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Abstract
We study computationally-hard fundamental motion planning problems where the goal is to translate
k axis-aligned rectangular robots from their initial positions to their final positions without collision,
and with the minimum number of translation moves. Our aim is to understand the interplay between
the number of robots and the geometric complexity of the input instance measured by the input size,
which is the number of bits needed to encode the coordinates of the rectangles’ vertices. We focus on
axis-aligned translations, and more generally, translations restricted to a given set of directions, and
we study the two settings where the robots move in the free plane, and where they are confined to a
bounding box. We also consider two modes of motion: serial and parallel. We obtain fixed-parameter
tractable (FPT) algorithms parameterized by k for all the settings under consideration.

In the case where the robots move serially (i.e., one in each time step) and axis-aligned, we prove
a structural result stating that every problem instance admits an optimal solution in which the
moves are along a grid, whose size is a function of k, that can be defined based on the input instance.
This structural result implies that the problem is fixed-parameter tractable parameterized by k.

We also consider the case in which the robots move in parallel (i.e., multiple robots can move
during the same time step), and which falls under the category of Coordinated Motion Planning
problems. Our techniques for the axis-aligned motion here differ from those for the case of serial
motion. We employ a search tree approach and perform a careful examination of the relative geometric
positions of the robots that allow us to reduce the problem to FPT-many Linear Programming
instances, thus obtaining an FPT algorithm.

Finally, we show that, when the robots move in the free plane, the FPT results for the serial
motion case carry over to the case where the translations are restricted to any given set of directions.
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1 Introduction

1.1 Motivation
We study the parameterized complexity of computationally-hard fundamental motion plan-
ning problems where the goal is to translate k axis-aligned rectangular robots from their
initial positions to their final positions without collision, and with the minimum number
of translation moves. The parameter under consideration is the number k of robots, and
the input length N is the number of bits needed to encode the coordinates of the vertices
of the rectangles. We point out that, in our study, we deviate from using the real RAM
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model [25], which assumes that arithmetic operations over the reals can be performed in
constant time, and use the Turing machine model instead. We believe that our study is more
faithful to the geometric setting under consideration than the real RAM model. The input
length N can be much larger than the number k of rectangles, and hence, our study of the
parameterized complexity of the problem, which aims at investigating whether the problem
admits algorithms whose running time is polynomially-dependent on the input size, is both
meaningful and significant in such settings.

We study two settings where the robots move in the free plane, and where they are confined
to a bounding box. We also consider two modes of motion: serial and parallel. Problems with
the latter motion mode fall under the category of Coordinated Motion Planning problems.
We point out that the problems under consideration have close connections to well-studied
motion planning and reconfiguration problems, including the famous NP-complete pn2 ´ 1q-
puzzle [5, 18] and the PSPACE-hard warehouseman’s problem [14] where the movement
directions are limited, among many others. Moreover, the Coordinated Motion Planning for
robots moving on a rectangular grid featured as the SoCG 2021 Challenge [11].

For most natural geometric (or continuous) motion planning problems, pertaining to
the motion of well-defined geometric shapes in an environment with/without polygonal
obstacles, the feasibility of an instance of the problem can be formulated as a statement in
the first-order theory of the reals. Therefore, it is decidable using Tarski’s method in time
that is polynomially-dependent on the input length, and exponentially-dependent on the
number of variables, number of polynomials and the highest degree over all the polynomials
in the statement (see [19, 20, 21, 24]). When the parameter is the number k of robots, if
an upper bound in k on the number of moves in a solution exists, then the existence of
a solution can be decided in FPT-time using the above general machinery. However, this
approach is non-constructive, and we might not be able to extract in FPT-time a solution to
a feasible instance, as the only information we have about the solution is that it is algebraic.

There has been very little work on the parameterized complexity of these fundamental
geometric motion planning problems, and our understanding of their parameterized complexity
is lacking. Most of the early work (e.g., see [17, 22]) on such problems have resulted in
algorithms for deciding only the feasibility of the instance and whose running time takes
the form Opnfpkqq, where n is the number of edges/walls composing the polygonal obstacles
in the environment. Therefore, it is natural to investigate the parameterized complexity of
the more practical variants of the problems, where one seeks a solution that meets a given
upper bound on the number of robot moves or an optimal solution w.r.t. the number of robot
moves, which remained unanswered by the earlier works.

The goal of this paper is to shed light on the parameterized complexity of these motion
planning problems by considering the very natural setting of axis-aligned translations (i.e.,
horizontal and vertical), and more generally, translations restricted to a given (or a fixed) set
of directions. We aim to understand the interplay between the number of robots and the
complexity of the input instance (i.e., the input size). Our results settle the parameterized
complexity of most of the studied problem variants by showing that they are FPT.

1.2 Related Work
There has been a lot of work, dating back to the 1980’s, on the motion planning of geometric
shapes (e.g., disks, rectangles, polygons) in the Euclidean plane (with or without obstacles),
motivated by their applications in robotics. In this setting, robots may move along continuous
curves. The problem is very hard, and most of the work focused on the feasibility of
the problem for various shapes and environment settings (disks, rectangles, obstacle-free
environment, environment with polygonal obstacles, etc.).
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The early works by Schwartz and Sharir [22, 23, 24] showed that deciding the feasibility
of an instance of the problem for two disks in a region bounded by n “walls” can be done
in time Opn3q [22]; they mentioned that their result can be generalized to any number,
k, of disks to yield an Opnhpkqq-time algorithm, for some function h of k. When studying
feasibility, the moves can be assumed to be performed serially, and a move may extend over
any Euclidean length. Ramanathan and Alagar [17] improved the result of Schwartz and
Sharir [22] to Opnkq, conjecturing that this running time is asymptotically optimal. The
feasibility of the coordinated motion planning of rectangular robots confined to a bounding
box was shown to be PSPACE-hard [14, 15]. The problem of moving disks among polygonal
obstacles in the plane was shown be strongly NP-hard [16]; when the shapes are unit squares,
Solovey and Halprin [26] showed the problem to be PSPACE-hard.

Dumitrescu and Jiang [8] studied the problem of moving unit disks in an obstacle-free
environment. They consider two types of moves: translation (i.e., a linear move) and sliding
(i.e., a move along a continuous curve). In a single step, a unit disk may move any distance
either along a line (translation) or a curve (sliding) provided that it does not collide with
another disk. They showed that deciding whether the disks can reach their destinations
within r P N moves is NP-hard, for either of the two movement types. Constant-ratio
approximation algorithms for the coordinated motion planning of unit disks in the plane,
under some separation condition, where given in [4]. For further work on the motion planning
of disks, we refer to the survey of Dumitrescu [7].

The problem of moving unit disks in the plane is related to the problem of reconfiguring/-
moving coins, which has also been studied and shown to be NP-hard [1]. Moreover, there has
been work on the continuous collision-free motion of a constant number of rectangles in the
plane, from their initial positions to their final positions, with the goal of optimizing the total
Euclidean covered length; we refer to [2, 10] for some of the most recent works on this topic.

Perhaps the most relevant, but orthogonal, work to ours, in the sense that it pertains
to studying the parameterized complexity of translating rectangles, is the paper of Fernau
et al. [12]. In [12], they considered a geometric variant of the PSPACE-complete Rush-Hour
problem, which itself was shown to be PSPACE-complete [13]. In this variant, cars are
represented by rectangles confined to a bounding box, and cars move serially. Each car can
either move horizontally or vertically (or not move at all, i.e., is an obstacle), but never both
during its whole motion; that is, each car slides on a horizontal track, or a vertical track. The
goal is to navigate each car to its destination and a designated car to a designated rectangle
in the box (whose corner coincides with the origin). They showed that the problem is FPT
when parameterized by either the number of cars or the number of moves.

Finally, we mention that Eiben et al. [9] studied the parameterized complexity of Coordin-
ated Motion Planning in the combinatorial setting where the robots move on a rectangular
grid. They presented FPT algorithms, parameterized by the number of robots, for each of
the two objective targets of minimizing the makespan and the total travel length [9].

1.3 Contributions
We present fixed-parameter algorithms parameterized by the number k of (rectangular
axis-aligned) robots for most of the problem variants and settings under consideration.

(i) We give an FPT-algorithm for the axis-aligned serial motion in the free plane. Our
proof relies on a structural result stating that every problem instance admits an optimal
solution in which the moves are along a grid that can be defined based on the input
instance. This structural result, combined with an upper bound of 4k that we prove on
the number of moves in the solution to a feasible instance, implies that the problem is
solvable in time O˚pk16k ¨ 220k2

`8kq, and hence is FPT.

SoCG 2024
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The structural result does not apply when the translations are not axis-aligned. To
obtain FPT results for these cases, we employ a search-tree approach, and perform a careful
examination of the relative geometric positions of the robots, that allow us to reduce the
problem to FPT-many Linear Programming instances.

(ii) We show that the problem for serial motion in the free plane for any fixed-cardinality
given set V of directions (i.e., part of the input) is solvable in time O˚pp432k ¨ k ¨ |V|q4kq.
A byproduct of this FPT algorithm is that the problem is in NP, a result that – up to
the authors’ knowledge – was not known nor is obvious. We complement this result
by showing that the aforementioned problem for any fixed set V of directions that
contains at least two nonparallel directions (which includes the case where the motion
is axis-aligned) is NP-hard, thus concluding that the problem is NP-complete.

(iii) We give an FPT algorithm for the problem where the serial motion is axis-aligned and
confined to a bounding box, which was shown to be PSPACE-hard in [14]. This result
is obtained after proving an upper bound of 2k ¨ 5kpk´1q on the number of moves in a
feasible instance of the problem.
The approach used in (ii) and (iii) does not extend seamlessly to the case of coordinated
motion (i.e., when robots move in parallel), as modelling collision in the case of parallel
motion becomes more involved. Nevertheless, by a more careful enumeration and
examination of the relative geometric positions of the robots, we give:

(iv) An FPT algorithm for the axis-aligned coordinated motion planing in the free plane that
runs in O˚p52k3

¨ 84k2
q time, and an FPT algorithm for the axis-aligned coordinated

motion planning confined to a bounding box that runs in time O˚p5k2
¨ 82k2

¨5k2

¨ 5k3
¨5k2

q.
The FPT algorithm for the former problem implies its membership in NP.

2 Preliminaries and Problem Definition

We denote by rks the set t1, . . . , ku. Let R “ tRi | i P rksu be a set of axis-aligned rectangular
robots. For Ri P R, we denote by xpRiq and ypRiq the horizontal and vertical dimensions of
Ri, respectively. We will refer to a robot by its identifying name (e.g., Ri), which determines
its location in the schedule at any time step, even though, when it is clear from the context,
we will identify the robot with the rectangle it represents/occupies at a certain time step.

A translation move, or a move, for a robot Ri P R w.r.t. a direction ÝÑv , is a translation of
Ri by a vector α ¨ ÝÑv for some α ą 0. For a vector u⃗, translate(Ri, ÝÑu ) denotes the axis-aligned
rectangle resulting from the translation of Ri by vector ÝÑu . We denote by axis-aligned motion
the translation motion with respect to the set of four directions V “ t

ÝÑ
H

´
,
ÝÑ
H

`
,
ÝÑ
V

´
,
ÝÑ
V

`
u,

which are the negative and positive unit vectors of the x- and y-axis, respectively.
In this paper, we consider two types of moves: serial and parallel, where the former

type corresponds to the robots moving one at a time (i.e., a robot must finish its move
before the next starts), and the latter type corresponds to (possibly) multiple robots moving
simultaneously. We now define collision for the two types of motion.

For a robot Ri that is translated by a vector ÝÑv , we say that Ri collides with a stationary
robot Rj ‰ Ri, if there exists 0 ď x ď 1 such that Rj and translate(Ri, x ¨ ÝÑv ) intersect
in their interior. For two distinct robots Ri and Rj that are simultaneously translated by
vectors ÝÑv and ÝÑu , respectively, we say that Ri and Rj collide if there exists 0 ď x ď 1 such
that translate(Ri, x ¨ ÝÑv ) and translate(Rj , x ¨ ÝÑu ) intersect in their interior.

We think of R as a set of axis-aligned rectangular robots, where each robot is given by
the rectangle of its starting position and the congruent rectangle of its desired final position.
We assume that the starting rectangles (resp. final destination rectangles) of the robots are
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pairwise non-overlapping (in their interiors). Let V “ t
ÝÑ
θ1 , . . . ,

ÝÑ
θcu, where c P N, be a set of

unit vectors. We assume that if a vector ÝÑ
θi is in V then the vector ´

ÝÑ
θi is also in V. For a

vector v⃗, we denote by xpv⃗q and ypv⃗q the x-component/coordinate (i.e., projection of v⃗ on
the x-axis) and y-component/coordinate of v⃗, respectively.

A valid serial ( resp. parallel) schedule S for R w.r.t V is a sequence of collision-free serial
(resp. parallel) moves, where each move is along a direction (resp. a set of directions) in V,
and after all the moves in S, each Ri ends at its final destination, for i P rks. The length |S|

of the schedule is the number of moves in it. In this paper, we study the following problem:

Rectangles Motion Planning (Rect-MP)
Given: A set of pairwise non-overlapping axis-aligned rectangular robots R “ tRi | i P rksu

each given with its starting and final positions/rectangles; a set V of directions; k, ℓ P N.
Question: Is there a valid schedule for R w.r.t. V of length at most ℓ?

We note that the time complexity for solving the above decision problem will be essentially
the same (up to a polynomial factor) as that for solving its optimization version (where we
seek to minimize ℓ), as we can binary-search for the length of an optimal schedule.

We also study The Rectangles Coordinated Motion Planning problem (Rect-
CMP), which is defined analogously with the only difference that the moves could be
performed in parallel. More specifically, the schedule of the robots consists of a sequence
of moves, where in each move a subset S of robots move simultaneously, along (possibly
different) directions from V, at the same speed provided that no two robots in R collide.
The move ends when all the robots in S reach their desired locations during that move; no
new robots (i.e., not in S) can move during that time step.

We focus on the restrictions of Rect-MP and Rect-CMP to instances in which the
translations are axis-aligned, but we also extend our results to the case where the directions
are part of the input (or are fixed). We also consider both settings where the rectangles
move freely in the plane, and where their motion is confined to a bounding box. For a
problem P P tRect-MP, Rect-CMPu, denote by

Ř

-P the restriction of P to instances in
which the translations are axis-aligned (i.e., V “ t

ÝÑ
H

´
,
ÝÑ
H

`
,
ÝÑ
V

´
,
ÝÑ
V

`
u), by P -l its restriction

to instances in which the robots are confined to a bounding box (which we assume that it is
given as part of the input instance), and by

Ř

-P -l the problem satisfying both constraints.
For instance,

Ř

-Rect-MP-l denotes the problem in which the motion mode is serial, the
translations are axis-aligned, and the movement is confined to a bounding box.

In parameterized complexity [3, 6], the running-time of an algorithm is studied with
respect to a parameter k P N and input size N . The most favorable complexity class is
FPT (fixed-parameter tractable) which contains all problems that can be decided in time
fpkq ¨ NOp1q, where f is a computable function. Algorithms with this running-time are called
fixed-parameter algorithms. The O˚pq notation hides a polynomial function in the input size
N , which is the length of the binary encoding of the instance.

3 Upper Bounds on the Number of Moves

In this section, we prove upper bounds – w.r.t. the number k of robots – on the number
of moves in an optimal schedule for feasible instances of several of the problems under
consideration in this paper. These upper bounds are crucial for obtaining the FPT results.

SoCG 2024
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3.1 Motion in the Free Plane
The upper bound in the case where the robots move in the free plane follow since, given at
least two non-parallel directions, one can translate the rectangles, one by one, to very far and
well-separated locations, and then reverse the process to bring them to their destinations:

▶ Proposition 1. Let I “ pR, V, k, ℓq be an instance of Rect-MP or Rect-CMP. If V
contains two non-parallel directions, then there is a schedule for I of length at most 4k.

3.2 Axis-Aligned Motion in a Bounding Box
Let I “ pR, V, k, ℓ, Γq be an instance of

Ř

-Rect-MP-l. Fix an ordering on the vertices of
any rectangle (say the clockwise ordering, starting always from the top left vertex). For any
two robots R and R1, the relative order of R w.r.t. R1 is the order in which the vertices of R,
when considered in the prescribed order, appear relatively to the vertices of R1 (considered
in the prescribed order as well), with respect to each of the x-axis and y-axis.

▶ Definition 2. Fix an arbitrary ordering of the 2-sets of robots in R. A configuration of R
is a sequence indicating, for each 2-set tR, R1u of robots in R, considered in the prescribed
order, the relative order of R with respect to R1. A realization of a configuration C is an
embedding of the robots in R such that the relative order of any two robots in R conforms to
that described by C and the robots in the embedding are pairwise non-overlapping.

The following proposition shows that we can move between any two realizations of the
same configuration using at most 2k translations:

▶ Proposition 3. For any two realizations ρ, ρ1 of a configuration C, there is a sequence of at
most 2k valid moves within the bounding box Γ that translate the robots from their positions
in ρ to their positions in ρ1.

The above proposition implies that each configuration appears at most 2k times in an optimal
schedule. By upper bounding the total number of distinct configurations, we get:

▶ Proposition 4. Let I “ pR, V, k, ℓ, Γq be a feasible instance of
Ř

-Rect-MP-l or
Ř

-
Rect-CMP-l. Then there is a schedule for I of length at most 2k ¨ 5kpk´1q.

4 Axis-Aligned Motion

In this section, we prove a structural result about
Ř

-Rect-MP. This result, in particular,
and the upper bound on the number of moves imply that

Ř

-Rect-MP is FPT parameterized
by the number k of robots. In brief, the structural result states that, in order to obtain an
optimal schedule to an instance of

Ř

-Rect-MP, it is enough to restrict the robots to move
along the lines of an axis-aligned grid (i.e., a collection of horizontal and vertical lines of the
plane), that can be determined from the input instance. Moreover, the number of lines in
the grid is a computable function of the number of robots, and the robots’ moves will be
defined using intersections of the grid lines.

▶ Definition 5. Let I “ pR, V, k, ℓq be an instance of
Ř

-Rect-MP. We define an axis-
aligned grid GI , associated with the instance I, as follows.

Initialize GI to the set of horizontal and vertical lines through the starting and final
positions of the centers of the robots in R; call these lines the basic grid lines.
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Figure 1 An illustration of a stacking to define new vertical lines.

Add to GI the lines which are defined using “stackings” of robots on the basic lines as
follows; see Figure 1. Let b P GI be a vertical basic line with x-coordinate xpbq, and wb

be the width of the robot whose center could be on b. For each number 1 ď i ď ℓ, and each
i-multiset tRj1 , . . . , Rji

u of robots, and for each choice of a horizontal width w of a robot,
add to GI the two vertical lines with x-coordinates xpbq ˘ pwb{2 ` w{2 `

ři
r“1 xpRjr qq.

Add to GI the analogous lines for the horizontal basic lines.

▶ Theorem 6. Every instance I “ pG, R, k, ℓq of
Ř

-Rect-MP has an optimal schedule in
which every robot’s move is between two grid points along a grid line in GI . The number of
vertical (resp. horizontal) lines in GI is at most k3 ¨ 2k`ℓ`1.

Proof. We argue by induction on the number ℓ1 of moves in the schedule. If ℓ1 “ 1, then the
schedule has a single move that must be along a line defined by both the starting and ending
positions of a robot in R, and the statement is true in this case. Thus, assume henceforth
that the statement of the theorem is true when the optimal schedule has at most ℓ1 ´ 1 moves.
Let R be the robot that performs the first move (in the schedule) from some point p1 to
some point p2, and assume, w.l.o.g., that the move is horizontal in the direction of

ÝÑ
xx1. We

define a new problem instance I 1, which is the same as I, with the exceptions that in I 1 the
robot R now has starting position p2 and the upper bound on the number of moves is ℓ1 ´ 1.
Let GI and GI1 be the grids associated with instances I and I 1, respectively, as defined in
Definition 5. The instance I 1 has a schedule of ℓ1 ´ 1 moves and hence, there is a schedule
for I 1 such that each robot moves along a grid line in GI1 .

The lines in the set L2 “ GI1 ´ GI are basic vertical grid lines defined by R being at p2
plus all the lines defined by stackings of these lines. Note that L2 contains only vertical lines
and that GI1 ´ L2 Ď GI . Let G1 be the set of grid lines in GI1 ´ L2 union the set of vertical
lines obtained by stacking every robot on every line in GI1 ´ L2. Observe that G1 Ă GI , and
that we are allowed to perform this additional stacking operation since the construction of
GI involves ℓ1 stackings, whereas the construction of G1

I involves ℓ1 ´ 1 stackings.
From among all schedules of length ℓ1 ´ 1 for I 1 along the grid lines GI1 , consider a

schedule that uses the maximum number of grid lines from G1.
Note that the move of R from p1 to p2 and the schedule for I 1 give an optimal schedule

for the original problem instance I; however, this schedule is not along the grid lines of GI ,
and some robots may move along the lines in L2.

Let M be the set of segments of the grid lines in L2 traversed by robot moves that are
along the lines of L2; note that all of these are vertical. Now we push back the robot R from
p2 towards p1. Let Rppq denote the robot R located at point p P p1p2. The move from p1
to p remains valid, however, there might be intersections between Rppq and other robots in
future moves, and between this move and future positions of R itself.

SoCG 2024
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Figure 2 An illustration for the proof of Theorem 6. The blue broken line is the path traversed
by the center of R in a schedule. The black broken lines are the paths for the centers of other robots.
The vertical dashed blue lines are grid lines in L2. The red segment is a move along a line in L2.
The blue rectangle is R after the first move, and the green and red rectangles are some other robots
at some time during their movement. After moving the lines in L2 to the right, the red segment
becomes a stacking over lines not in L2.

When p “ p2, we have a schedule, and thus no collisions exist. From the construction of
the grid lines, it follows that when the robot R moves, the (updated) grid lines in L2 move
by exactly the same distance in the same direction. We now move all the segments of M also
in the same direction and distance, i.e., we move the grid lines in L2 together with all the
robot moves along them; see Figure 2. As we push back R towards p1, we stop the first time
that the right edge of some robot, say Q, that travels along a segment in M , hits a vertical
line that is defined by the left edge of a robot Q1 located on a line in GI1 ´ L2, and hence
cannot be pushed further without potentially introducing a collision. Now the center of Q

is positioned at a line that is defined by some stacking of GI1 ´ L2, and hence is a vertical
line of G1. Since we have not introduced any collisions during the pushing, we have obtained
a grid schedule that uses more grid lines from G1, which contradicts the maximality of the
chosen schedule for I 1. Therefore, there is a schedule in which all moves are along G1.

Finally, we upper bound the number of lines in the grid. We upper bound the number of
vertical lines; the upper bound on the number of horizontal lines is the same. Let LV be the
set of vertical lines in the grid, and LH be that of the horizontal lines.

The number of starting and ending positions of the robots is 2k, and hence the number
of basic vertical lines is at most 2k. For each i, where 1 ď i ď ℓ, and for each basic vertical
line b, we fix two robots: the one of width wb whose center could fall on b and the one of
width w whose center could fall on the newly-defined vertical line based on the stacking.
There are

`

k
2
˘

ď k2{2 choices for these two robots. Afterwards, we enumerate each selection
of an i-multiset of robots, and for each i-multiset tRj1 , . . . , Rji

u, we add the two vertical
lines with offset pwb{2 ` w{2 `

ři
k“1 xpRjk

qq to the left and right of b. Note that this offset
is determined by the two fixed robots and the i-multiset of robots, and hence by the two
fixed robots and the set of robots in this multiset together with the multiplicity of each
robot in this set. Therefore, in step i, to add the vertical lines, we can enumerate every
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2-set of robots, each r-subset of robots, where r ď i, order the robots in the r-set, and for
each of the at most 2k r-subsets of robots, enumerate all partitions pα1, . . . , αrq of i into
r parts. The number of such partitions is at most 2i. Hence, the number of vertical lines
we add in step i is at most 2k ¨ k2{2 ¨ 2k ¨ 2i, and the total number of vertical lines we add
over all the ℓ steps is at most k3 ¨ 2k ¨

řℓ
i“1 2i ď k2 ¨ 2k ¨ 2ℓ`1 “ k3 ¨ 2k`ℓ`1. It follows that

|LV | ď k3 ¨ 2k`ℓ`1 and |LH | ď k3 ¨ 2k`ℓ`1 as well. Therefore, the total number of lines in
the grid is Opk3 ¨ 2k`ℓq. ◀

▶ Theorem 7.
Ř

-Rect-MP, parameterized by the number of robots, can be solved in
O˚pk16k ¨ 220k2

`8kq time, and hence is FPT.

Proof. By the above theorem and by Proposition 1, the number of horizontal/vertical lines
in the grid is at most k3 ¨ 25k`1. The algorithm enumerates all potential schedules of length
at most ℓ ď 4k along the grid. The running time of the algorithm is O˚pk16k ¨ 220k2

`8kq. ◀

The following result is also a byproduct of our structural result, since one can, in
polynomial time, “guess” and “verify” a schedule of length at most ℓ to an instance of
Ř

-Rect-MP based on the grid corresponding to the instance:

▶ Corollary 8.
Ř

-Rect-MP is in NP.

The above corollary will be complemented with Theorem 15 in Section 7 to show that
Ř

-Rect-MP is NP-complete.

5 An FPT Algorithm When the Directions are Given

In this section, we give an FPT algorithm for the case of axis-aligned rectangles that serially
translate along a given (i.e., part of the input) fixed-cardinality set of directions. We first
start by discussing the case where the robots move in the free plane, and then explain how
the algorithm extends to the case where the robots are confined to a bounding box.

Let I “ pR, V, k, ℓq be an instance of Rect-MP, where R “ tR1, . . . , Rku is a set of
axis-aligned rectangular robots, and V “ t

ÝÑ
θ1 , . . . ,

ÝÑ
θcu, where c P N is a constant, is a set of

unit vectors; we assumed herein that c is a constant, but in fact, the results hold for any
set of directions whose cardinality is a function of k. Let ps1

i , s2
i q be the coordinates of the

initial position of the center of Ri and pt1
i , t2

i q be those of its final destination. We present a
nondeterministic algorithm for the problem that makes a function of k many guesses. The
purpose of doing so is two fold. First, it serves the purpose of proving that Rect-MP is
in NP since the nondeterministic algorithm runs in polynomial time (assuming that |V| is
a constant or polynomial in k). Second, it will render the presentation of the algorithm
much simpler. We will then show in Theorem 9 how to make the algorithm deterministic by
enumerating all possibilities for its nondeterministic guesses, and analyze its running time.

The algorithm consists of three main steps: (1) guess the order in which the k robots
move in a schedule of length ℓ (if it exists); (2) guess the direction (i.e., the vector in V) of
each move; and (3) use Linear Programming (LP) to check the existence of corresponding
amplitudes for the unit vectors associated with the ℓ moves that avoid collision.

We start by guessing the exact length, w.l.o.g. call it ℓ (since it is a number between 0
and ℓ), of the schedule sought. We then guess a sequence of ℓ events E “ xe1, . . . , eℓy, where
each event is a pair pRi, ÝÑvj q, i P rks, j P rcs, that corresponds to a move/translation of a robot
Ri P R along a vector ÝÑvj P V in the sought schedule. The remaining part of the algorithm
is to check if there is a schedule of length ℓ that is “faithful” to the guessed sequence E of
events. That is, a schedule in which the robots’ moves, and the translation in each move,

SoCG 2024



65:10 Motion Planning for Rectangular Robots

correspond to those in E . To do so, we will resort to LP. Basically, we will rely on LP to give
us the exact translation vector (i.e., the amplitude) in each event ei, i P rℓs, while ensuring
no collision, in case a schedule of length ℓ exists.

For each event ei “ pR, ÝÑv q, i P rℓs, we introduce LP variables xi, yi to encode the
coordinates pxi, yiq of the center of R at the beginning of the event. We also introduce an LP
variable αi ą 0 that encodes the amplitude of the translation of R in the direction ÝÑv in ei.

We form a set of LP instances such that the feasibility of one of them would produce the
desired schedule, and hence, would imply a solution to instance I. We explain next how this
set of LP instances is formed. The LP constraints will stipulate the following conditions:

(i) Each robot ends at its final destination.
(ii) Each robot starts at its initial position, and the starting position of robot Ri in

eq “ pRi, ÝÑv ) is the same as its final position after ep “ pRi,
ÝÑ
v1 q, where ep is the

previous event to eq in E involving Ri (i.e., p is the largest index smaller than q).
(iii) The translation in each ei is collision free.

a

b c

d

a1

b1 c1

d1

o

o1

Figure 3 Illustration of the trace of a rectangle abcd with respect to a vector ÝÑv “
ÝÑ
oo1. Rectangle

a1b1c1d1
“ translate(abcd, ÝÑv q and the polygon abcc1d1a1, shown with solid lines, is trace(abcd, ÝÑv ).

Observe that the edges of a trace are either edges of the rectangles, or are parallel to ÝÑv .

Conditions (i) and (ii) are easy to enforce using linear constraints. We discuss how the
condition in piiiq can be enforced. For a robot R and a vector ÝÑv , denote by trace(R, ÝÑv ) the
boundary of the polygonal region of the plane covered during the translation of R by the
vector ÝÑv ; see Figure 3. It is clear that trace(R, ÝÑv ) is a polygon whose edges are either edges
of R, or edges of translate(R, ÝÑv q, or line segments formed by a vertex of R and a vertex of
translate(R, ÝÑv q whose slope is equal to that of ÝÑv . Therefore, if R and ÝÑv are fixed, then the
slope of each edge of trace(R, ÝÑv ) is fixed (i.e., independent of the LP variables).

Now observe that robot Rj P R does not collide with R P R during the translation of R

by a vector α ¨ ÝÑv , where ÝÑv P V, if and only if no edge of Rj and an edge of trace(R, α ¨ ÝÑv )
intersect in their interior. To stipulate that event ei “ pR, ÝÑv q is collision free, for each pair
of edges ppq, rsq, where pq is an edge of trace(R, α ¨ ÝÑv ) and rs is an edge of Rj , we would
like to add a linear constraint stipulating that the interiors of rs and pq do not intersect. If
the slopes of the straight lines determined by pq and rs are the same, which we could check
since the two slopes are given/fixed, then no such constraint is needed for this pair. Suppose
now that the two straight lines prsq and ppqq intersect at a point η “ px0, y0q; we add linear
constraints to stipulate that point η does not lie in the interior of both segments rs and pq,
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and hence the two segments do not intersect. To do so, we guess (i.e., branch into) one of
the following four cases. Let r “ pxr, yrq, s “ pxs, ysq, p “ pxp, ypq, q “ pxq, yqq and assume,
without loss of generality, that xp ď xq and that xr ď xs.
Case (1): Point η is exterior to pq and x0 ď xp.
Case (2): Point η is exterior to pq and x0 ě xq.
Case (3): Point η is exterior to rs and x0 ď xr.
Case (4): Point η is exterior to rs and x0 ě xs.

Note that pq and rs do not intersect in their interior if and only if (at least) one of the
above cases holds. The algorithm guesses which case of the above four holds, and adds to the
LP linear constraints stipulating the conditions of the guessed case. For instance, suppose
that the algorithm guesses that Case (1) holds. Let β, γ be the slopes of lines ppqq and prsq,
respectively, and note that β and γ are known/fixed at this point . It is easy to verify that
x0 “ pys ´ yp ` βxp ´ γxsq{pβ ´ γq. Therefore, to enforce the conditions in Case (1), we add
to the LP the linear constraint:

pys ´ ypq ` βxp ´ γxs ď pβ ´ γqxp.

For each event ei “ pR, ÝÑv q, and for each robot Rj P R, where Rj ‰ R, and for each
pair of edges ppq, rsq, where pq is an edge of trace(R, α ¨ ÝÑv ) and rs is an edge of Rj , the
algorithm guesses which case of the above four cases applies and adds the corresponding
linear constraint. The algorithm then solves the resulting LP. If the LP has a solution, then
so does the instance I. If the LP is not feasible, then the algorithm rejects the instance.

▶ Theorem 9. Given an instance pR, V, k, ℓq of Rect-MP, in time O˚pp432k ¨ k ¨ |V|q4kq,
we can construct a solution to the instance or decide that no solution exists, and hence
Rect-MP is FPT.

▶ Corollary 10. Rect-MP is in NP.

Proof. The number of guesses made by the nondeterministic algorithm is polynomial. ◀

Next we discuss Rect-MP-l, in which the robots are confined to a bounding box. In
this case, the problem becomes PSPACE-hard as we observe in Section 7. It is easy to see
that the LP part of the above approach can be easily modified to work for any rectangular
bounding box by adding linear constraints stipulating that all rectangles resulting from the
translations are confined to the box. (Basically, we only need to add constraints stipulating
that the x/y-coordinate of each point are within the vertical/horizontal lines of the bounding
box.) The only issue is upper bounding the number of moves, ℓ, in a feasible schedule.

For the case of axis-aligned motion, that is,
Ř

-Rect-MP-l, Proposition 4 provides us
with an upper bound of 2k ¨ 5kpk´1q ď 2k ¨ 5k2 on ℓ in case the instance is feasible. Note that
if the instance is not feasible, then the algorithm will end up rejecting the instance.

▶ Theorem 11. Given an instance pR, V, k, ℓ, Γq of
Ř

-Rect-MP-l, in time O˚p5k2
¨

p432k`1 ¨ kq2k¨5k2

q, we can construct a solution to the instance or decide that no solution
exists, and hence

Ř

-Rect-MP-l is FPT.

6 An FPT Algorithm for
Ř

-Rect-CMP

In this section, we present an FPT algorithm for
Ř

-Rect-CMP. The only major challenge now
is to stipulate non-collision in the case of parallel motion. We again first discuss

Ř

-Rect-CMP
and then extend the FPT result to

Ř

-Rect-CMP-l.
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Let pR “ tR1, . . . , Rku, V, k, ℓq be an instance of
Ř

-Rect-CMP, where V is the set of unit
vectors of the negative and positive x-axis and y-axis. We again present a nondeterministic
algorithm for the problem, which will imply its membership in NP. The algorithm proceeds
in a similar fashion to that of Rect-MP by guessing the exact number ℓ of moves in the
sought schedule and then guessing the sequence E “ xe1, . . . , eℓy of ℓ events corresponding to
the schedule, with the exception that now each event – instead of containing the single robot
that moves in that event and the direction of its translation – contains a subset of robots
and their corresponding directions of translations in V ; that is, each event ei is now a pair of
the form pSi, Viq, i P rℓs, where Si Ď R and Vi Ď V.

We again introduce, for each event ei “ pSi, Viq, and for each robot Rj P Si, variables
xj , yj to encode the coordinates pxj , yjq of the center of Rj at the beginning of event ei.
We also introduce a variable αj ą 0 that encodes the amplitude of the translation in the
direction ÝÑvj P Vi corresponding to the translation of Rj .

Consider a pair Rp, Rq P Si, and let ÝÑvp, ÝÑvq be the directions of their translations in Vi,
respectively, and let αp, αq be the LP variables corresponding to the amplitudes of ÝÑvp, ÝÑvq ,
respectively. We only discuss here how to encode in the LP that the translations of Rp and
Rq in event ei are collision-free and refer to the full version of the paper for the complete
details. The algorithm makes several guesses to distinguish all possible cases. We focus here
only on the two most involved cases arising when trace(Rp, αp ¨ ÝÑvp) and trace(Rq, αq ¨ ÝÑvq)
intersect in their interior. We make guesses to distinguish the two (out of several) subcases
below, and the conditions under which they apply; refer to Figure 4.
First Subcase: Rp is to the right of Rq when Rq reaches the horizontal line determined by

the bottom-horizontal segment of Rp. We add the constraint:

pyp ´ ypRpq{2q ´ pyq ` ypRqq{2q ě xq ` xpRqq{2 ´ pxp ´ xpRpq{2q.

Second Subcase: Rq is above Rp when Rp reaches the vertical line determined by the
left-vertical segment of Rq. We add the linear constraint:

pxq ´ xpRqq{2q ´ pxp ` xpRpq{2q ě yp ` ypRpq{2 ´ pyq ´ ypRqq{2q.

▶ Theorem 12. Given an instance pR, V, k, ℓq of
Ř

-Rect-CMP, in time O˚p52k3
¨ 84k2

q,
we can compute a solution to the instance or decide that no solution exists, and hence
Ř

-Rect-CMP is FPT.

▶ Corollary 13.
Ř

-Rect-CMP is in NP.

We extend the above result to
Ř

-Rect-CMP-l, which is PSPACE-hard (see Section 7):

▶ Theorem 14. Given an instance pR, V, k, ℓq of
Ř

-Rect-CMP-l, in time O˚p5k2
¨

82k2
¨5k2

¨ 5k3
¨5k2

q, we can compute a solution to the instance or determine that no solution
exists, and hence

Ř

-Rect-CMP-l is FPT.

7 Hardness Results

The
Ř

-Rect-MP-l is PSPACE-hard; this follows from the reduction of [14], since the
rectangles in hard instances of [14] move horizontally or vertically. Also, an instance, when
feasible, is feasible by a serial motion. Therefore,

Ř

-Rect-CMP-l is also PSPACE-hard.
The restriction to axis-aligned motion actually makes the reduction in [14] simpler.

The following theorem shows that Rect-MP, restricted to instances in which the set V of
directions is a fixed set containing at least two nonparallel directions, is NP-hard. From this
and the results of Sections 4 and 5, it follows that the problem is NP-complete.
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Rp

Rq

∆V

∆H

αq ¨ ÝÑvq

αp ¨ ÝÑvp

Rp

Rq

∆V

∆H

αq ¨ ÝÑvq

αp ¨ ÝÑvp

Figure 4 Illustration of the two subcases. In the left figure (first subcase), the distance ∆V

between the top edge of Rq and the bottom edge of Rp is larger than the distance ∆H between the
left edge of Rp and the right edge of Rq. Hence, Rp manages to “escape” Rq in time. Similarly, in
the right figure (second subcase), Rq manages to escape Rp in time.

▶ Theorem 15. Rect-MP restricted to the set of instances in which V is fixed and contains
two non-parallel directions, is NP-complete.

8 Concluding Remarks

We studied the complexity and developed parameterized algorithms for fundamental compu-
tational geometry problems pertaining to the motion planning of rectangular robots in the
plane. Several follow-up questions ensue from this work:
1. What is the parameterized complexity of the problem variant in which there is no

restriction on the translation directions? One possible approach to show FPT for this
variant is to show that there is a computable set of possible positions for the robots that
depends on the geometric complexity polynomially, and that transforms the continuous
problem into a discrete one. We conjecture this to be true.

2. What is the parameterized complexity of the problem for other geometric shapes (e.g.,
congruent disks)?

3. What is the parameterized complexity of the problem for environments with obstacles?
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