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Abstract
A paradigm in topological data analysis asserts that persistent homology should be computed to
recover the homology of a data manifold. But could there be more to persistent homology? In this
paper I bound probabilities that a random Čech complex built on a circle attains high-dimensional
topology. This builds on the known result that any nerve complex of circular arcs has the homotopy
type of a bouquet of spheres. We observe a phase transition going from one 1-sphere, bouquet of
2-spheres, one 3-sphere, bouquet of 4-spheres, and so on. Furthermore, the even-dimensional Betti
numbers become arbitrarily large over shrinking intervals. Our main tool is an exact computation of
the expected Euler characteristic, combined with constraints on homotopy types. The systematic
behaviour we observe cannot be regarded as a “topological noise”, and calls for deeper investigations
from the TDA community.
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1 Introduction

A conventional wisdom in topological data analysis says the following: if we construct a
simplicial complex from a random sample drawn from a manifold, then the topology of the
simplicial complex approximates the topology of the manifold. Indeed this is true if we scale
down the connectivity radius smaller as the sample size grows larger, but what happens
when the connectivity radius stays the same?

We study the random topology of the circle and characterise its unexpected high-
dimensional topology. Building on the previous discovery in [4] that a nerve complex
of circular arcs must be homotopy equivalent to a bouquet of spheres1 ∨aSb, we constrain
probabilities that these homotopy types are achieved. We achieve this by computing expected
Euler characteristic precisely and pair this with constraints on homotopy type. In [4], it was
also shown that if a nerve complex of circular arcs is homotopy equivalent to ∨aSb, then only
a = 1 is allowed for odd b, while all a ≥ 1 are allowed for even b. Indeed, this corresponds to
our discovery that there is a phase transition going from one 1-sphere, bouquet of 2-spheres,
one 3-sphere, bouquet of 4-spheres, and so on. Now let’s describe the setup and Theorem A.

1 We take the convention that for a topological space K, we define the 0-th wedge sum ∨0K = ∗, the
singleton point set, and the 1st wedge sum ∨1K = K itself.
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70:2 Strange Random Topology of the Circle

Setup. Define the circle S1 as the quotient space S1 = [0, 1]/ ∼, which is an interval
of length 1 glued along endpoints: 0 ∼ 1. A bouquet of spheres ∨aSk is defined as the
wedge sum of a copies of Sk.
For a positive integer n, let Xn be the i.i.d. (independently and identically distributed)
sample of size n, drawn uniformly from S1. The Čech complex of filtration radius ≤ r

is denoted by Č(Xn, r). In constructing a Čech complex, we always use the intrinsic
topology of the circle, i.e. the Čech complex is a nerve complex constructed by taking arcs
as open sets.
We denote the expected Euler characteristic and expected Betti number as follows:

χ̄(n, r) = E
[
χ(Č(Xn, r))

]
, b̄k(n, r) = E

[
dim Hk(Č(Xn, r))

]

▶ Theorem A (Expected Euler Characteristic). The following are true.

(1) χ̄(n, r) is a continuous piecewise-polynomial function in r, given explicitly as follows
for n > 0 and r ∈ (0, 1):

χ̄

(
n,

1 − r

2

)
=

⌊1/r⌋∑
k=1

(
n

k

)
(1 − kr)k−1(kr)n−k

(2) Normalised Euler charactreristics have the following maximum values for all k ≥ 0:

lim
n→∞

max
r∈Ik

χ̄(n, r)
n

= (k/e)k

(k + 1)! , Ik =
(

k

2k + 2 ,
k + 1
2k + 4

)
(3) Let k ≥ 1. Given ϵ > 0, the following uniform bounds hold for all r ∈

[
k

2k+2 , k+1
2k+4

)
when n is sufficiently large:

χ̄(n, r)
n

− ϵ ≤ b̄2k(n, r)
n

≤ χ̄(n, r)
n

Theorem A allows us to plot exact values of the expected Euler characteristic curves.
The left side of Figure 1 shows graphs of fn(r) = n−1 · χ̄(n, r), which are normalised versions
of χ̄. We stress that these curves are exact values from the formula in Theorem A1. As n

becomes larger, fn(r) shows peaks that converge to a sequence of narrow spikes, as Theorem
A2 predicts. The right side of the figure shows the non-normalised graphs of χ̄(n, r), where
we see that the peaks of Theorem A2 will go to infinity as n → ∞.

Meanwhile we observe that χ(S2k+1) = 0 and χ(∨aS2k) = a + 1, so that only bouquets
of even-dimensional spheres contribute to the Euler characteristic. Therefore in Figure 1,
limiting spikes indicate contribution from ∨aS2k with large a, and the plateaus indicate
contribution from the odd-dimensional spheres. Recalling that Xn is an i.i.d. sample of size
n drawn from S1, these observations are encoded into Theorems B and C:
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Figure 1 Left: Graphs of normalised expected Euler characteristics, y = n−1 · χ̄(n, x), for
n ∈ {10, 20, . . . 200} and x ∈ [0, 1]. Right: Same as left, but we plot y = χ̄(n, x), which are
(un-normalised) expected Euler characteristics. Yellow curves correspond to larger n. Red circles
are peaks of the limiting spikes, given by

(
k

2k+2 , (k/e)k

(k+1)!

)
for all k ≥ 0. Note that χ̄ converges to 1 at

threshold 0.5 (Right), because the simplicial complex is contractible at connectivity radius = 0.5.

▶ Theorem B (Odd Spheres). Let k ≥ 0 be an integer, and also let ϵ, δ > 0. Suppose
that |r − νk| ≤ τk − ϵ. Then for sufficiently large n, the following homotopy equivalence
holds with probability at least 1 − δ:

Č(Xn, r) ≃ S2k+1

where

νk = 2k2 + 4k + 1
4(k + 1)(k + 2) , τk = 1

4(k + 1)(k + 2)

▶ Theorem C (Even Spheres). Let k ≥ 2, η ∈ (0, 1). If n is sufficiently large and r satisfies
|r − ρk,n| ≤ σk,η/n, then the following homotopy equivalence holds with probability at
least η · kωk:

Č(Xn, r) ≃ ∨aS2k−2, for some (1 − η)ωk · n

2 ≤ a + 1 ≤ n

k

where

ρk,n = n(k + 1)
2k(n − 1) , σk,η = (1 − η)3(kωk)3

320
√

k + 2
, ωk = (k − 1)k−1

k!ek−1

SoCG 2024



70:4 Strange Random Topology of the Circle

▶ Remark 1. In Theorem B, we note that νk = 1
2 ( k+1

2k+4 + k
2k+2 ) and τk = 1

2 ( k+1
2k+4 − k

2k+2 ), so
that Theorem B covers most of each interval r ∈ [ k

2k+2 , k+1
2k+4 ]. In Theorem C, note that the

number a appearing in ∨aS2k−2 is random, and that the theorem constrains the probability
that a lies on a certain shrinking interval. To see Theorem C in action, one may simply set
η = 1/2 to obtain results.

▶ Remark 2. Although all of the above results are proven for the Čech complex of circular
arcs on the circle, similar behaviour is observed in the Rips complex constructed on the
circle as well. Indeed, modifying Theorem B for the Rips complex immediately yields the
following: for the Rips complex constructed from a finite random sample on a circle, all
odd-dimensional spheres appear with positive persistence and probability approaching 1.
Analogues of Theorems A and C for the Rips complex could not be immediately obtained
with methods in this paper.

▶ Remark 3. An analogue of Theorem B was proven in Theorem 6.1 of [1], although the
setup is slightly different - the authors consider a random process and calculate the expected
number of points required for the random homotopy type to be an odd-dimensional sphere.

Structure of the paper. In Section 2 we calculate the expected Euler characteristic and
prove its limit behaviours, which yield Theorems A1 and A2. In Section 3 this calculation
is paired with constraints on homotopy types, which yields Theorems A3 and Theorem C.
In Section 4 we prove Theorem B, by using the classical method of stability of persistence
diagram; this section works separately and doesn’t use the Euler characteristic method.

Theorem C takes the most work to prove. It is a simplified version of Theorem 3.5, which
has a few more parameters that can be tweaked to obtain similar variants of Theorem C.
Theorem 3.5 is obtained by combining three ingredients: Propositions 2.5, 3.3, and 3.4.

Related works. The classical result of Hausmann shows that the Vietoris-Rips complex
constructed from the manifold with a small scale parameter recovers the homotopy type of
the manifold [13]. Another classical result of Niyogi, Smale, Weinberger shows that if a Čech
complex of small filtration radius is constructed from a finite random sample of a Euclidean
submanifold, then the homotopy type of the manifold is recovered with high confidence [16].

An early work on understanding statistical behaviour of persistent homology was pioneered
in [11], where in particular low-dimensional random topology of the circle was studied. After
this, much work has been done for recovering topology of a manifold from its finite sample,
when connectivity radius is scaled down with the sample size at a specific rate [9, 12, 14, 10].
A central theme of this body of work is the existence of phase transitions when parameters
controlling the scaling of connectivity radius are changed. For a survey, see [18] and [8].

In comparison, the setting when connectivity radius is not scaled down with sample
size is studied much less. Results on convergence of the topological quantities have been
studied [17, 20], but not much attention has been devoted to analysing specific manifolds.

This paper builds on two important works that characterised the Vietoris-Rips and Čech
complexes of subsets of the circle: [4] and [1]. Several variants of these ideas were studied,
for ellipse [6], regular polygon [7], and hypercube graph [2]. Randomness in these systems
were studied using dynamical systems in [5]. One key tool to further study the topology of
Vietoris-Rips and Čech complexes arising from a manifold is metric thickening [3]. Using
this tool, the Vietoris-Rips complex of the higher-dimensional sphere has been characterised
up to small filtration radii [15].
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2 Expected Euler characteristic

In this section we compute the expected Euler characteristic precisely. We start with a simple
calculation that also briefly considers the Vietoris-Rips complex, but soon after we only work
with the Čech complex. Let VR(Xn, r) denote the Vietoris-Rips complex of threshold r. The
following proposition reduces computation of expected values to the quantities Tk and Qk,
defined below:

▶ Proposition 2.1. For each n > 0, let Xn be the i.i.d. sample drawn uniformly from S1.
Then we have that:

E[χ(VR(Xn, r))] =
n∑

k=1
(−1)k−1

(
n

k

)
Tk(r)

E[χ(Č(Xn, r))] =1 +
n∑

k=1
(−1)k

(
n

k

)
Qk(1 − 2r)

where Tk(r) is the probability that every pair of points in Xk are within distance r, and Qk(r)
is the probability that open arcs of length r centered at points of Xk cover S1. Expectation is
taken over the i.i.d. sample Xn.

Proof. Denoting by sk(K) the number of (k − 1)-simplices in a simplicial complex K, we
have that:

E[sk(VR(Xn, r))] =
(

n

k

)
Tk(r)

and thus

E[χ(VR(Xn, r))] =
n−1∑
k=0

(−1)kE[sk(VR(Xn, r))] =
n∑

k=1
(−1)k−1

(
n

k

)
Tk(r)

The relation for the Čech complex is derived in the same way, except we note the following:
the probability that arcs of radius r centered at points of Xk intersects nontrivially is equal
to 1 − Qk(1 − 2r). This is by De Morgan’s Law: for any collection of sets {Uj ⊆ S1}j∈J , we
have ∩j∈JUj = ∅ iff ∪j∈JU c

j = S1. In the case of circle (of circumference 1), the complement
of a closed arc of radius r is an open arc of length 1 − 2r. Applying this logic, we obtain:

E[χ(Č(Xn, r))] =
n∑

k=1
(−1)k−1

(
n

k

)
(1 − Qk(1 − 2r))

which is easily seen to be the same as the asserted expression (note that
∑n

k=1(−1)k−1(
n
k

)
=

1.) ◀

The Qk were computed by Stevens in 1939 [19]. Its proof is reproduced in Section 5 for
completeness.

▶ Theorem 2.2 (Stevens). If k arcs of fixed length a are independently, identically and
uniformly sampled from the circle of circumference 1, then the probability that these arcs
cover the circle is equal to the following:

Qk(a) =
⌊1/a⌋∑
l=0

(−1)l

(
k

l

)
(1 − la)k−1

SoCG 2024



70:6 Strange Random Topology of the Circle

We then get the following by switching the order of summation:

▶ Theorem 2.3 (Theorem A1). Expected Euler characteristic of random Čech complex on a
circle of unit circumference obtained from n points and filtration radius (1 − r)/2 is:

χ̄

(
n,

1 − r

2

)
=

⌊1/r⌋∑
k=1

(
n

k

)
(1 − kr)k−1(kr)n−k

In particular, χ̄(n, r) is a continuous piecewise-polynomial function in r.

Proof. Substituting the Qk expression in, we get:

χ̄

(
n,

1 − r

2

)
=1 +

n∑
k=1

(−1)k

(
n

k

)
Qk(r)

=1 +
⌊1/r⌋∑
l=0

n∑
k=1

(−1)k+l

(
n

k

)(
k

l

)
(1 − rl)k−1

=
⌊1/r⌋∑
l=1

n∑
k=1

(−1)k+l

(
n

k

)(
k

l

)
(1 − rl)k−1

where we switched the order of summation in the second equality, and isolating the l = 0
part cancels out the 1 in the third equality. Noting that

(
n
k

)(
k
l

)
=

(
n
l

)(
n−l
k−l

)
, we further get:

χ̄

(
n,

1 − r

2

)
=

⌊1/r⌋∑
l=1

(−1)l

(
n

l

)
(1 − rl)−1

n∑
k=l

(
n − l

k − l

)
(rl − 1)k

=
⌊1/r⌋∑
l=1

(
n

l

)
(1 − rl)l−1

n−l∑
k=0

(
n − l

k

)
(rl − 1)k

=
⌊1/r⌋∑
l=1

(
n

l

)
(1 − rl)l−1(rl)n−l ◀

We now characterise limit behaviour of the formula obtained above, seen as spikes in
Figure 1. The main idea is that only one summand in the expected Euler characteristic
contributes mainly to the spike, and this is a polynomial term that can be studied with
calculus. Indeed, the main idea is simply to study the calculus of functions of the form
f(t) = ta(1 − t)b for some integers (a, b). The (a) and (b) of the next Proposition directly
implies Theorem A2, and (c) is used for proving Theorem C. Its proof is postponed to
Section 5.

▶ Proposition 2.4. Suppose that m, n are integers with 2 ≤ m <
√

n. The following holds
for χ̄(n, r).

(a) The following bounds hold:

am,n ≤ χ̄(n, sm,n)
n

≤ M ≤ am,n + bm,n
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where

M = max
{

1
n

χ̄

(
n,

1 − r

2

) ∣∣∣∣ r ∈
(

1
m + 1 ,

1
m

)}
sm,n = (m − 1)n

2(n − 1)m

am,n =
(

n

m

)
(m − 1)m−1(n − m)n−m

n(n − 1)n−1

bm,n =enm−1
(

1 − 1
m + 1

)n−1

(b) We have the following limits:

lim
n→∞

am,n = (m − 1)m−1

m!em−1 , lim
n→∞

bm,n = 0

(c) Suppose additionally that n > 2m2. Then for each λ ∈ [0, 1], we have that:∣∣∣∣r − n − m

(n − 1)m

∣∣∣∣ <
(1 − λ)

√
(m − 1)(n − m)

m(n − 1)3/2 =⇒ 1
n

χ̄

(
n,

1 − r

2

)
> λam,n

This condition for r in particular satisfies r ∈
(

1
m+1 , 1

m

]
.

The following is a modification of (c) above, and this will be used for Theorem C.

▶ Proposition 2.5. Let m ≥ 2, ϵ > 0. The following holds for sufficiently large n:

r ∈
[
α−, α+]

=⇒ 1
n

χ̄

(
n,

1 − r

2

)
∈

[
(1 − ϵ)ωm, (1 + ϵ)ωm

]
where

α± = n − m

(n − 1)m

(
1 ± ϵ

√
m − 1
n

)
, ωm = (m − 1)m−1

m!em−1

Proof. This follows directly from the previous Proposition. α± are slight relaxations of the
interval in (c), where we set λ = 1 − ϵ:[

n − m

(n − 1)m − ϵR1,
n − m

(n − 1)m + ϵR1

]
⊇

[
n − m

(n − 1)m (1 − ϵR2), n − m

(n − 1)m (1 + ϵR2)
]

where R1 =
ϵ
√

(m − 1)(n − m)
m(n − 1)3/2 , R2 =

√
m − 1

n
◀

3 Random homotopy types

In this section we prove Theorems A3 and C, by pairing the calculations from the previous
section with constraints on homotopy types. First we define Un = {i/n|i = 0, 1, . . . n−1} ⊂ S1

to be the set of n regularly spaced points. Let N (n, k) be nerve complex of closed intervals
[i/n, (i + k)/n]. The homotopy types of N (n, k) were fully calculated in [4], and this is
crucially important for this paper:

SoCG 2024



70:8 Strange Random Topology of the Circle

▶ Proposition 3.1 (Theorem 3.5 and 5.4, [4]). Any nerve complex of n circular arcs is
homotopy equivalent to N (n′, k) for some n′ ≤ n. Furthermore, the homotopy types of
N (n, k) are given by the following:

N (n, k) ≃

∨n−k−1S2l if k
n = l

l+1

S2l+1 if k
n ∈

(
l

l+1 , l+1
l+2

)
In particular, if (k, n) = (jl, j(l + 1)), then n − k − 1 = j − 1 and thus ∨n−k−1S2l = ∨j−1S2l.

This easily implies the following, whose proof is postponed to Section 5. The important
thing to note below is that a is bounded regardless of n if b < k − 1, but is allowed to be
unbounded if b = k − 1.

▶ Proposition 3.2. Let r ∈ (0, 1/2) and n > 0 be given. Let k = ⌊(1 − 2r)−1⌋. Then the
following inclusion holds for subsets of Z2:{

(a, b)
∣∣∣∣ Č(Y, r) ≃ ∨aS2b, Y ⊂ S1, #Y = n

}
⊆

{
(a, b)

∣∣∣∣ b + 1 ≤ k − 1, a + 1 ≤ k

k − b − 1

}
∪

{
(a, k − 1)

∣∣∣∣ a + 1 ≤ n

k

}
where we take k/0 = ∞ by convention.

Now we proceed to apply the above constraints to the probabilistic setting. For a
topological space K, we define the following notation for probability:

p(K, n, r) = P[Č(Xn, r) ≃ K]

We have the following:

χ̄(n, r) = E[χ(Č(Xn, r))] =
∑
K

χ(K) · p(K, n, r)

where the sum is well-defined because there are only finitely many combinatorial structures
that Č(Xn, r) can take.

The following Proposition directly implies Theorem A3.

▶ Proposition 3.3. Let r ∈ (0, 1/2) and n > 0 be given. Let k = ⌊(1 − 2r)−1⌋. Then the
following holds:

Ak ≤ χ̄(n, r) ≤ k + Ak, where Ak =
∑

1<a+1≤n/k

(a + 1) · p(∨aS2k−2, n, r)

Proof. By Proposition 3.2, we have that:{
∨aS2b

∣∣∣∣p(∨aS2b, n, r) > 0
}

⊆
{

∨aS2b

∣∣∣∣b+1 ≤ k−1, a+1 ≤ k

k − b − 1

}
∪

{
∨aS2k−2

∣∣∣∣a+1 ≤ n

k

}
Therefore we can break down the expression χ̄(n, r) into two parts2:

χ̄(n, r) =A<k + Ak, where A<k =
∑

0≤b≤k−2
(a+1)(k−b−1)≤k

(a + 1) · p(∨aS2b, n, r)

Here we used χ(∨aS2b) = a + 1. Since sum of probabilities is 1, applying the constraint
(a + 1)(k − b − 1) ≤ k implies that A<k ≤ k. ◀

2 In A<k, we only consider a ≤ 0 when b = 0 and instead consider a > 0 when b > 0. This is so that the
singleton set ∨aS2b = ∗ is counted only once.
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To prove Theorem C, we control probabilities that ∨aS2k−2 appear.

▶ Proposition 3.4. Let n ∈ Z+, δ ∈ (0, 1), r ∈ (0, 1/2) be given, and let k = ⌊(1 − 2r)−1⌋.
The following holds:

kAk − δn

(1 − δ)n + k
≤ Bk,δ ≤ kAk

δn

where

Bk,δ =
∑

δ̃≤a≤l

pa, and l = ⌊n/k⌋ − 1, δ̃ = ⌈δn/k⌉ − 1

Proof. We split Ak into two parts:

Ak =
(

2p1 + 3p2 + · · · + δ̃pδ̃−1

)
+

(
(δ̃ + 1)pδ̃ + · · · + (l + 1)pl

)
where we abbreviated pa = p(∨aS2k−2, n, r). From the above it directly follows that:

(δ̃ + 1)Bk,δ ≤ Ak ≤ δ̃(1 − Bk,δ) + (l + 1)Bk,δ

and therefore

=⇒ (δ̃ + 1)Bk,δ ≤ Ak ≤ δ̃ + (l + 1 − δ̃)Bk,δ

=⇒ Ak − δ̃

l + 1 − δ̃
≤ Bk,δ ≤ Ak

δ̃ + 1

=⇒ Ak − ⌈δn/k⌉ + 1
⌊n/k⌋ − ⌈δn/k⌉ + 1 ≤ Bk,δ ≤ Ak

⌈δn/k⌉

=⇒ Ak − δn/k

(1 − δ)(n/k) + 1 ≤ Bk,δ ≤ Ak

δn/k
◀

Now Propositions 2.5, 3.3, 3.4 imply the following, which is a more general version of
Theorem C. Indeed Theorem C is implied by setting ϵ = δ = (1 − α)kωk/2 below, and also
replacing the gap α+ − α− by a smaller but simpler quantity.

▶ Theorem 3.5. Let r ∈ [ 1
4 , 1

2 ) and let k = ⌊(1 − 2r)−1⌋. Given ϵ, δ ∈ (0, 1), the following
implication holds for large enough n:

1 − 2r ∈ [α−, α+] =⇒ Bk,δ ∈ [β− − ϵ, β+ + ϵ]

where

α± = 1
k

n − k

n − 1

(
1 ±

√
k − 1
n

· δ(1 − δ)
5 · ϵ

)
,

β− =kωk − δ

1 − δ
, β+ = kωk

δ

ωk =(k − 1)k−1

k!ek−1

The bounds β± satisfy β− ≤ kωk ≤ β+. Also β− > 0 iff δ < kωk and β+ < 1 iff δ > kωk.

Proof. We first describe the heuristic reasoning for the bounds, which is rather simple.
Proposition 3.4 gives us:

kAk − δn

(1 − δ)n + k
≤ B ≤ kAk

δn

SoCG 2024



70:10 Strange Random Topology of the Circle

By Proposition 2.5 and 3.3, the upper bound has the following approximations:
kAk

δn
≈ kχ̄

δn
≈ kωk

δ

and similarly the lower bound has the following approximations:
kAk − δn

(1 − δ)n + k
≈ kAk − δn

(1 − δ)n ≈ kχ̄ − δ

1 − δ
≈ kωk − δ

1 − δ

The actual proof becomes more complicated due to using a different choice of ϵ in applying
Proposition 2.5.

Let ϵ′ = δ(1 − δ) · ϵ/5. We apply Proposition 2.5 with ϵ′ taking the role of ϵ, and this
gives the choice of α± in the theorem. Therefore r ∈ [α−, α+] implies the following:

(1 − ϵ′)ωk ≤ χ̄

n
≤ (1 + ϵ′)ωk (3.1)

Before going further, we note the following inequalities for ϵ′, which we will use later:

ϵ′ = δ(1 − δ)ϵ
4 + 1 ≤ δ(1 − δ)ϵ

4 + δ(1 − δ)ϵ

=⇒ ϵ′

1 − ϵ′ ≤ δ(1 − δ)ϵ
4

=⇒ ϵ′

1 − ϵ′ ≤ min
(

4δ, δ−1 − 1, 1
)

· ϵ

4 (3.2)

Upper bound. By Equation (3.1) and Proposition 3.3, we have:
kωk

δ
≥ 1

1 + ϵ′
kχ̄

δn
≥ 1

1 + ϵ′
kAk

δn

By Equation (3.2), we have that:
1

1 + ϵ′
kAk

δn
≥ kAk

δn
− ϵ

Then Proposition 3.4 applies and we have the upper bound.

Lower bound. By Equation (3.1) and Proposition 3.3, we have:
kωk − δ

1 − δ
≤ 1

1 − δ

(
1

1 − ϵ′
kχ̄

n
− δ

)
≤ 1

1 − δ

(
1

1 − ϵ′
k2 + kAk

n
− δ

)
Let L0 be the right hand side. We rewrite it as follows:

L0 = L1 + E1 = L2 + E1 + E2

where

L1 = kAk − δn

(1 − δ)(1 − ϵ′)n, E1 = δϵ′ + k2/n

(1 − δ)(1 − ϵ′)

L2 = kAk − δn

(1 − δ)n + k
, E2 = kAk − δn

(1 − δ)(1 − ϵ′)n · k + (1 − δ)nϵ′

(1 − δ)n + k

By Equation (3.2), the relation kAk ≤ n and by taking n large enough, we see that

E1, E2 ≤ ϵ/2

This implies that:
kωk − δ

1 − δ
− ϵ ≤ L0 − ϵ = L2 + E1 + E2 − ϵ ≤ L2

Then again Proposition 3.4 applies and we have the lower bound. ◀
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4 Odd spheres

We prove Theorem B by a simple argument using the stability of persistence diagram. In
this case, we will be using the Čech complex constructed from the full set of the circle, and
then bound the Gromov-Hausdorff distance between the full circle and a finite sample of it.
We use the following result from [1]:

▶ Theorem 4.1. The homotopy types of the Rips and Čech complexes on the circle of unit
circumference are as follows:

VR(S1, r) ≃

{
S2l+1 if l

2l+1 < r < l+1
2l+3∨c S2l if r = l

2l+1

Č(S1, r) ≃

{
S2l+1 if l

2l+2 < r < l+1
2l+4∨c S2l if r = l

2l+2

where c is the cardinality of the continuum.

We also note the stability of persistence:

▶ Theorem 4.2 (Stability of Persistence). If X, Y are metric spaces and DkM is the k-
dimensional persistence diagram of persistence module M , then

dB(DkVR(X), DkVR(Y )) ≤ dGH(X, Y )
dB(DkČ(X), DkČ(Y )) ≤ dGH(X, Y )

where dGH denotes the Gromov-Hausdorff distance.

We conclude the main portion of this paper with the following, which is a more detailed
version of Theorem B.

▶ Proposition 4.3. For each l ≥ 0 and t ∈ ( l
2l+2 , l+1

2l+4 ), the following holds with probability
at least Qn(r′/2):

Č(Xn, t) ≃ S2l+1

where r′ is:

r′ = 1
4(l + 1)(l + 2) −

∣∣∣∣t − 2l2 + 4l + 1
4(l + 1)(l + 2)

∣∣∣∣
Proof. Consider a random sample Xn = (X1, . . . Xn). Then with probability Qn(r/2), arcs
of radius r centered at Xn covers S1, so that dGH(Xn,S1) ≤ dH(Xn,S1) ≤ r. This implies:

dB(DkČ(Xn), DkČ(S1)) ≤ dGH(Xn,S1) ≤ r

For each l ≥ 0, we have that:

D2l+1Č(S1) =
{(

l

2l + 2 ,
l + 1
2l + 4

)}
so that the definition of the bottleneck distance implies that

∃(u, v) ∈ D2l+1Č(Xn)

with l

2l + 2 − r ≤ u ≤ l

2l + 2 + r

l + 1
2l + 4 − r ≤ v ≤ l + 1

2l + 4 + r
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This implies that whenever l
2l+2 + r ≤ t ≤ l+1

2l+4 − r, we have:

1 ≤ dim H2l+1Č(Xn, t)

and due to the enumeration of possible homotopy types, we have that:

Č(Xn, t) ≃ S2l+1

The condition translates to
∣∣∣t − 1

2

(
l

2l+2 + l+1
2l+4

)∣∣∣ < 1
2

(
l+1

2l+4 − l
2l+2

)
− r, or equivalently∣∣∣∣t − 2l2 + 4l + 1

4(l + 1)(l + 2)

∣∣∣∣ <
1

4(l + 1)(l + 2) − r

and thus we obtain the proof. ◀

5 Technical tools

In this section we produce proofs of technical results that were postponed from the main
portion of the paper.

▶ Theorem 5.1 (Stevens). If k arcs of fixed length a are independently, identically and
uniformly sampled from the circle of circumference 1, then the probability that these arcs
cover the circle is equal to the following:

Qk(a) =
⌊1/a⌋∑
l=0

(−1)l

(
k

l

)
(1 − la)k−1

Proof. The proof is an application of inclusion-exclusion principle. Consider the set E =
{(x1, . . . xk)|0 ≤ x1 < · · · < xk < 1}. For each collection of indices J ⊆ {1, . . . k}, define ĒJ

and EJ as the following subsets of E:

EJ ={(x1, . . . xk) ∈ E|j ∈ J ⇐⇒ xj+1 − xj > a}

ĒJ ={(x1, . . . xk) ∈ E|j ∈ J =⇒ xj+1 − xj > a} =
⊔

J′⊇J

EJ′

By definition, we have Vol(E∅) = Qk(a). To compute it, we apply the inclusion-exclusion
principle for the membership of each EJ over ĒJ′ whenever J ′ ⊇ J . Noting the relation∑k

l=1(−1)l+1(
k
l

)
= 1, we see that:

1 =
∑

J⊆{1,...k}

Vol(EJ) = Vol(E∅) −
∑

∅̸=J⊆{1,...k}

(−1)#J Vol(ĒJ)

Finally, if l = #J and l ≤ ⌊1/a⌋, then Vol(ĒJ ) = (1− la)n−1. This is because demanding gap
conditions xi+1 − xi > a at l places is equivalent to sampling n − 1 points from an interval
of length 1 − la3. Meanwhile if l > ⌊1/a⌋, then we always have Vol(ĒJ ) = 0. Plugging these
into the above equation, we get:

Vol(E∅) = 1 +
⌊1/a⌋∑
l=1

(−1)l

(
k

l

)
(1 − la)n−1

as desired. ◀

3 This can be seen more precisely by considering the collection E′ of (y1, . . . yk−1) defined by yi =
xi+1−xi > 0 and

∑
yi ≤ 1, and then considering the subset E′

J defined by yi > a for i ∈ J . The quantity
of interest is Vol(E′

J )/ Vol(E′). Furthermore, the map (y1, . . . yk−1) 7→ (y1 − 11∈J , . . . yk−1 − 1k−1∈J )
isometrically maps E′

J to (1−la)·E′, so that Vol(E′
J ) = (1−la)k−1 Vol(E′) due to the (k−1)-dimensional

volume scaling. This is exactly the original claim.
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The following two lemmas are essentially exercises in calculus, and they are needed to
prove Proposition 2.4.

▶ Lemma 5.2. For a, b ≥ 1, the function f(t) = ta(1 − t)b satisfies the following:
(a) In the range 0 ≤ t ≤ 1, f(t) achieves the unique maximum value at t = a/(a + b):

max
0≤t≤1

f(t) = f

(
a

a + b

)
= aabb

(a + b)a+b

Also, f(t) is increasing on t ∈ (0, a/(a + b)) and decreasing on t ∈ (a/(a + b), 1).
(b) The following linear lower bounds hold:

f(t) ≥u

(
(a + b)vt − av + 1

)
, when 0 < t <

a

a + b

f(t) ≥u

(
− (a + b)vt + av + 1

)
, when a

a + b
< t < 1

where

u = aabb

(a + b)a+b
, v =

√
a + b

ab

(c) For each λ ∈ [0, 1], we have that:∣∣∣∣t − a

a + b

∣∣∣∣ <
(1 − λ)

√
ab

(a + b)3/2 =⇒ ta(1 − t)b > λu

Proof. The first two derivatives are:

f ′(t) =
(

a − (a + b)t
)

ta−1(1 − t)b−1

f ′′(t) =
(

(a + b)(a + b − 1)t2 + 2a(1 − a − b)t + a(a − 1)
)

ta−2(1 − t)b−2

The first derivative vanishes at t ∈ {a/(a + b), 0, 1} and the second derivative vanishes at
t ∈ {t0 ± η0, 0, 1} where

t0 = a

a + b
, η0 = 1

a + b

√
ab

a + b − 1 >

√
ab

(a + b)3/2 = η1

The first derivative is positive at (0, a/(a + b)) and negative at (a/(a + b), 1). Thus the
maximum at t ∈ [0, 1] is given by:

f(t0) = aabb

(a + b)a+b

It is then easy to see the following:

f(t) ≥ f(t0)
η1

(t − t0) + f(t0), when 0 < t < t0

f(t) ≥ −f(t0)
η1

(t − t0) + f(t0), when t0 < t < 1

and

±f(t0)
η1

(t − t0) + f(t0) = aabb

(a + b)a+b

(
± (a + b)3/2

√
ab

(
t − a

a + b

)
+ 1

)
(c) follows from the linear bound of (b). ◀
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▶ Lemma 5.3. Let m, n ≥ 1 be integers and define:

fm,n(t) =
(

n

m

)
(mt)m−1(1 − mt)n−m

Then fm,n satisfies the following:
(a) fm,n(t) is increasing when 0 < t < t0 and decreasing when t0 < t < 1/m where

t0 = 1
n−1 (1 − 1

m ).
(b) The maximum over 0 < t < 1/m is given by:

max
0<mt<1

fm,n(t) = fm,n(t0) =
(

n

m

)
(m − 1)m−1(n − m)n−m

(n − 1)n−1

(c) For each λ ∈ [0, 1], we have that:

|t − t0| <
(1 − λ)

√
(m − 1)(n − m)

m(n − 1)3/2 =⇒ fm,n(t) > λfm,n(t0)

(d) The normalised limit of maximum as n → ∞ is given by:

lim
n→∞

max0<t<1/m fm,n(t)
n

= (m − 1)m−1

m!em−1

Proof. (a)-(c) follow from the previous lemma. For (d), we compute:

lim
n→∞

max0<t<1/m fm,n(t)
n

=(m − 1)m−1

m! lim
n→∞

(n − 1)(n − 2) · · · (n − m + 1)(n − m)n−m

(n − 1)n−1

=(m − 1)m−1

m! lim
n→∞

(n − m)n−m

(n − 1)n−m

and also

lim
n→∞

(n − m)n−m

(n − 1)n−m
= lim

n→∞

(
1 − m − 1

n − 1

)n−m

= lim
n→∞

(
1 − m − 1

n − 1

)n−1
= 1

em−1

which gives the desired expression. ◀

We now prove Proposition 2.4.

▶ Proposition 5.4. Suppose that m, n are integers with 2 ≤ m <
√

n. The following holds
for χ̄(n, r).
(a) The following bounds hold:

am,n ≤ χ̄(n, sm,n)
n

≤ M ≤ am,n + bm,n

where

M = max
{

1
n

χ̄

(
n,

1 − r

2

) ∣∣∣∣ r ∈
(

1
m + 1 ,

1
m

)}
sm,n = (m − 1)n

2(n − 1)m

am,n =
(

n

m

)
(m − 1)m−1(n − m)n−m

n(n − 1)n−1

bm,n =enm−1
(

1 − 1
m + 1

)n−1
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(b) We have the following limits:

lim
n→∞

am,n = (m − 1)m−1

m!em−1 , lim
n→∞

bm,n = 0

(c) Suppose additionally that n > 2m2. Then for each λ ∈ [0, 1], we have that:∣∣∣∣r − n − m

(n − 1)m

∣∣∣∣ <
(1 − λ)

√
(m − 1)(n − m)

m(n − 1)3/2 =⇒ 1
n

χ̄

(
n,

1 − r

2

)
> λam,n

This condition for r in particular satisfies r ∈
(

1
m+1 , 1

m

]
.

Proof. Let r ∈
(

1
m+1 , 1

m

]
and also write r = 1

m − t, with t ∈
[
0, 1

m(m+1)

]
. Then we may

rewrite the normalised expected Euler characteristic as follows:

χ̄

(
n,

1 − r

2

)
=

m∑
k=1

(
n

k

)
(1 − kr)k−1(kr)n−k

=
m∑

k=1

(
n

k

) (
1 − k

m
+ kt

)k−1 (
k

m
− kt

)n−k

We now claim that the k = m term is the dominant one among the above summands. As
such, we split the above sum as:

χ̄

(
n,

1 − r

2

)
= fm,n(t) + E

where

fm,n(t) =
(

n

m

)
(mt)m−1(1 − mt)n−m,

E =
m−1∑
k=1

(
n

k

) (
1 − k

m
+ kt

)k−1 (
k

m
− kt

)n−k

Since m <
√

n, we have sm,n = 1
n−1 (1 − 1

m ) < 1
m(m+1) . Therefore, the previous Lemma tells

us that fm,n(t) achieves (global) maximum at s̃ ∈
(

0, 1
m(m+1)

]
, with the maximum value

given by:

fm,n(s̃) = n · am,n, where am,n =
(

n

m

)
(m − 1)m−1(n − m)n−m

n(n − 1)n−1

We also bound E as follows, using the inequality m
m+1 < 1 − mt ≤ 1:

E =
m−1∑
k=1

(
n

k

) (
1 − k

m
(1 − mt)

)k−1 (
k

m
(1 − mt)

)n−k

≤
m−1∑
k=1

(
n

k

) (
1 − 1

m + 1

)k−1 (
1 − 1

m

)n−k

≤
m−1∑
k=1

nk

k!

(
1 − 1

m + 1

)n−1

≤enm−1
(

1 − 1
m + 1

)n−1
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This shows (a). Now (b) follows from the previous Lemma and the fact that (1 − 1
m+1 )n

term causes exponential decay for bm,n.
(c) follows from (c) of the previous Lemma. We additionally impose the condition n > 2m2,

so that the endpoints of t satisfying the condition fall in the interval t ∈
[
0, 1

m(m+1)

)
. ◀

We prove Proposition 3.2. Let Un = {i/n | i = 0, 1, . . . n − 1} ⊂ S1 be the set of n equally
spaced points. We note briefly that the following follows from definition:

Č(Un, r) = Č
(

Un,
⌊2rn⌋

2n

)
= N (n, ⌊2rn⌋)

▶ Proposition 5.5. Let r ∈ (0, 1/2) and n be given; define r̃ = 1 − 2r and let k = ⌊r̃−1⌋.
Then we have the following.
(1) The following equality holds for subsets of Z3:{

(n, a, b)
∣∣∣∣ Č(Un, r) ≃ ∨aS2b

}
=

{
((a + 1)(b + 1), a, b)

∣∣∣∣ b + 1 ≤ r̃−1, a + 1 ≤ 1
1 − (b + 1)r̃

}
(2) The following inclusion holds for subsets of Z2:{

(a, b)
∣∣∣∣ Č(Y, r) ≃ ∨aS2b, Y ⊂ S1, #Y = n

}
⊆

{
(a, b)

∣∣∣∣ b + 1 ≤ k − 1, a + 1 ≤ k

k − b − 1

}
∪

{
(a, k − 1)

∣∣∣∣ a + 1 ≤ n

k

}
where in the final expression, k/0 = ∞ by convention.

Proof.
(1) To have N (n, ⌊2rn⌋) = Č(Un, r) ≃ ∨aS2b, we see from Proposition 3.1 that the condition

is given by (⌊2rn⌋, n) = ((a + 1)b, (a + 1)(b + 1)). This determines n from (a, b). The
condition on ⌊2rn⌋ is then:

(a + 1)b ≤ 2r(a + 1)(b + 1) < (a + 1)b + 1
⇐⇒ r̃(b + 1) ≤ 1, a < r̃(a + 1)(b + 1)
⇐⇒ (b + 1) ≤ r̃−1, (a + 1) < (1 − r̃(b + 1))−1

as desired.
(2) We claim the following:{

(a, b)
∣∣∣∣ Č(Y, r) ≃ ∨aS2b, Y ⊂ S1, #Y = n

}
=

{
(a, b)

∣∣∣∣ Č(Um, r) ≃ ∨aS2b, m ≤ n

}
⊆

{
(a, b)

∣∣∣∣ b + 1 ≤ k, a + 1 ≤ min
(

n

b + 1 ,
1

1 − (b + 1)r̃

)}
⊆

{
(a, b)

∣∣∣∣ b + 1 ≤ k − 1, a + 1 ≤ k

k − b − 1

}
∪

{
(a, k − 1)

∣∣∣∣ a + 1 ≤ n

k

}
The first equality holds due to Proposition 3.1. The first inclusion follows from (1). The
second inclusion follows from separating the two cases b + 1 < k and b + 1 = k. ◀
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