the concatenation of maximal monotone pieces P1, . . . , Pk. We call the curves
P1, . . . , Pk the monotone decomposition of P , and call the individual monotone curves Pi

(monotone) pieces of P . A monotone curve is long if the L∞ distance between its endpoints is
strictly greater than 4δ, and is short otherwise. In the next section, we investigate a class of
monotone curves that we call η-narrow curves. A monotone curve is η-narrow if its bounding
box has at least one side of length at most η. As an example, short monotone curves are
4δ-narrow, although 4δ-narrow curves are not necessarily short. See Figure 3 for concrete
examples. We show that there is a relation between the number of 2δ-narrow monotone
pieces of P and Q and the complexity of the reachable free space.

Under the L∞ norm, the monotone pieces of a curve behave much like line segments.
Most importantly, any ball under the L∞ norm intersects a piece in at most one connected
component. For the free space, this implies that the subset of F≤δ(P, Q) that corresponds to
a monotone piece of P and a monotone piece of Q is ortho-convex. This somewhat generalizes
the convexity of the free space within a cell (defined by two line segments) to unions of cells
that together are defined by two monotone pieces.

We define a block Bi,j := [xi, xi+1] × [yj , yj+1] ⊆ D(P, Q) to be the subset of D(P, Q)
corresponding to a monotone piece Pi = P [xi, xi+1] and a monotone piece Qj = Q[yj , yj+1].
This block is the union of the cells defined by the edges of Pi and Qj . We associate D(P, Q)
with its partitioning into blocks. The block diagonal consists of the blocks Bi,i and we say
that block Bi,j is |i− j| blocks away from the (block) diagonal.

For our algorithm, we analyse the complexity of the reachable free space in terms of
blocks, rather than cells. In particular, we bound the number of blocks that reachable points
can be away from the diagonal in terms of the number of narrow pieces. In the following
theorem we show that the number of blocks a reachable point can be away from the block
diagonal depends linearly on the number of 2δ-narrow pieces of P and Q.

▶ Theorem 1. Let P and Q be two d-dimensional curves, each with at most k monotone
pieces that are 2δ-narrow. Any δ-reachable point in F≤δ(P, Q) lies within 2k + 1 blocks of
the block diagonal.

Proof. Assume for ease of exposition that P and Q contain no degenerate vertices. Suppose
for sake of contradiction that a δ-reachable point z lies more than 2k + 1 blocks right of
the diagonal. Let π be a bimonotone path to this point. Because z lies more than 2k + 1
blocks right of the diagonal, there must be more than 2k pairs of blocks Bi,j , Bi+1,j that π

traverses from the left side of Bi,j to the right side of Bi+1,j . We argue that the number of
such pairs is at most 2k, which gives a contradiction.

Consider two adjacent blocks Bi,j and Bi+1,j that π traverses from the left side of Bi,j to
the right side of Bi+1,j . We show that either Pi or Pi+1 is 2δ-narrow. To this end, suppose
that both Pi and Pi+1 are not 2δ-narrow. Because π traverses Bi,j from left to right, there is
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p4
p5

Figure 4 An illustration of truncated smoothings in one dimension. (left) The vertices of curve P

(non-dashed) are drawn as vertical segments for clarity. The minimum edge length of P is realized
by pipi+1 (right) The result of the smoothing procedure (non-shaded).

a subcurve Q′
j = Qj [y, y′] of Qj with ∥Pi(0)−Q′

j(0)∥∞ ≤ δ and ∥Pi(1)−Q′
j(1)∥∞ ≤ δ. This

means that Q′
j is more than a single point, and that it has the same direction with respect to

the coordinate axes as Pi. However, Pi+1 has the opposite direction with respect to at least
one coordinate axis, and since it is not 2δ-narrow, its last endpoint Pi+1(1) is more than
distance δ away from Q′

j(1). Therefore it is more than distance δ away from all of Qj [y′, 1].
Hence π cannot traverse Bi+1,j from left to right if both Pi and Pi+1 are not 2δ-narrow.

With the above, we charge each pair of blocks Bi,j , Bi+1,j that π traverses from the left
side of Bi,j to the right side of Bi+1,j to one of the 2δ-narrow pieces of P corresponding
to these blocks. As each narrow piece corresponds to at most two such pairs, pieces are
charged at most twice. It follows that there are at most 2k such pairs of blocks, which gives
a contradiction. This shows that z is at most 2k + 1 blocks right of the diagonal. That z is
at most 2k + 1 blocks above the diagonal follows from a symmetric argument. ◀

4 Reducing the number of narrow pieces

We present a family of simplifications for curves that we use to reduce the number of narrow
pieces on a curve. The simplifications are based on truncated smoothings for Reeb graphs [9],
and we hence call them truncated smoothings.

4.1 Truncated smoothings
First consider a one-dimensional curve P . We assume for ease of exposition that P has
no degenerate vertices.2 Let ε ≥ 0 be at most half the minimum edge length of P . The
truncated ε-smoothing P ε of P is the curve obtained by truncating every edge of P by ε on
either side. See Figure 4 for an example. We extend the truncated smoothing definition to
all non-negative values ε′ ≥ 0 by recursively defining the truncated ε′-smoothing of P for
ε′ > ε to be the truncated (ε′ − ε)-smoothing of P ε.

In the full paper [20], we show that the identity matching between P and its ε-smoothing
P ε has cost at most ε. Intuitively, this means that points on P are moved over distance
at most ε during the smoothing process. Furthermore, we show that when smoothing two
one-dimensional curves P and Q by the same amount ε, the Fréchet distance is decreased by
at most 2ε, and never increases.

▶ Lemma 2. Let P and Q be two one-dimensional curves. For all ε ≥ 0 we have dF (P ε, Qε) ≤
dF (P, Q) ≤ dF (P ε, Qε) + 2ε.

2 Note that if P has degenerate vertices, then the curve obtained by deleting these vertices has Fréchet
distance 0 to P .
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Truncated smoothings are particularly useful with respect to reducing the complexity of
the reachable free space. Recall from Theorem 1 that the number of narrow monotone pieces
is proportional to the number of blocks a matching can stray away from the block diagonal.
In one dimension, a narrow monotone piece is simply a short edge, and a block is merely a
cell of the free space diagram. Thus, a low number of short edges on the curves implies a
small complexity bound for the reachable free space. In the following lemma (refer to [20]
for the proof), we show that there is a linear trade-off in (additive) approximation quality
and number of short edges of the simplified curves.

▶ Lemma 3. Let P and Q be two one-dimensional curves with n vertices. For all α ∈ [1, n]
and δ ≥ 0, there is an ε ≤ αδ for which P ε and Qε together have at most n/α edges of length
at most 2δ.

We extend the truncated smoothing definition to higher-dimensional curves by defining
the truncated smoothing of a d-dimensional curve using a parameter vector ε⃗ ∈ [0,∞)d.
The truncated ε⃗-smoothing P ε⃗ of a curve P is the result of coordinate-wise truncated
smoothing with the corresponding elements of ε⃗ as parameters. Under the L∞-norm, this
coordinate-wise procedure yields an error that is at most the maximum of the errors obtained
from the one-dimensional truncated smoothings. Note that every monotone piece on a
higher-dimensional curve P projects onto (part of) a single edge in every dimension. Thus,
if the number of edges of a certain length c in any projection is at most k, then there are
at most dk monotone pieces on P that are c-narrow. We obtain the following theorem as
consequences of Lemmas 2 and 3:

▶ Theorem 4. Let P and Q be two d-dimensional curves with n vertices. For all α ∈ [1, n] and
δ ≥ 0, there is a vector ε⃗ ∈ [0, αδ]d for which P ε⃗ and Qε⃗ together have at most dn/α monotone
pieces that are 2δ-narrow. Furthermore, we have dF (P ε⃗, Qε⃗) ≤ dF (P, Q) ≤ dF (P ε⃗, Qε⃗)+2αδ.

4.2 Constructing truncated smoothings
We present a linear time algorithm for constructing the truncated ε-smoothing P ε of a
one-dimensional curve P . This immediately gives a linear time algorithm for constructing
truncated smoothings for higher-dimensional curves. Note that the parameterization of P ε is
piecewise-linear and its vertices correspond to the vertices of P . Hence it suffices to compute
the images of the vertices of P after simplification.

The algorithm relies on computing the death times of the vertices p1, . . . , pn of P . We
define the death time of a vertex pi to be the smallest value ε ≥ 0 for which pi is degenerate
in P ε (and thus is removed for higher parameter truncated smoothings). The death times of
p1 and pn are infinite, and the death time of degenerate vertices of P are 0.

We show in the full paper [20] that the death time of a vertex can be expressed in terms
of the left and right minima (or maxima) in its sublevel (or superlevel) set component. The
sublevel set of a point p on P is the set of points on P with value at most p. We define the
sublevel set component of p to be the connected component of its sublevel set that contains
p, see Figure 5. The superlevel set component of p is defined symmetrically.

For a local maximum pi of P , let P − be its sublevel set component. We define the points
ℓi and ri as (global) minima on the prefix and suffix curves of P − that end and start at pi,
respectively. We let mi := min{|pi − ℓi|, |pi − ri|}, see Figure 5. We symmetrically define P +

to be the superlevel set component of a local minimum pi of P , and symmetrically define ℓi

and ri in terms of P +. The definition of mi is the same as for local maxima. For a degenerate
vertex pi we set mi := 0. In the full version [20] we show the expression for death times given
in Lemma 5.
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Figure 5 (left) The sublevel set component of pi, below the dashed line segment. Points ℓi and ri

are the minima of the left and right parts of this component. (middle and right) The max-Cartesian
tree built on the vertex sequence of P .

▶ Lemma 5. For all 2 ≤ i ≤ n− 1 the death time of vertex pi is equal to mi/2.

With the expression for the death times of interior vertices, we are able to compute
the death times of these vertices in linear total time. To this end we use Cartesian trees,
introduced by Vuillemin [22]. A Cartesian tree is a binary tree with the heap property.
We call a Cartesian tree a max-Cartesian tree if it has the max-heap property and a min-
Cartesian tree if it has the min-heap property. A max-Cartesian tree T for a sequence of
values x1, . . . , xn is recursively defined as follows. The root of T contains the maximum value
xj in the sequence. The subtree left of the root node is a max-Cartesian tree for the sequence
x1, . . . , xj−1, and the right subtree is a max-Cartesian tree for the sequence xj+1, . . . , xn

(see Figure 5). Min-Cartesian trees are defined symmetrically.
Note that in a max-Cartesian tree, the left and right subtrees of a local maximum pi

contain precisely the vertices before and after pi that are in its sublevel set component. Thus,
the minimum value stored in its left subtree is ℓi and the minimum value stored in its right
subtree is ri. This allows us to compute the death times of all local maxima of P with a
bottom-up traversal of the max-Cartesian tree built on the vertex sequence p1, . . . , pn. We
symmetrically compute the death times of all local minima using the min-Cartesian tree.

▶ Lemma 6. We can compute the death time of every interior vertex in O(n) time.

We construct the truncated ε-smoothing by using another max-Cartesian tree, this time
built on the sequence of death times (see Figure 6). This tree contains all non-degenerate
vertices in a single connected component containing the root, which can be computed in O(n)
time. This gives the truncated ε-smoothing of a one-dimensional curve. For the truncated
ε⃗-smoothing of a higher-dimensional curve, we simply perform the simplification procedure
coordinate-wise, with a changing parameter depending on ε⃗. This gives the following result:

▶ Theorem 7. We can construct the truncated ε⃗-smoothing of a d-dimensional curve with n

vertices in O(n) time for any vector ε⃗ ∈ [0,∞)d.

We additionally use the death times to compute a suitable parameter vector ε⃗ for reducing
the number of narrow pieces. We search for an interval (ε, ε + δ] that contains at most n/α

death times, as each short edge in the truncated ε-smoothing has a vertex that becomes
degenerate when upping ε by at most δ, and thus a low number of death times indicates a
low number of short edges. For details, refer to the full paper [20].
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Figure 6 (left) The truncated ε-smoothing for ε = 8. The curve has three non-degenerate vertices,
corresponding to the three vertices p1, p3 and p9 with death times larger than ε. The curve also
indicates the location of degenerate vertices. (right) The death times of the vertices, stored in a
max-Cartesian tree.

▶ Theorem 8. Let P and Q be two d-dimensional curves with n vertices. Let α ∈ [1, n] and
δ ≥ 0. In O(n) time, we can compute a vector ε⃗ ∈ [0, αδ]d for which P ε⃗ and Qε⃗ together
have at most dn/α monotone pieces that are 2δ-narrow.

5 Approximating the Fréchet distance for one-dimensional curves

Next we present an O(n log3 n + (n2/α3) log2 n log log n) time algorithm for computing an
α-approximation to the Fréchet distance between P and Q, for α ∈ [1, n]. We first present
an approximate decision algorithm, which is then turned into an approximation algorithm
for computing the Fréchet distance with the black box technique of Colombe and Fox [12].

We use the simplification of Section 4 to reduce the number of 2δ-narrow monotone
pieces on both P and Q to at most n/α, which by Theorem 1 makes the reachable free space
constrained to within O(n/α) blocks of the diagonal. This gives an additive 2α term in the
approximation factor. Note that a monotone piece in one dimension is simply an edge of
a curve, and hence a block is merely a cell of the free space diagram. Thus matchings are
constrained to within O(n/α) cells of the diagonal.

A crucial ingredient in our algorithm is the concept of δ-signature vertices, introduced by
Driemel et al. [14]. One interesting property of δ-signature vertices is that any δ-matching
matches them close to endpoints of edges of the other curve (see also [21]). This makes
matchings behave somewhat discrete near these vertices. We use this property to apply
the techniques of Chan and Rahmati [10] for approximate discrete Fréchet distance to our
continuous setting. Specifically, we use them to construct exit sets.

The δ-exit set for a set of points S ⊆ {0} × [0, 1] with respect to P and Q is the set of all
points E(S) ⊆ {1}× [0, 1] that are δ-reachable from points in S. We allow for approximations,
where instead of constructing an (exact) δ-exit set for S, we construct an (α, δ)-exit set Eα(S).
Such a set must contain all of E(S), and may only contain points that are αδ-reachable
from points in S. In the full paper [20] we give a construction algorithm for exit sets,
proving Theorem 9.

▶ Theorem 9. Let P and Q be two one-dimensional curves with n vertices. For any α ∈ [1, n]
and δ ≥ 0, we can construct an (α, δ)-exit set Eα(S) for a given set S ⊆ {0}× [0, 1] consisting
of O(n) connected components in O(n log2 n + (n2/α2) log n log log n) time.
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K

Figure 7 (left) Matchings are constrained to within K cells of the diagonal. (middle) The α

rectangles covering all possible matchings. Each rectangle spans K cells in width and 3K cells in
height. (right) Constructing exit sets in each rectangle, given the exit set of the previous rectangle.

Since matchings are restricted to lie within K = 2n/α + 1 cells of the free space diagonal,
the total complexity of the reachable free space is only O(n2/α), rather than potentially
quadratic. We wish to translate this lower complexity into lower input complexities for
subroutines. For this we cover the reachable free space with α interior-disjoint rectangles,
each K × 3K cells in dimension, such that rectangles do not share a common x-coordinate
on their interiors. That is, the rectangles are laid out from left to right over the reachable
free space. See Figure 7 for an illustration.

We iteratively go over the rectangles from left to right, constructing exit sets inside each
rectangle for given sets on their left boundary. Let R1, . . . , Rα be the rectangles in left to
right order. Let P1, . . . , Pα be the subcurves of P corresponding to these rectangles, and let
Q1, . . . , Qα be the subcurves of Q corresponding to these rectangles. For each rectangle Ri

we construct an (α, δ)-exit set Ei = Eα(Si) for the set Si = Ei−1 ∩ F≤δ(P, Q), with respect
to Pi and Qi.

Initially, S1 = {(0, 0)}. Given a set Si, we construct Ei using Theorem 9 to construct an
(α, δ)-exit set Eα(Si) with respect to Pi and Q. Because Pi and Qi have only O(K) vertices
each, we construct Ei in O(K log2 K + (K2/α2) log K log log K) time. We then construct
the set Si+1 as the intersection between Ei and F≤δ(Pi, Qi), which takes O(K log K) time
by sorting the sets and scanning over them.

Performing the above for all α rectangles, with K = O(n/α), we obtain an O(n log2 n +
(n2/α3) log n log log n) time α-approximate decision algorithm, after using the simplification
procedure of Section 4 to limit the complexity of the reachable free space. This incurs an
additive error of 2αδ, resulting in an overall 3α-approximate decider.

▶ Theorem 10. Let P and Q be two one-dimensional curves with O(n) vertices. Let
α ∈ [1, n] and δ ≥ 0. We can decide whether dF (P, Q) ≤ 3αδ or dF (P, Q) > δ in O(n log2 n+
(n2/α3) log n log log n) time.

To turn this decision algorithm into an approximation algorithm for the Fréchet distance,
we apply the black box technique of Colombe and Fox [12]. For any ε ∈ (0, 1], this increases
the running time by a factor log(n/ε) and the approximation factor by a factor (1+ε). We set
ε = 1 for concreteness, giving an O(n log3 n+(n2/α3) log2 n log log n) time 6α-approximation
algorithm for the Fréchet distance. To turn this algorithm into an α-approximation algorithm
running in the same time bound, we set α ← α/6 for α ≥ 6, and run the exact quadratic
time decision algorithm of Alt and Godau [2] for α ∈ [1, 6). This gives the following result:

▶ Theorem 11. Let P and Q be one-dimensional curves of O(n) vertices. Let α ∈ [1, n]. We
can compute an α-approximation of dF (P, Q) in O(n log3 n + (n2/α3) log2 n log log n) time.
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6 An improved algorithm for curves in arbitrary dimensions

Finally, we give a simpler algorithm for approximate continuous Fréchet distance in arbitrary
dimensions, which also improves upon the state-of-the-art algorithm by van der Horst et al. [21]
by a logarithmic factor. We again first present an approximate decision algorithm, which is
then turned into an approximation algorithm for computing the Fréchet distance with the
black box technique of Colombe and Fox [12].

We use the simplification of Section 4 to reduce the number of 2δ-narrow monotone pieces
on both P and Q to at most dn/α, which by Theorem 1 makes the reachable free space
constrained to within O(n/α) blocks of the diagonal. This gives an additive 2α term in the
approximation factor. In Corollary 13, we show how to efficiently traverse the free space
inside a block, after preprocessing P and Q.

▶ Lemma 12. We can preprocess a d-dimensional curve P with n vertices in O(n) time,
such that given a monotone piece Pi of P and line segment e we can compute the δ-close
points on the bottom and top sides of D(Pi, e) in O(log n) time.

Proof. We store the vertices of each monotone piece Pi in a binary search tree Ti. Together
with Ti we store for each coordinate whether Pi moves in the positive or negative direction,
cutting ties arbitrarily. Preprocessing P takes O(n) time, since the vertices are sorted after
scanning over P .

Given a monotone piece Pi and query line segment e, we compute the δ-close points on
the bottom and top sides of D(Pi, e) by computing the at most two maximal subcurves of Pi

that are within distance δ of the endpoints of e. The subcurve close to the first endpoint of
e corresponds to the δ-close points on the bottom side of D(Pi, e), while the other subcurve
corresponds to the δ-close points on the top side.

Let q be an endpoint of e and let R be the axis-parallel hypercube centered at q with
diameter δ. Since we know the direction of Pi, we can apply binary search over the vertices
of Pi to find the first and last vertices of Pi inside R. With Ti this takes O(log |Pi|) time.
Computing the maximal subcurve inside R takes constant additional time, as we merely have
to compare the edges incident to the reported vertices with the boundary of R. Thus after
O(log |Pi|) = O(log n) time, we have computed the subcurve of Pi that is within distance δ

of q, which corresponds to the δ-close points on the bottom and top sides of D(Pi, e). ◀

By preprocessing P and Q separately as above, we can efficiently traverse the free space
within a block Bi,j from bottom to top by iteratively considering the edges of Qj together
with all of Pi. We can traverse Bi,j from left to right in a symmetric manner. This leads to
the following result.

▶ Corollary 13. We can preprocess P and Q in O(n) time, such that given a block Bi,j and
all δ-reachable points on the bottom and left sides of Bi,j, represented by two horizontal and
vertical line segments, we can compute all δ-reachable points on the top and right sides of
Bi,j in O((|Pi|+ |Qj |) log n) time.

By Theorem 1 each monotone piece of P and Q corresponds to only O(n/α) blocks
containing parts of the reachable free space. Using the data structure of Corollary 13 to
traverse these blocks, we get a free space traversal algorithm with running time

O
(

(n/α) ·
[ ∑

i

|Pi|+
∑

j

|Qj |
]

log n
)

= O((n2/α) log n).

This is summarized in Theorem 14.
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▶ Theorem 14. Let P and Q be two d-dimensional curves with n vertices. For any α ∈ [1, n]
and δ ≥ 0, we can decide whether dF (P, Q) ≤ (1 + 2α)δ or dF (P, Q) > δ in O((n2/α) log n)
time.

To turn this decision algorithm into an approximation algorithm for the Fréchet distance,
we apply the black box technique of Colombe and Fox [12]. For any ε ∈ (0, 1], this increases
the running time by a factor log(n/ε) and the approximation factor by a factor (1 + ε). We
set ε = 1 for concreteness, giving an O((n2/α) log2 n) time (2 + 4α)-approximation algorithm
for the Fréchet distance. To turn this algorithm into an α-approximation algorithm running
in the same time bound, we set α← (α− 2)/4 for α ≥ 6, and run the exact quadratic time
decision algorithm of Alt and Godau [2] for α ∈ [1, 6). This gives the following result:

▶ Theorem 15. Let P and Q be two d-dimensional curves with n vertices. For any α ∈ [1, n]
we can compute an α-approximation to dF (P, Q) in O((n2/α) log2 n) time.

7 Concluding remarks

We presented faster approximation algorithms for computing the continuous Fréchet distance
between curves. For the one-dimensional case in particular, our algorithm significantly
improves upon previous results. Our curve simplification procedure proves to be a valuable tool
in speeding up the one-dimensional algorithm, and we are confident that future approximation
algorithms can make use of the simplification as well.

While we used the simplification for curves in general dimensions, lowering the complexity
of the reachable free space by a factor α (in terms of blocks), we have not been able to
take advantage of this lower complexity with the existing result of van der Horst et al. [21].
Instead, we currently traverse this lower-complexity space somewhat naively. We expect
that our one-dimensional algorithm can be adapted to work in higher dimensions as well,
taking advantage of the lower complexity to yield a faster algorithm. The main hurdle is
the time required to compare two “good” subcurves. In one dimension this takes merely
constant time using string matching. In higher dimensions however, where we define a curve
as good if the endpoints of all its monotone pieces are good, we currently see no sublinear
time algorithm for this, even after preprocessing. The problem here is that a monotone piece
may increase the complexity of the label curve beyond linear, and it is unclear how to obtain
a linear bound even when approximations are allowed.
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