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Abstract
The classical Zarankiewicz’s problem asks for the maximum number of edges in a bipartite graph on
n vertices which does not contain the complete bipartite graph Kt,t. Kővári, Sós and Turán proved
an upper bound of O(n2− 1

t ). Fox et al. obtained an improved bound of O(n2− 1
d ) for graphs of

VC-dimension d (where d < t). Basit, Chernikov, Starchenko, Tao and Tran improved the bound
for the case of semilinear graphs. Chan and Har-Peled further improved Basit et al.’s bounds and
presented (quasi-)linear upper bounds for several classes of geometrically-defined incidence graphs,
including a bound of O(n log log n) for the incidence graph of points and pseudo-discs in the plane.

In this paper we present a new approach to Zarankiewicz’s problem, via ϵ-t-nets – a recently
introduced generalization of the classical notion of ϵ-nets. Using the new approach, we obtain a
sharp bound of O(n) for the intersection graph of two families of pseudo-discs, thus both improving
and generalizing the result of Chan and Har-Peled from incidence graphs to intersection graphs.
We also obtain a short proof of the O(n2− 1

d ) bound of Fox et al., and show improved bounds for
several other classes of geometric intersection graphs, including a sharp O(n log n

log log n
) bound for the

intersection graph of two families of axis-parallel rectangles.
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1 Introduction

Zarankiewicz’s problem. A central research area in extremal combinatorics is Turán-type
questions, which ask for the maximum number of edges in a graph on n vertices that does not
contain a copy of a fixed graph H. This question was raised in 1941 by Turán, who showed
that the maximum number of edges in a Kr-free graph on n vertices is (1 − 1

r−1 + o(1)) n2

2 .
Soon after, Erdős, Stone and Simonovits solved the problem for all non-bipartite graphs
H. They showed that the maximum number is (1 − 1

χ(H)−1 + o(1))n2

2 , where χ(H) is the
chromatic number of H.

The bipartite case turned out to be significantly harder, and the question is still widely
open for most bipartite graphs (see the survey [29]). The case of H being a complete bipartite
graph was first studied by Zarankiewicz in 1951:

▶ Problem 1 (Zarankiewicz’s problem). What is the maximum number of edges in a Kt,t-free
bipartite graph on n vertices?
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In one of the cornerstone results of extremal graph theory, Kővári, Sós and Turán [25] proved
an upper bound of O(n2− 1

t ). This bound is sharp for t = 2, 3. For t = 2, a tightness
example is the incidence graph of points and lines in a finite projective plane. Similarly, a
tightness example for t = 3 is an incidence graph of points and spheres (of a carefully chosen
fixed radius) in a three-dimensional finite affine space (see [9]). The question whether the
Kővári-Sós-Turán theorem is tight for t ≥ 4 is one of the central open problems in extremal
graph theory.

VC-dimension and Fox et al.’s bound for Zarankiewicz’s problem. The VC-dimension
of a hypergraph is a measure of its complexity, which plays a central role in statistical
learning, computational geometry, and other areas of computer science and combinatorics
(see, e.g., [4, 8, 28]). The VC-dimension of a hypergraph H = (V, E) is the largest integer
d for which there exists S ⊂ V, |S| = d, such that for every subset B ⊂ S, one can find a
hyperedge e ∈ E with e ∩ S = B. Such a set S is said to be shattered. The primal shatter
function of H is πH(m) = maxS⊂V,|S|=m |{S ∩ e : e ∈ E}|, and by the Perles-Sauer-Shelah
lemma, if H has VC-dimension d then πH(m) ≤ Σd

i=0
(

m
i

)
= O(md). The dual hypergraph

of a hypergraph H = (V, E) is H∗ = (V ∗, E∗), where V ∗ = E and each v ∈ V induces the
hyperedge ev ∈ E∗, where ev = {e ∈ E : v ∈ e}. When the VC-dimension of H is d, the
VC-dimension of H∗ is denoted by d∗.

Any bipartite graph G = GA,B with vertex set V (G) = A∪B and edge set E(G) ⊂ A×B,
defines two hypergraphs: the primal hypergraph HG = (A, EB), where EB = {N(b) : b ∈ B}
is the collection of the open neighborhoods of the vertices in B, and the dual hypergraph
H∗

G = (B, EA), defined similarly. The VC-dimension of G is defined as the VC-dimension of
HG, and the dual VC-dimension of G is defined as the VC-dimension of H∗

G. The shatter
function πG and the dual shatter function π∗

G of G, are the shatter functions of HG and of
H∗

G, respectively.
In a remarkable result, Fox, Pach, Sheffer, Suk and Zahl [18] improved the bound of

the Kővári-Sós-Turán theorem for graphs with VC-dimension at most d (for d < t). They
showed:

▶ Theorem 2 ([18]). Let t ≥ 2 and let GA,B be a bipartite graph with |A| = m and |B| = n,
satisfying πG(ℓ) = O(ℓd) and π∗

G(ℓ) = O(ℓd∗) for all ℓ. If G is Kt,t-free, then

|E(G)| = Ot,d,d∗(min{mn1− 1
d + n, nm1− 1

d∗ + m}).

Theorem 2 spawned several follow-up papers. Janzer and Pohoata [22] obtained an improved
bound of o(n2− 1

d ) for graphs with VC-dimension d, where m = n and t ≥ d > 2, using the
hypergraph removal lemma [20]. Do [14] and Frankl and Kupavskii [19] obtained improved
bounds when t tends to infinity with n.

Improved bounds for Zarankiewicz’s problem for incidence graphs. An incidence graph
is a bipartite graph whose vertex set is a union of a set of points and a set of geometric
objects, where the edges connect points to objects to which they are incident. Problems on
incidence graphs are central in computational and combinatorial geometry. For example,
the classical Erdős’ unit distances problem asks for an upper bound on the number of edges
in an incidence graph of points and unit circles. Furthermore, they are closely related to
algorithmic problems in computational geometry, such as range searching and Hopcroft’s
problem (see [2, 12]).
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Incidence graphs are naturally related to Zarankiewicz’s problem. Indeed, the incidence
graph of points and lines is K2,2-free, and thus, the Kővári-Sós-Turán theorem implies that
its number of edges is O(n3/2). While this bound is tight for the incidence graph of the finite
projective plane, the classical Szemerédi-Trotter theorem asserts that a stronger bound of
O(n4/3) holds in the real plane.

Motivated by this relation, Basit, Chernikov, Starchenko, Tao, and Tran [7] studied incid-
ence graphs of points and axis-parallel boxes in Rd, under the additional assumption that they
are Kt,t-free. They obtained an O(n log2d n) bound in Rd, and a sharp O(n log n

log log n ) bound
for dyadic axis-parallel rectangles in the plane. Independently, Tomon and Zakharov [31]
obtained a weaker bound of O(n log2d+3 n) in Rd and a stronger bound of O(n log n) in the
special case of a K2,2-free incidence graph of points and axis-parallel rectangles in the plane.

At SODA’23, Chan and Har-Peled [11] initiated a systematic study of Zarankiewicz’s
problem for incidence graphs of points and various geometric objects. They obtained an
O(n( log n

log log n )d−1) bound for the incidence graph of points and axis-parallel boxes in Rd and
observed that a matching lower bound construction appears in a classical paper of Chazelle
([13]; see also [30]). They also obtained an O(n log log n) bound for points and pseudo-discs
in the plane, and bounds for points and halfspaces, balls, shapes with “low union complexity”,
and more. The proofs in [11] use a variety of techniques, including shallow cuttings, a
geometric divide-and-conquer, and biclique covers.

ϵ-nets and ϵ-t-nets. Given a hypergraph H = (V, E) and ϵ > 0, an ϵ-net for H is a set
S ⊂ V such that any hyperedge e ∈ E of size ≥ ϵ|V | contains a vertex from S. The notion of
ϵ-nets was introduced by Haussler and Welzl [21] who proved that any finite hypergraph with
VC-dimension d admits an ϵ-net of size O((d/ϵ) log(d/ϵ)) (a bound that was later improved
to O((d/ϵ) log(1/ϵ)) in [24]). ϵ-nets were studied extensively and have found applications in
diverse areas of computer science, including machine learning, algorithms, computational
geometry, and social choice (see, e.g., [3, 6, 8, 10]).

Very recently, Alon et al. [5] introduced the following notion of ϵ-t-nets, generalizing
ϵ-nets and the notion of ϵ-Mnets that was studied by Mustafa and Ray [27] and by Dutta et
al. [15]:

▶ Definition 3. Let ϵ ∈ (0, 1) and t ∈ N \ {0} be fixed parameters, and let H = (V, E) be a
hypergraph on n vertices. A set N ⊂

(
V
t

)
of t-tuples of vertices is called an ϵ-t-net if any

hyperedge e ∈ E with |e| ≥ ϵn contains at least one of the t-tuples in N .

Alon et al. [5] proved the following:

▶ Theorem 4. For every ϵ ∈ (0, 1), C > 0, and t, d, d∗ ∈ N \ {0}, there exists C1 = C1(C, d∗)
such that the following holds. Let H be a hypergraph on at least C1((t − 1)/ϵ)d∗vertices with
VC-dimension d and dual shatter function π∗

H(m) ≤ C · md∗ . Then H admits an ϵ-t-net of
size O((d(1 + log t)/ϵ) log(1/ϵ)), all of which elements are pairwise disjoint.

In addition, the paper [5] studied the existence of small-sized ϵ-t-nets in various geometric
settings in which it is known that the classical ϵ-net has size O(1/ϵ). In particular, they
showed that the intersection hypergraph of two families of pseudo-discs and the dual incidence
hypergraph of points and a family of regions with a linear union complexity, admit ϵ-2-nets
of size O(1/ϵ), provided that they have at least 2/ϵ vertices.

SoCG 2024
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1.1 Our results
Zarankiewicz’s problem via ϵ-t-nets. The basic observation underlying our results is a
surprising connection between ϵ-t-nets and Zarankiewicz’s problem. Consider a bipartite
graph G = GA,B = (A ∪ B, E) where |A| = m, |B| = n, and assume that for some ϵ, the
primal hypergraph HG = (A, EB) (recall that EB = {N(b) : b ∈ B} is the collection of the
open neighborhoods of the vertices in B) admits an ϵ-t-net S of size s. We can partition the
vertex set B into the set B′ of “heavy” vertices that have degree at least ϵm in G, and the
set B′′ of “light” vertices that have degree less than ϵm.

We observe that the neighborhood N(b) of any “heavy” vertex b must contain a t-tuple
from S. Since G is Kt,t-free, any t-tuple from S is contained in at most t − 1 neighborhoods
N(bi). Hence, the number of “heavy” vertices is at most s(t − 1). This immediately yields
the bound

|E(G)| ≤ n⌊ϵm⌋ + s(t − 1)m,

where the first term is the contribution of the “light” vertices and the second term is the
contribution of the “heavy” vertices.

Building upon that and several more observations, we develop a recursive approach which
allows obtaining bounds for Zarankiewicz’s problem using results on ϵ-t-nets (see Theorem 8
below).

A short proof of Fox et al.’s bound. Our first application of the ϵ-t-net approach is a
short proof of the bound of Fox, Pach, Sheffer, Suk and Zahl [18] (Theorem 2 above). By
combining the strategy described above with Theorem 4, we prove:

▶ Theorem 5. Let t ≥ 2 and let GA,B be a bipartite graph with |A| = m and |B| = n,
satisfying πG(ℓ) = O(ℓd) and π∗

G(ℓ) = O(ℓd∗) for all ℓ. If G is Kt,t-free, then we have

|E(G)| = Ot,d,d∗(min{mn1− 1
d + n1+ 1

d log n, nm1− 1
d∗ + m1+ 1

d∗ log m}).

The bound of Theorem 5 matches the bound of Theorem 2, whenever d, d∗ > 2 and n, m

do not differ “too much”. Interestingly, when n = m and d∗ = d, our proof strategy can be
combined with the proof strategy of Fox et al. [18] to obtain a slightly better bound. We
omit the details due to space limitations.

Zarankiewicz’s problem for intersection graphs. The intersection graph of a family F
of geometric objects is a graph whose vertex set is F , and whose edges connect pairs of
objects whose intersection is non-empty. In the general (i.e., non-bipartite) setting, Kt-free
intersection graphs of geometric objects were studied extensively, and have applications to
the study of quasi-planar topological graphs (see, e.g., [17]).

Generalizing the systematic study of Zarankiewicz’s problem for incidence graphs initiated
by Chan and Har-Peled [11], we study Zarankiewicz’s problem for bipartite intersection
graphs of geometric objects – i.e., the maximum number of edges in a Kt,t-free graph
GA,B = (A ∪ B, E), where A, B are families of geometric objects, and objects x ∈ A, y ∈ B

are connected by an edge if their intersection is non-empty. Obviously, incidence graphs are
the special case where A consists of a set of points.

It is important to note that this setting (i.e., bipartite intersection graphs) is different
from the (standard) intersection graph of the family A ∪ B, in which intersections inside
A and inside B are also taken into account. The stark difference is exemplified well in the
case of families A, B of segments in the plane. If the bipartite intersection graph of A, B
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is K2,2-free, the results of Fox et al. [18] imply the upper bound O(n4/3) on its number of
edges, and this bound is tight, in view of the tightness examples of the Szemerédi-Trotter
theorem. On the other hand, if the (standard) intersection graph of A ∪ B is K2,2-free,
then the results of Fox and Pach [16] imply an upper bound of O(n) on its number of edges
(see also [26]). Our setting is the natural generalization of incidence graphs, in which only
point-object incidences are taken into account, but not intersections between the objects.

A sharp bound for Zarankiewicz’s problem for intersection graphs of pseudo-discs. A
family of pseudo-discs is a family of simple closed Jordan regions in the plane such that
the boundaries of any two regions intersect in at most two points. For example, a family
of homothets (scaled translation copies) of a given convex body in the plane is a family
of pseudo-discs. As a second application of the strategy described above, we obtain a
linear upper bound for Zarankiewicz’s problem for the intersection graph of two families of
pseudo-discs.

▶ Theorem 6. Let t ≥ 2 and let G = GA,B be the bipartite intersection graph of families
A, B of pseudo-discs, with |A| = |B| = n. If G is Kt,t-free then |E(G)| = O(t6n).

In fact, we show that the assertion of Theorem 6 holds (with a slightly weaker bound of
O(t8n)) for a wider class of bipartite intersection graphs of any two families of so-called
non-piercing regions – namely, families F of regions in the plane such that for any S, T ∈ F ,
the region S \ T is connected.

Theorem 6 improves and generalizes a result of Chan and Har-Peled [11] who obtained
an upper bound of O(n log log n) for the incidence graph of points and pseudo-discs. In order
to prove Theorem 6 we show that the primal and the dual hypergraphs of G admit ϵ-t-nets
of size Ot(1/ϵ) for all n ≥ 2t

ϵ (see Theorem 10). Thus, we also extend the results of [5], and
believe that this might be of independent interest.

Theorem 6 demonstrates the added value of the new ϵ-t-net approach over previous
approaches that used shallow cuttings. There are settings, like intersection graphs of pseudo-
discs, for which one can show the existence of a linear-sized ϵ-t-net, while the existence of
shallow cuttings is not known. In such settings, the ϵ-t-net approach yields stronger bounds
than previous techniques.

An interesting problem which is left open is whether the dependence on t in Theorem 6
can be improved. It seems that the right dependence should be linear, like in the bounds of
Chan and Har-Peled [11].

A sharp bound for intersection graphs of axis-parallel rectangles. The main class of
incidence graphs studied in the previous papers [7, 11, 31] is incidence graphs of points
and axis-parallel rectangles (and more generally, axis-parallel boxes in Rd). We generalize
this direction of study to the intersection graph of two families of axis-parallel rectangles,
and obtain the following:

▶ Theorem 7. Let t ≥ 2, let n ≥ n0 for some n0(t), and let G = GA,B be the bipartite
intersection graph of families A, B of axis-parallel rectangles in general position1, with
|A| = |B| = n. If G is Kt,t-free, then |E(G)| = O(tn log n

log log n ).

As follows from a lower bound given in [7], this result is sharp even in the special case where
one of the families consists of points and the other consists of dyadic axis-parallel rectangles.

1 The general position means that no two edges of rectangles in A∪B lie on the same vertical or horizontal
line.

SoCG 2024
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In the case of bipartite intersections graphs of families of axis-parallel rectangles, and
even in the more basic case of incidence graphs of points and axis-parallel rectangles, the
currently known bounds on the size of ϵ-t-nets do not allow obtaining efficient bounds for
Zarankiewicz’s problem using our ϵ-t-net based strategy. Indeed, among these settings,
“small”-sized ϵ-t-nets for all ϵ ≥ c/n are known to exist only for the incidence hypergraph of
points and axis-parallel rectangles, and the size of the ϵ-t-net is O( 1

ϵ log 1
ϵ log log 1

ϵ ) (see [5,
Theorem 6.10]). Applying the strategy described above with an ϵ-t-net of such size would
lead to an upper bound on the number of edges in a Kt,t-free incidence graph of points and
axis-parallel rectangles, that is no better than O(n log n log log n).

In order to obtain the stronger (and tight) bound of O(n log n
log log n ) in the more general

setting of bipartite intersection graphs of two families of axis-parallel rectangles, we combine
the result of Chan and Har-Peled [11] with a combinatorial argument and with planarity
arguments. Our technique allows us also to obtain a sharp O(n) upper bound on the number
of edges in the bipartite intersection graph of two families of n axis-parallel frames (i.e.,
boundaries of rectangles) in the plane, and an improved bound of O(t4n) on the number of
edges in the intersection graph of points and pseudo-discs (for which Chan and Har-Peled [11]
obtained the bound O(n log log n)).

Organization of the paper. In Section 2 we present our new approach to Zarankiewicz’s
problem via ϵ-t-nets and prove Theorems 5 and 6. In Section 3 we obtain a sharp bound on
the number of edges in a Kt,t-free bipartite intersection graph of two families of axis-parallel
rectangles.

2 From ϵ-t-Nets to Kt,t-free Bipartite Graphs

2.1 A recursive upper bound on the size of Kt,t-free bipartite graphs
Let GA,B be a bipartite graph, where |A| = m, |B| = n. As was shown in the introduction,
if for some ϵ > 0, the primal hypergraph HG = (A, {eb = {N(b)}b∈B}) admits an ϵ-t-net of
size s, we may partition the vertex set B into the set B′ of “heavy” vertices that have degree
at least ϵm and the set B′′ of “light” vertices that have degree less than ϵm, and observe
that since GA,B is Kt,t-free, |B′| ≤ s(t − 1). This yields the bound

|E(G)| ≤ n⌊ϵm⌋ + s(t − 1)m,

where the first term is the contribution of the “light” vertices and the second term is the
contribution of the “heavy” vertices.

If, in addition, the dual hypergraph H∗
G = H(B, {ea = {N(a)}a∈A}) admits an ϵ′-t-net of

size s′, then we can repeat the procedure described above and partition the vertex set A into
the set A′ of “heavy” vertices that have degree at least ϵ′n and the set A′′ of “light” vertices
that have degree less than ϵ′n. By the same argument as above, |A′| ≤ s′(t − 1). Hence, we
can obtain the bound

|E(G)| ≤ n⌊ϵm⌋ + m⌊ϵ′n⌋ + ss′(t − 1)2,

where the first term bounds the contribution of the “light” vertices from B, the second
term bounds the contribution of the “light” vertices from A, and the third term bounds the
contribution of the “heavy”-“heavy” edges.
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Furthermore, we can reduce the third term by observing that the set of “heavy”-“heavy”
edges is the edge set of the bipartite graph GA′,B′ (i.e., the induced subgraph of G on the
vertex set A′ ∪ B′), which is Kt,t-free, and thus, we may be able to apply to it the above
partioning once again, provided that the corresponding primal and dual hypergraphs admit
“small”-sized ϵ-t-nets. This gives rise to the recursive Algorithm 1 depicted below.

Algorithm 1 NumEdges.
Input: GA,B , t

Output: Upper bound on |E(GA,B)|, assuming GA,B is Kt,t-free
1: Choose ϵ, ϵ′

2: Define s to be the minimum size of an ϵ-t-net for HG

3: Define s′ to be the minimum size of an ϵ′-t-net for H∗
G

4: Let A′ = {v ∈ A : degGA,B
(v) ≥ ϵ′n}

5: Let B′ = {w ∈ B : degGA,B
(w) ≥ ϵm}

6: Return n⌊ϵm⌋ + m⌊ϵ′n⌋ +NumEdges(GA′,B′)

Note that the choice of ϵ, ϵ′ at Step 1 of the algorithm is not specified. The optimal choice
is determined by the dependence of the size of the smallest ϵ-t-net of HG and of H∗

G on ϵ. In
the applications presented below, we simply choose both ϵ and ϵ′ to be the smallest possible
value for which the existence of a “small”-sized ϵ-t-net for the corresponding hypergraph is
known.

Correctness of Algorithm 1. Let us call a vertex of A′ ∪B′ heavy, and call the other vertices
light. Algorithm 1 counts separately the edges of GA,B that involve a light vertex, and the
edges that connect two heavy vertices. All the latter edges are counted by the recursion at
Step 6.

Regarding the edges of GA,B that involve a light vertex, there are at most m light vertices
in A, and each of them is involved in at most ⌊ϵ′n⌋ edges of GA,B. Similarly, there are at
most n light vertices in B, and each of them is involved in at most ⌊ϵm⌋ edges of GA,B . This
explains the additive term n⌊ϵm⌋ + m⌊ϵ′n⌋ at Step 6.

Upper bound for Zarankiewicz’s problem for hereditary classes of objects. Algorithm 1
allows establishing a recursive formula that yields an upper bound for Zarankiewicz’s problem
for a wide class of graphs. To present the formula in its full generality, a few more definitions
and notations are needed.

For a bipartite graph G = GA,B where |A| = m, |B| = n, we denote by fG(m, k) the
minimum size of a k

m -t-net of the primal hypergraph H that corresponds to G, and by
f∗

G(n, ℓ) the minimum size of an ℓ
n -t-net of the dual hypergraph H∗ that corresponds to G.

We say that a class F of objects is hereditary if it is downwards closed, meaning that
(A ∈ F) ∧ (A′ ⊂ A) ⇒ (A′ ∈ F). For example, the class of all families of pseudo-discs in the
plane is clearly hereditary.

For two fixed hereditary classes of objects F , F ′, we denote by f(m, k) = fF,F ′(m, k) and
f∗(n, ℓ) = f∗

F,F ′(n, ℓ) the maxima of fG(m, k) and of f∗
G(n, ℓ) (respectively) over all bipartite

graphs G = GA,B such that A ∈ F , B ∈ F ′, |A| = m, and |B| = n.2 Furthermore, we denote
by g(m, n) = gF,F ′(m, n) the maximum number of edges in a Kt,t-free bipartite graph GA,B ,
where A ∈ F , B ∈ F ′, |A| = m, and |B| = n.

2 We note that an extra condition that GA,B is Kt,t-free could be added here, since all bipartite graphs
encountered during the recursive process are Kt,t-free. It will be interesting to understand whether this
additional assumption implies the existence of ϵ-t-nets of a smaller size.

SoCG 2024
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▶ Theorem 8. Let F , F ′ be hereditary classes of objects. In the above notations, we have

g(m, n) ≤ min
1≤k≤m−1

min
1≤ℓ≤n−1

((k − 1)n + (ℓ − 1)m + g((t − 1)f(m, k), (t − 1)f∗(n, ℓ))). (1)

Proof. For any bipartite graph GA,B , where A ∈ F , B ∈ F ′, |A| = m, and |B| = n, and any
k, ℓ, we may apply Algorithm 1 with ϵ = k

m and ϵ′ = ℓ
n , to obtain the bound

|E(GA,B)| ≤ (k − 1)n + (ℓ − 1)m + |E(GA′,B′)|.

Here, the term (k − 1)n bounds the contribution of the “light” vertices in B, as there are
at most n such vertices and each of them has degree strictly less than k

m m = k. The term
(ℓ − 1)m bounds the contribution of the “light” vertices in A in a similar way.

Note that we have |B′| ≤ (t − 1)f(m, k). Indeed, let S be an ϵ-t-net for HG of size
f(m, k). On the one hand, for each b ∈ B′, the hyperedge eb contains a t-tuple from S (since
|eb| ≥ k and S is a k

m -t-net). On the other hand, as GA,B is Kt,t-free, any t-tuple in S

participates in at most t − 1 hyperedges of HG. Thus, |B′| ≤ (t − 1)|S| = (t − 1)f(m, k). By
the same argument, we have |A′| ≤ (t − 1)f∗(n, ℓ). Since F , F ′ are hereditary, it follows that
|E(GA′,B′)| ≤ g((t − 1)f(m, k), (t − 1)f∗(n, ℓ)), and thus,

|E(GA,B)| ≤ (k − 1)n + (ℓ − 1)m + g((t − 1)f(m, k), (t − 1)f∗(n, ℓ)).

Taking the minimum over all 1 ≤ k ≤ m − 1 and 1 ≤ ℓ ≤ n − 1 and then the maximum
over all GA,B , where A ∈ F , B ∈ F ′, |A| = m, and |B| = n, completes the proof. ◀

Theorem 8 allows leveraging results on ϵ-t-nets into upper bounds for Zarankiewicz’s problem
in a black box manner. The results presented in the following subsections are obtained by
applying this approach (or parts of it) for specific classes of graphs.

2.2 Graphs with bounded VC-dimension
The first step of the approach presented above along with Theorem 4 yield a strikingly simple
proof of Theorem 5.

Proof of Theorem 5. Put ϵ = C
1/d∗
1 (t−1)
m1/d∗ , where C1 is the constant from Theorem 4. Let

N be an ϵ-t-net for HG of size O((d(1 + log t)/ϵ) log(1/ϵ)), whose existence follows from
Theorem 4.

Let B′ ⊂ B be the set of vertices with degree at least ϵm = Θd∗,t(m1− 1
d∗ ) in G. We

claim that

|B′| ≤ (t − 1)|N | = Od,t(
1
ϵ

log 1
ϵ

) = Od,d∗,t(m
1

d∗ log m).

Indeed, on the one hand, for each b ∈ B′, the hyperedge eb contains a t-tuple from N . On the
other hand, as GA,B is Kt,t-free, any t-tuple in N participates in at most t − 1 hyperedges of
HG. Thus, |B′| ≤ (t − 1)|N |, as asserted.

To complete the proof, we note that |E(G)| = (
∑

b∈B d(b)), where d(b) is the degree of b

in G. Hence, we have

|E(G)| =
∑
b∈B

d(b) =
∑
b∈B′

d(b)+
∑

b∈B\B′

d(b) ≤ |B′|m+ |B \B′|ϵm = Od∗,d,t(m1+1/d∗
log m+nm1−1/d∗

).

The min assertion is achieved by applying the same argument to H∗
G instead of HG. ◀
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2.3 Kt,t-free bipartite intersection graphs of pseudo-discs
Our recursive strategy can be exploited optimally when both the primal and the dual
hypergraphs that correspond to G admit Ot(1/ϵ)-sized ϵ-t-nets for ϵ as small as O(1/|V |),
where |V | is the number of vertices of the corresponding hypergraph. In this subsection we
prove that this is the case for intersection graphs of two families of pseudo-discs.3 Then, we
use this to obtain an improved linear-sized bound on the number of edges of the graph.

We begin with a formal definition.

▶ Definition 9. A family F of simple closed Jordan regions in R2 is called a family of
pseudo-discs if for any a, b ∈ F , the boundaries of a and b intersect at most twice.

We prove the following ϵ-t-net theorem for a hypergraph induced by two families of pseudo-
discs, which might be of independent interest. The theorem is “optimal”, in the sense that it
provides an Ot(1/ϵ)-sized ϵ-t-net already when ϵn is constant.

▶ Theorem 10. Let F1 and F2 be two families of pseudo-discs. Let H be a hypergraph whose
vertex-set is F1, where each b ∈ F2 defines a hyperedge eb = {a ∈ F1 : a ∩ b ̸= ∅}. If |F1| = n

and ϵn ≥ 2t then H admits an ϵ-t-net of size O(t5 · 1
ϵ ).

The proof of Theorem 10 makes use of the following definition and result:

▶ Definition 11. Let H = (V, E) be a hypergraph. The Delaunay graph of H is the graph on
the same vertex-set, whose edges are the hyperedges of H of cardinality 2.

▶ Theorem 12 ([1], Theorem 6(ii,iii)). Let H = (V, E) be a hypergraph. Suppose there exists
C > 0 such that for every V ′ ⊂ V , the Delaunay graph of the hypergraph induced by V ′ has
less than C|V ′| hyperedges.4 Denote the VC-dimension of H by d. Then:
1. d ≤ 2C.
2. H has O(td−1|V |) hyperedges of size at most t.

Proof of Theorem 10. First, we find a “small” set S ⊂ V (H) = F1 such that each hyperedge
in H of size at least ϵn contains at least t elements of S. To this end, we first let K1 ⊂ V (H)
be an ϵ-net for H of size O( 1

ϵ ). The existence of such a linear-sized ϵ-net is well-known (even
for the more general case of two families of non-piercing regions), see, e.g., [5, Thm. 6.2]. Then,
for each 2 ≤ i ≤ t sequentially, we consider the hypergraph induced on V (H)\(K1∪. . .∪Ki−1),
and let Ki be an O( 1

ϵ )-sized ϵ
2 -net for it. Let S =

⋃t
i=1 Ki. Clearly, |S| = O( t

ϵ ).
We claim that each hyperedge e ∈ E(H) with |e| ≥ ϵn contains at least t elements of S.

Indeed, if |S ∩ e| < t, then there exists some 1 ≤ i ≤ t such that before the i′th step, the
hyperedge induced by e contained less than t elements of K1 ∪ . . . ∪ Ki−1, and e ∩ Ki = ∅.
Since ϵn ≥ 2t, we have ϵn − t ≥ ϵn

2 , a contradiction to Ki being an ϵ
2 -net.

Having the set S ⊂ V (H) in hands, we construct an ϵ-t-net for H that consists of t-tuples
in

(
S
t

)
. Let HS be the hypergraph induced by H on S. It is known that the Delaunay graph

of H, and therefore, of HS , is planar – namely, the condition of Theorem 12 holds with
C = 3, and the VC-dimension of HS is at most 4 (see [23]). These two properties hold for
any induced subhypergraph of HS as well. By Theorem 12, this implies that any induced
subhypergraph of HS on m vertices contains O(t3m) hyperedges of size at most t. By a
simple double-counting argument, it follows that in any such induced subhypergraph, there
exists a vertex that participates in O(t4) hyperedges of size at most t.

3 The special case t = 2 of this result appeared in [5], but the proof method there is very specific for t = 2.
4 The hypergraph induced by V ′ is (V ′, E ′), where E ′ = {e ∩ V ′ : e ∈ E}.
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Now we are ready to construct the desired ϵ-t-net, N . We choose a vertex a that
participates in O(t4) hyperedges of size at most t of HS , and add to N all the t-sized
hyperedges (if exist) that contain a. Then we delete a, and continue inductively, in the same
manner, with the hypergraph induced on V (HS) \ {a}. We continue in this fashion until
all vertices of S are removed. The number of steps is |S| = O( t

ϵ ), and each step contributes
O(t4) t-tuples to N . Hence, in total, we have |N | = O(t5 · 1

ϵ ).
We claim that N is an ϵ-t-net for H. Indeed, consider a hyperedge e ∈ E(H) with |e| ≥ ϵn.

By the construction of S, e contains at least t vertices from S. During the process in which
we removed one-by-one the vertices of S, consider the step in which the size |e ∩ S| was
reduced from t to t − 1. At this step, e contained exactly t elements from S, that formed a
t-tuple added to N . Hence, e contains a t-tuple from N . Thus, N is an ϵ-t-net for H. This
completes the proof of Theorem 10. ◀

▶ Remark 13. It is clear from the proof of Theorem 10 that the theorem holds (up to a factor
of Ot(1)) for any hypergraph H that satisfies the following properties:
1. Any induced subhypergraph H ′ ⊂ H admits an ϵ-net of size O(1/ϵ), for any ϵ ≥ t

|V (H′)| .
2. H has a hereditarily linear Delaunay graph.
An example of such a setting is the intersection hypergraph of two families of non-piercing
regions in the plane.

The existence of a “small”-sized ϵ-t-net for the intersection hypergraph of pseudo-discs
enables us to apply Algorithm 1, and thus to obtain an improvement and a generalization of
the result of Chan and Har-Peled [11] mentioned in the introduction. The following lemma
quantifies the partition of the vertices in steps 4-5 of Alg. 1 into “heavy” and “light” ones.

▶ Lemma 14. Let F1, F2 be two families of pseudo-discs with |F1| = |F2| = n, and let
G = GF1,F2 be the bipartite intersection graph of F1, F2. If G is Kt,t-free and ℓ ≥ 2t, then
the number of vertices in F1 ∪ F2 whose degree in G is at least ℓ is O(t6 n

ℓ ).

Proof of Lemma 14. We prove the lemma w.l.o.g. for the vertices in F2. Let ϵ = ℓ
n . Since

ϵn = ℓ ≥ 2t, we can apply Theorem 10 to obtain an ϵ-t-net N of size O( t5

ϵ ) for the primal
hypergraph HG. Each hyperedge of HG of size at least ϵn = ℓ contains a t-tuple from N ,
but since G is Kt,t-free, each such a t-tuple participates in at most t − 1 hyperedges.

Therefore, the total number of hyperedges of size at least ℓ in HG = (F1, EF2) is at most
(t − 1)O( t5

ϵ ) = O( t6

ϵ ) = O( t6n
ℓ ). This is exactly the number of vertices in F2 with degree at

least ℓ in G. This completes the proof of Lemma 14. ◀

Now we are ready to prove Theorem 6. The idea of the proof is to apply Algorithm 1
with such a choice of ϵ, ϵ′ in step 1 (which is actually done by choosing the parameter ℓ in
Lemma 14), that the number of “heavy” vertices5 in each part of the graph is reduced by a
factor of 2. Intuitively, this factor-2-reduction saves the order of magnitude of the total sum
from being affected by the number of steps in the recursive process. This choice can be made
since (unlike in the general case of Theorem 4), Theorem 10 holds already when ϵn ≥ 2t.

Proof of Theorem 6. Denote by f(n) the maximum possible number of edges in GF1,F2 ,
for F1, F2 as in the statement of the theorem. Let C ≥ 1 be a universal constant such that
Lemma 14 holds with C t6n

ℓ . We prove by induction that our claim holds with f(n) ≤ 8Ct6n.

5 The notions of “heavy” and “light” vertices were explained in the correctness proof of Algorithm 1.
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For n ≤ 8Ct6, the assertion is trivial since |E(GF1,F2)| ≤ n2. We assume correctness for
n
2 and prove the assertion for n. By Lemma 14 with ℓ = 2Ct6 ≥ 2t, the number of vertices
in GF1,F2 with degree at least 2Ct6 is at most C t6n

ℓ = n
2 .

Recall that a vertex in F1 ∪ F2 is called “heavy” if its degree in GF1,F2 is at least ℓ, and
otherwise, it is called “light”. There are at most nℓ edges in GF1,F2 that connect a light vertex
of F1 (resp., F2) with some vertex of F2 (resp., F1). The number of edges in GF1,F2 that
connect two heavy vertices is at most f( n

2 ), and by the induction hypothesis, f( n
2 ) ≤ 4Ct6n.

Therefore, the total number of edges in GF1,F2 is at most (2Ct6 +2Ct6 +4Ct6)n = 8Ct6n. ◀

▶ Remark 15. Theorem 6 can be readily generalized (albeit, with a slightly weaker bound
of O(t8n)) to the more general setting of bipartite intersection graphs of two families of
non-piercing regions in the plane – i.e., families F of regions such that for any S, T ∈ F ,
S \ T is connected. We omit the details due to space limitations.

3 Kt,t-free Bipartite Intersection Graphs of Axis-parallel Rectangles

In this section we prove Theorem 7 – a sharp upper bound on the number of edges in a Kt,t-
free bipartite intersection graph of two families of axis-parallel rectangles. As was explained
in the introduction, the current knowledge on ϵ-t-nets for intersection hypergraphs of families
of axis-parallel rectangles is not sufficient for obtaining a sharp bound for Zarankiewicz’s
problem using our ϵ-t-net approach. Hence, we prove the theorem by an entirely different
method that uses the sharp bound of Chan and Har-Peled on the number of edges in a Kt,t-
free incidence graph of points and axis-parallel rectangles [11], along with other combinatorial
and geometric techniques.

Let us restate the theorem, in a slighly different (but clearly equivalent) form.

▶ Theorem 7. Let t ≥ 2 and let n, m ≥ n0 for some n0(t). Let A, B be two families of
axis-parallel rectangles, |A| = n, |B| = m, s.t. A ∪ B is in general position. If GA,B is
Kt,t-free, then |E(GA,B)| = O(t(n + m) log(n+m)

log log(n+m) ).

Proof. Any intersection between a ∈ A and b ∈ B belongs to exactly one of four types:
1. The rectangle a is strictly contained in the rectangle b.
2. The rectangle b is strictly contained in the rectangle a.
3. A vertical edge of b intersects a horizontal edge of a.
4. A vertical edge of a intersects a horizontal edge of b.

We bound separately the numbers of intersections of each of these types.

Intersections of type 1. We define a bipartite graph G whose vertices are all the corners
of rectangles in A, and all the rectangles in B. A corner x is adjacent to a rectangle b ∈ B

if x ∈ b. Clearly, |V (G)| = 4n + m. We observe that G is K4t−3,4t−3-free, since if some
4t − 3 corners are all contained in the same 4t − 3 rectangles of B, then these 4t − 3 corners
belong to at least t different rectangles in A, and this contradicts the assumption that GA,B

is Kt,t-free. Therefore, we can apply the following result of Chan and Har-Peled [11]:

▶ Lemma 16 ([11], Lemma 4.4). Let P be a set of n points in R2, and let R be a family of
m axis parallel rectangles in R2. If the incidence graph GP,R is Kt,t-free, then E(GP,R) =
Oϵ(tn log n

log log n + tm logϵ n), for any constant ϵ > 0.
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Since the two sides of V (G) contain 4n and m vertices, respectively, Lemma 16 (applied with
any fixed 0 < ϵ < 1) yields

|E(G)| = O(t(n + m) log(n + m)
log log(n + m) ).

Note that each intersection of type 1 contributes exactly 4 edges to G. Hence, the number
of intersections of type 1 is O(t(n + m) log(n+m)

log log(n+m) ). By symmetry, the same bound holds for
the number of intersections of type 2.

Intersections of type 3. Define a bipartite graph K = KS,S′ whose vertices are the
horizontal edges of rectangles in A (that we call horizontal vertices of K), and the vertical
edges of rectangles in B (that we call vertical vertices of K). A vertical vertex is adjacent to
a horizontal vertex if the corresponding edges cross. Each intersection of type 3 contributes
either 1, 2, or 4 edges to H. Therefore, the number of such intersections is at most 4|E(K)|.

Denote the vertices of S (i.e., the vertical vertices of K) by v1, v2, . . . , vm (in an arbitrary
order). For 1 ≤ i ≤ 2m, let di be the degree of vi in K. Clearly, |E(K)| = Σ2m

i=1di. Let
F ⊂

(
S′

2t−1
)

be the family of all canonical (2t − 1)-tuples of horizontal vertices, where a
(2t − 1)-tuple T of horizontal vertices is called canonical if there exists some vertical segment
L (not necessarily a vertical vertex!) that intersects exactly the vertices of T among all the
horizontal vertices (i.e., we have {x ∈ S′ : x ∩ L ̸= ∅} = T ).

▷ Claim 17. In the above notations, |F| = O(t5n).

We leave the proof of Claim 17 to the end of this section, and continue with the proof of
Theorem 7 (assuming the claim).

For each 1 ≤ i ≤ 2m, we define xi to be the number of canonical (2t − 1)-tuples of
horizontal vertices which the vertical vertex vi intersects. That is,

xi = |{{h1, . . . , h2t−1} ∈ F : ∀1 ≤ j ≤ 2t − 1, vi ∩ hj ̸= ∅}|.

We would like to obtain lower and upper bounds on Σ2m
i=1xi.

On the one hand, Σ2m
i=1xi ≤ (2t − 2)|F|. Indeed, for any canonical (2t − 1)-tuple

{h1, . . . , h2t−1} ∈ F , at most 2t − 2 vi’s intersect all of h1, . . . , h2t−1, since otherwise, GA,B

contains Kt,t as a subgraph (as the hj ’s must belong to at least t different rectangles in A

and the vi’s must belong to at least t different rectangles in B). By Claim 17, this implies

Σ2m
i=1xi = (2t − 2) · O(t5n) = O(t6n). (2)

On the other hand, for each 1 ≤ i ≤ 2m, we have di − 2t + 2 ≤ xi. Indeed, if di ≤ 2t − 2
the inequality is trivial. If di ≥ 2t − 1 and vi intersects (w.l.o.g.) the horizontal vertices
h1, . . . , hdi in this order, then each consecutive (2t − 1)-subsequence of h1, . . . , hdi belongs
to F , since it is the intersection of some subsegment of vi with the set of horizontal vertices.
Therefore,

Σ2m
i=1(di − 2t + 2) ≤ Σ2m

i=1xi. (3)

Combining (2) and (3) together, we obtain

Σ2m
i=1(di − 2t + 2) = O(t6n),

and thus,

|E(K)| = Σ2m
i=1di = O(t6n + tm).
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hi

hj

v

Figure 1 The planar drawing of v = {hi, hj} (in bold).

hi

hj

v

h′
i

h′
j

v′

Figure 2 In this figure, the planar drawing of {hi, hj} intersects the planar drawing of {h′
i, h′

j}.
However, v′ intersects three horizontal segments, and therefore {h′

i, h′
j} /∈ E(Del(J)).

Hence, the number of intersections of type 3 is O(t6n + tm), which is negligible compared to
O(t(n + m) log(n+m)

log log(n+m) ) for any fixed t. By symmetry, the same bound applies to the number
of intersections of type 4. This completes the proof of the theorem (assuming Claim 17). ◀

The only part that remains is the proof of Claim 17.

Proof of Claim 17. Define a hypergraph J whose vertices are the horizontal edges of the
rectangles in A – h1, . . . , h2n, and each vertical segment v (which is not necessarily a vertical
vertex!) defines a hyperedge ev which is the subset of {h1, . . . , h2n} that v intersects.

Note that F is the set of hyperedges of size 2t − 1 of J . We would like to bound the size
of this set by O(t5n). To this end, we prove that the Delaunay graph of J , Del(J), has a
hereditarily linear number of edges. It is clearly sufficient to prove that |E(Del(J))| is linear
in |V (Del(J))| = 2n.

Let us describe a planar drawing of Del(J). We represent each vertex of Del(J) by the
right endpoint of the corresponding horizontal edge. Each edge v = {hi, hj} ∈ E(Del(J))
is drawn as a 3-polygonal path that starts at the right endpoint of hi, continues on the
subsegment of v that connects hi and hj , and continues on hj towards its right endpoint
(see Figure 1).

The drawing described here is a planar drawing of Del(J). It is easy to verify that if
for some four distinct vertices hi, hj , h′

i, h′
j , the planar drawing of v = {hi, hj} intersects

the planar drawing of v′ = {h′
i, h′

j}, then either v or v′ cannot be an edge of Del(J) (see
Figure 2). As Del(J) admits a planar drawing in which no two vertex-disjoint edges intersect,
it is planar (e.g., by an easy special case of the Hanani-Tutte theorem).

Thus, each subgraph of Del(J) on ℓ vertices contains at most 3ℓ−6 edges. By Theorem 12,
this implies that the number of hyperedges of size at most 2t−1 in J is O(t5n). In particular,
|F| = O(t5n), as asserted. ◁
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▶ Remark 18. Note that some intersections between two rectangles a ∈ A, b ∈ B were counted
twice. In the counting of type 1, we actually counted all the intersections in which a corner
of a is contained in b, and not only the ones in which a ⊆ b.
▶ Remark 19. The proof of Theorem 7 readily implies that the number of edges in a Kt,t-free
bipartite intersection graph GA,B of two families of axis-parallel frames (i.e., boundaries
of rectangles) with |A| = n, |B| = m is O(t6n + tm). Indeed, the only possible types of
intersections between a pair of axis-parallel frames are intersections of types 3, 4 presented
above. In the proof, the number of such intersections is bounded by O(t6n + tm).
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