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Abstract
For a closed Riemannian manifold M and a metric space S with a small Gromov–Hausdorff distance
to it, Latschev’s theorem guarantees the existence of a sufficiently small scale β > 0 at which the
Vietoris–Rips complex of S is homotopy equivalent to M. Despite being regarded as a stepping
stone to the topological reconstruction of Riemannian manifolds from a noisy data, the result is only
a qualitative guarantee. Until now, it had been elusive how to quantitatively choose such a proximity
scale β in order to provide sampling conditions for S to be homotopy equivalent to M. In this paper,
we prove a stronger and pragmatic version of Latschev’s theorem, facilitating a simple description of
β using the sectional curvatures and convexity radius of M as the sampling parameters.

Our study also delves into the topological recovery of a closed Euclidean submanifold from
the Vietoris–Rips complexes of a Hausdorff close Euclidean subset. As already known for Čech
complexes, we show that Vietoris–Rips complexes also provide topologically faithful reconstruction
guarantees for submanifolds.
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1 Introduction

Given a metric space (X, dX) and a positive proximity scale β, the Vietoris–Rips complex of
X, denoted Rβ(X), is defined to be an abstract simplicial complex having an m–simplex for
every finite subset of X with cardinality (m+ 1) and diameter less than β.

The notion was first introduced by L. Vietoris [27], then extensively studied by E. Rips
in the context of hyperbolic groups. Despite its inception in the early twentieth century,
it is only the last decade that witnessed an increasing popularity of these complexes –
particularly in the applied topology and topological data analysis (TDA) community. The
computational simplicity makes the Vietoris–Rips complexes more palatable in applications
than its traditional alternatives, e.g., the Čech complexes.

The combinatorial flexibility, however, comes at a theoretical cost. The topology of
the Vietoris–Rips complex of (even a finite) metric space is generally poorly understood.
Nonetheless, there have been noteworthy developments in the study of the Vietoris–Rips
complexes constructed on or near Riemannian manifolds [17, 19] and metric graphs [22].
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73:2 Demystifying Latschev’s Theorem: Manifold Reconstruction from Noisy Data

1.1 Motivation
In his pioneering work [17], Hausmann established a homotopy equivalence between a closed
Riemannian manifold M and its Vietoris-Rips complex at a scale β smaller than the convexity
radius (Definition 3) of M. As a naive exercise [17, Problem 3.11], Hausmann asked the
curious question of finite reconstruction: for a dense enough subset S ⊂ M and small enough
scale β, is M also homotopy equivalent to the Vietoris–Rips complex of S?

The quest foreshadowed Latschev’s remarkable result [19, Theorem 1.1]: for every closed
Riemannian manifold M, there exists a positive number ϵ0 such that for any 0 < β ≤ ϵ0
there exists some δ > 0 such that for every metric space S with Gromov–Hausdorff distance
to M less than δ, the Vietoris–Rips complex Rβ(S) is homotopy equivalent to M. The
result is only qualitative in nature, guaranteeing the existence of a sufficiently small scale β
such that M is homotopy equivalent to the Vietoris–Rips complex of a metric space (S, dS)
that is close to M in the Gromov–Hausdorff distance (Definition 2). The result has been
regarded as a stepping stone to the finite reconstruction of an abstract Riemannian manifold
from a noisy sample. Despite the qualitative guarantee, it is not apparently clear how to
quantitatively choose such an ϵ0 for a given manifold M.

The current paper primarily aims at presenting the first quantitative version (Theo-
rem 12) of Latschev’s theorem in order to develop a provable Vietoris–Rips inspired manifold
reconstruction scheme from a noisy sample. Our sampling conditions – for a faithful recon-
struction – are given based on the convexity radius (Definition 3) and the upper bound of
the sectional curvatures of M. We recognize these parameters to be very natural in the
context of Riemannian manifolds – strict enough to prove the desired homotopy equivalences
and flexible enough to retain practicality.

Our techniques naturally extend to the topological reconstruction of a Euclidean subman-
ifold from a Hausdorff–close sample. For a sufficiently small scale, we prove in (Theorem 18)
that a submanifold is homotopy equivalent to the Vietoris–Rips complex of a dense sample.
In the Euclidean case, we describe the sampling conditions using the reach (Definition 14) of
the submanifold.

1.2 Related Work
In the same vein, Majhi [22] has recently studied the Vietoris–Rips complexes near a special
class of geodesic spaces: metric graphs. For the Vietoris–Rips complexes of a noisy sample,
the author provides sampling conditions for a faithful topological recovery of metric graphs
under both the Gromov–Hausdorff and Hausdorff noise. Our investigation revolves around
the same reconstruction theme, but for Riemannian manifolds. Since graphs can generally
have branches and non-smooth corners, it is worth noting that the relevance of the results of
Majhi [22] on metric graphs are not subsumed by our results on manifolds.

Relevant in this context are the works of Adams et al. [1, 2], where the homotopy
equivalence results of Hausmann [17] and Latschev [19] have been restated in terms of the
Vietoris–Rips thickening via the theory of optimal transport. We also mention [28] and [20]
for providing an alternative and much simpler proof of Hausmann’s theorem and extending
Latschev’s result to selective Rips complexes, respectively.

In this paper, we also further our understanding of the Vietoris–Rips complexes in
another fundamental direction: the recovery of a Euclidean submanifold M ⊂ Rd from a
noisy Euclidean sample S ⊂ Rd in its close Hausdorff proximity. There have been several
approaches to recover the topology (sometimes only the homology/homotopy groups) of a
submanifold using the Čech and Vietoris–Rips complexes and their filtrations, as we survey
in the following paragraph.
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In a landmark paper by Niyogi et al. [25], the normal injectivity radius of M has been
recognized as the sampling parameter; for a sufficiently small scale, the Čech complexes
of a dense sample S ⊂ M have been shown to be homotopy equivalent to M. For the
recovery of homology/homotopy groups of Euclidean shapes using filtrations of the Čech
and Vietoris-Rips complexes, we mention the works of Chazal et al. [9, 10] using the weak
feature size of compact sets and Fasy et al. [15] using the convexity radius and distortion of
geodesic subspaces. For a submanifold M, we ask a more ambitious inference question: are
the Vietoris–Rips complexes of a Hausdorff–close sample homotopy equivalent to M for a
sufficiently small scale?

Attali et al. [4, Theorem 14] and Kim et al. [18, Theorem 20] show that a Euclidean
subset with a positive reach (more generally µ–reach) is homotopy equivalent to the Vietoris–
Rips complexes of a noisy point-cloud. Our Theorem 18 puts forward a similar result for
submanifold reconstruction in terms of the reach of M. Although, some results in [4, 18]
generalize and improve over Theorem 18.

1.3 Our Contribution
One of the major contributions of this work is to quantify the scale parameters at which
the Vietoris–Rips complex of a sample S recovers (up to homotopy type) a Riemannian
manifold M, under both the Gromov–Hausdorff and Hausdorff sampling conditions. Our
main homotopy equivalence results are presented in Theorem 12 and Theorem 18, respectively.

This paper is organized in the following manner. Section 2 contains definitions, notations,
and facts that are frequently used throughout the paper. In Section 3, the recovery of an
abstract Riemannian manifold M from a Gromov–Hausdorff close sample S is obtained. We
present a novel proof of Latschev’s theorem with a much stronger statement. The sampling
parameter ∆(M) as defined in (1).

▶ Theorem 12 (Manifold Reconstruction under Gromov–Hausdorff Distance). Let (M, dM) be
a closed, connected Riemannian manifold. Let (S, dS) be a compact metric space and β > 0
a number such that

1
ζ
dGH(M, S) < β <

1
1 + 2ζ∆(M)

for some 0 < ζ ≤ 1/14. Then,
∣∣Rβ(S)

∣∣ ≃ M.

Section 4 is devoted to the recovery of a Euclidean submanifold M ⊂ Rd from a Hausdorff
close, Euclidean sample S ⊂ Rd. Theorem 18 shows the homotopy equivalence between M
and the Vietoris–Rips complex Rβ(S). Here, τ(M) denotes the reach (Definition 14) of M.

▶ Theorem 18 (Submanifold Reconstruction under Hausdorff Distance). Let M ⊂ Rd be a
closed, connected Euclidean submanifold. Let S ⊂ Rd be a compact subset and β > 0 a
number such that

1
ζ
dH(M, S) < β ≤ 3(1 + 2ζ)(1 − 14ζ)

8(1 − 2ζ)2 τ(M)

for some 0 < ζ < 1/14. Then,
∣∣Rβ(S)

∣∣ ≃ M.

2 Preliminaries

In this section, we present definitions and notations that we use throughout the paper. The
standard results from algebraic topology and Riemannian geometry are stated here without
proof; details can be found in any standard textbook on the subjects, e.g., [24, 26] and [5, 6],
respectively.

SoCG 2024
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2.1 Metric Spaces

Let (X, dX) be a metric space. When it is clear from the context, we omit the metric dX
from the notation, and denote the metric space just by X.

▶ Definition 1 (Diameter). The diameter, denoted diamX (Y ), of a subset Y ⊂ X is defined
by the supremum of the pairwise distances in Y .

diamX (Y ) def= sup
y1,y2∈Y

dX(y1, y2).

When Y is compact, its diameter is finite. We denote by BX(x, r) the metric ball of radius
r ≥ 0 centered at x ∈ X.

A correspondence C between two (non-empty) metric spaces (X, dX) and (Y, dY ) is defined
to be a subset of X × Y such that (a) for any x ∈ X, there exists y ∈ Y such that (x, y) ∈ C,
and (b) for any y ∈ Y , there exists x ∈ X such that (x, y) ∈ C. We denote the set of all
correspondences between X,Y by C(X,Y ). The distortion of a correspondence C ∈ C(X,Y )
is defined as:

dist(C) def= sup
(x1,y1),(x2,y2)∈C

∣∣dX(x1, x2) − dY (y1, y2)
∣∣.

▶ Definition 2 (Gromov–Hausdorff Distance). Let (X, dX) and (Y, dY ) be two compact metric
spaces. The Gromov–Hausdorff distance between X and Y , denoted by dGH(X,Y ), is defined
as:

dGH(X,Y ) def= 1
2

[
inf

C∈C(X,Y )
dist(C)

]
.

2.2 Simplicial Complexes

An abstract simplicial complex K is a collection of finite sets such that if σ ∈ K, then so
are all its non-empty subsets. In general, elements of K are called simplices of K. The
singleton sets in K are called the vertices of K. If a simplex σ ∈ K has cardinality (m+ 1),
then it is called an m-simplex and is denoted by σm. An m–simplex σm is also written as
[v0, v1, . . . , vm], where vi’s belong to the vertex set of K. If σ′ is a (proper) subset of σ, then
σ′ is called a (proper) face of σ, written as σ′ ⪯ σ (σ′ ≺ σ when proper).

Let K1 and K2 be abstract simplicial complexes with vertex sets V1 and V2, respectively.
A vertex map is a map between the vertex sets. Let ϕ : V1 → V2 be a vertex map. We say
that ϕ induces a simplicial map ϕ : K1 → K2 if for all σm = [v0, v1, . . . , vm] ∈ K1, the image

ϕ(σm) def= [ϕ(v0), ϕ(v1), . . . , ϕ(vm)]

is a simplex of K2. Two simplicial maps ϕ, ψ : K1 → K2 are called contiguous if for every
simplex σ1 ∈ K1, there exists a simplex σ2 ∈ K2 such that ϕ(σ1) ∪ ψ(σ1) ⪯ σ2.

For an abstract simplicial complex K with vertex set V , one can define its geometric
complex or underlying topological space, denoted by

∣∣K∣∣, as the space of all functions h : V →
[0, 1] satisfying the following two properties:

(i) supp(h) def= {v ∈ V | h(v) ̸= 0} is a simplex of K, and
(ii)

∑
v∈V

h(v) = 1.
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For h ∈
∣∣K∣∣ and vertex v of K, the real number h(v) is called the v–th barycentric coordinate

of h. For a simplex σ of K, its closed simplex
∣∣σ∣∣ and open simplex ⟨σ⟩ are subsets of

∣∣K∣∣
defined as follows:∣∣σ∣∣ def=

{
h ∈

∣∣K∣∣ | supp(h) ⊆ σ
}
, and ⟨σ⟩ def=

{
h ∈

∣∣K∣∣ | supp(h) = σ
}
.

In this work, we use the standard metric topology on
∣∣K∣∣, as defined in [26]. A simplicial

map ϕ : K1 → K2 induces a continuous (in this topology) map
∣∣ϕ∣∣ :

∣∣K1
∣∣ →

∣∣K2
∣∣ defined by∣∣ϕ∣∣(h)(v′) def=

∑
ϕ(v)=v′

h(v), for v′ ∈ K2.

From the above definition, it follows that
∣∣ϕ∣∣(h) ∈

∣∣h(σ)
∣∣ whenever h ∈ ⟨σ⟩.

A simplicial complex K is called a pure m–complex if every simplex of K is a face of an
m–simplex. A simplicial complex K is called a flag complex if σ is a simplex of K whenever
every pair of points in σ is a simplex of K.

2.3 Barycentric Subdivision
The barycenter, denoted σ̂m, of an m–simplex σm = [v0, v1, . . . , vm] of K is the point of ⟨σm⟩
such that σ̂m(vi) = 1

m+1 for all 0 ≤ i ≤ m. Using linearity of simplices, a more convenient
way of writing this is:

σ̂m =
m∑
i=0

1
m+ 1vi.

Let K be a complex. A subdivision of K is a simplicial complex K′ such that
(i) the vertices of K′ are points of

∣∣K∣∣,
(ii) if s′ is a simplex of K′, then there is s ∈ K such that s′ ⊂

∣∣s∣∣, and
(iii) the linear map h :

∣∣K′
∣∣ →

∣∣K∣∣ sending each vertex of K′ to the corresponding point of∣∣K∣∣ is a homeomorphism.
For a simplicial complex K, its barycentric subdivision, denoted by sd (K), is a special
subdivision defined as follows. The vertices of sd (K) are the barycenters of the simplices of
K. The simplices of sd (K) are (non-empty) finite sets [σ̂0, σ̂1, . . . , σ̂m] such that σi−1 ≺ σi
for 1 ≤ i ≤ m and σi ∈ K.

2.4 Riemannian Manifolds
Let M be an n–dimensional Riemannian manifold, equipped with the shortest geodesic
metric dM. More formally, for any two points p, q ∈ M, their distance is given by

dM(x, y) def= inf
{

length(γ) | γ is a smooth curve in M joining p, q
}

;

see [5, p. 174] for more details. Throughout the paper, we always assume that M is connected
and closed (without boundary and compact). A subset A ⊂ M is called (geodesically) convex
if for any two points p, q ∈ A, there exists a unique minimizing geodesic segment from p to q
whose image lies entirely in A.

▶ Definition 3 (Convexity Radius). The convexity radius of M, denoted ρ(M), is defined as
the infimum of the set of radii of the largest convex balls across the points of M. Formally,

ρ(M) = inf
p∈M

sup {r ≥ 0 | BM(p, s) is convex for all 0 < s < r}.

SoCG 2024
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The compactness of M guarantees that ρ(M) is indeed positive; see [5, Proposition 95]. For
example, the sphere Sn of radius R has ρ(Sn) = πR/2. The following remarkable result by
Hausmann states that M is homotopy equivalent to its Vietoris–Rips complex for a scale
smaller than the convexity radius.

▶ Theorem 4 (Hausmann’s Theorem [17]). For any 0 < β < ρ(M), the geometric complex
of Rβ(M) is homotopy equivalent to M.

▶ Remark 5. We remark that Hausmann defines the quantity ρ(M) (denoted r(M) by
Hausmann) slightly differently; see conditions (a)–(c) in [17, Section 3]. Nonetheless, the
veracity of Hausmann’s original result is not compromised by the current substitution, since
the implications from these conditions used by Hausmann are still obtained using the current
definition of convexity radius.

The definition of sectional curvatures of an abstract manifold M uses a lot of machinery
from Riemannian geometry. We skip the definition here, suggesting the interested reader to
call upon any graduate level textbook on the subject, e.g., [6, Chapter 9]. For a point p ∈ M
and (unit norm) vectors u, v ∈ Tp(M) the tangent space of M, the sectional curvature at p
along the plane spanned by u, v is denoted by κp(u, v). Intuitively, it measures the Gaussian
curvature at p if M is a Euclidean surface. The (embedded) sphere Sn of radius R has a
constant sectional curvature of 1/R2.

Let κ(M) ∈ R denote the supremum of the set of sectional curvatures κp(u, v) across all
u, v and all p. Since M is compact, it can be shown that κ(M) is finite; see [6, p. 166] for
example. For the sake of simplifying the statements of our results, we introduce:

∆(M) =

ρ(M), if κ(M) ≤ 0

min
{
ρ(M), π

4
√
κ(M)

}
, if κ(M) > 0.

(1)

The quantity 1
∆(M) can be called the condition number of M. The justification behind the

name is that a manifold with a small condition number is well-conditioned to be reconstructed;
whereas, the recovery of a manifold with a large condition number would require a large and
extremely dense sample.

3 Abstract Manifold Reconstruction

This section is devoted to the study of the Vietoris–Rips complexes of a metric space (S, dS)
that is close to M in the Gromov–Hausdorff distance (see Definition 2). Our main homotopy
equivalence result of this section is presented in Theorem 12. The proof of the result uses
Jung’s theorem as a very important ingredient. We first discuss the classical Jung’s theorem
but in the context of Riemannian manifolds.

3.1 Jung’s Theorem in Riemannian Manifolds
For a compact subset A ⊂ M, its diameter satisfies diamM (A) < ∞. We can define a
minimal enclosing ball to be a closed metric ball in M that contains A and has the smallest
radius. If such a ball exists for A, we call its center a circumcenter, denoted Θ(A), and
its radius the circumradius, denoted R(A). For A compact, the circumradius is uniquely
defined, but a circumcenter may not exist. When M = Rn, however, the circumcenter exists
uniquely. Moreover, for a compact Euclidean subset A ⊂ Rd, the classical Jung’s theorem
[11, Theorem 2.6] states that R(A) ≤

√
n

2(n+1) diamM (A).
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The result was further extended by B. V. Dekster in [12, 14, 13] – first for compact
subsets of Riemannian manifolds with constant sectional curvatures, then for Alexadrov
spaces of curvature bounded above. A corollary in [13, Section 2] affirms that Θ(A) exists
(possibly non-uniquely) for a compact A if:

(i) A is contained in the interior of a compact convex domain Cn ⊂ M, and
(ii) diamM (Cn) < 2π/(3

√
κ(M)) when κ(M) > 0.

▶ Remark 6. If diamM (A) < ∆(M), we note that both the above conditions are satisfied.
In particular, one can choose Cn to be the closed ball B(a, r) for any a ∈ A and r with
diamM (A) < r < ∆(M). Here ∆(M) is as defined in (1).
Moreover, Θ(A) belongs to the interior of Cn, and we have the following bound on the
circumradius of A.

▶ Theorem 7 (Extented Jung’s Theorem [13]). Let M be a compact, connected, n–dimensional
manifold with the sectional curvatures at each point bounded above by κ ∈ R. For any
compact A ⊂ M with diamM (A) < ∆(M), its circumcenter Θ(A) exists in M. Moreover,
its diameter

diamM (A) ≥



2√
−κ sinh−1

(√
n+1
2n sinh

(√
−κ R(A)

))
, for κ < 0

2R(A)
√

n+1
2n , for κ = 0

2√
κ

sin−1
(√

n+1
2n sin (

√
κ R(A))

)
, for κ > 0 and

R(A) ∈
[
0, π

2
√
κ

] (2)

Utilizing the above result, we show the following key result bounding the circumradius.
See [21] for a proof.

▶ Proposition 8 (Circumradius). For any compact A ⊂ M with diamM (A) < ∆(M), its
diameter satisfies

diamM (A) ≥ 4
3R(A).

We immediately note the following important proposition, whose proof is presented in [21].

▶ Proposition 9 (Circumcenters of Subsets). If A is a compact subset of M with diamM (A) <
∆(M), then for any non-empty subset B ⊆ A, we have

dM (Θ(B),Θ(A)) ≤ 3
4diamM (A) .

3.2 Homotopy Equivalence
We now assume that (S, dS) is a compact metric space such that the Gromov–Hausdorff
distance dGH(S,M) < ζβ for some β > 0 and 0 < ζ < 1/2. From the definition of the
Gromov–Hausdorff distance (Definition 2), then there exists a correspondence C ∈ C(M,S)
with dist(C) < 2ζβ. The correspondence induces a (possibly non-continuous and non-unique)
vertex map ϕ : M → S such that (p, ϕ(p)) ∈ C for all p ∈ M. The vertex map ϕ extends to
a simplicial map ϕ:

R(1−2ζ)β(M) ϕ−−−−→ Rβ(S). (3)

SoCG 2024
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To see that ϕ is a simplicial map, take an l–simplex σl = [p0, p1, . . . , pl] in R(1−2ζ)β(M). By
the construction of the Vietoris–Rips complex, we must have dM(pi, pj) < (1 − 2ζ)β for any
0 ≤ i, j ≤ l. Since dist(C) < 2ζβ and (p, ϕ(p)) ∈ C for all p ∈ M, we have

dS(ϕ(pi), ϕ(pj)) ≤ dM(pi, pj) + 2ζβ < (1 − 2ζ)β + 2ζβ = β.

So, the image ϕ(σl) = [ϕ(p0), ϕ(p1), . . . , ϕ(pl)] is a simplex of Rβ(S).
In the rest of the section, we show that ϕ induces a homotopy equivalence on the respective

geometric complexes. First, we show in the following lemma that the simplicial map induces
a surjective homomorphism on all homotopy groups.

▶ Lemma 10 (Surjectivity). Let (S, dS) be a compact metric space and β > 0 a number such
that

1
ζ
dGH(M, S) < β <

1
1 + 2ζ∆(M)

for some 0 < ζ ≤ 1/14. Then for any m ≥ 0, the simplicial map ϕ : R(1−2ζ)β(M) → Rβ(S)
(as defined in (3)) induces a surjective homomorphism on the m–th homotopy group.

Proof. As observed in [21, Proposition A.1], both R(1−2ζ)β(M) and Rβ(S) are path-
connected. So, the result holds for m = 0.

For m ≥ 1, let us take an abstract simplicial complex K such that
∣∣K∣∣ is a triangulation of

the m-dimensional sphere Sm. Note that K is a pure m–complex. In order to show surjectivity
of

∣∣ϕ∣∣
∗ on πm

(∣∣R(1−2ζ)β(M)
∣∣), we start with a simplicial map g : K −−−→ Rβ(S), and

argue that there must exist a simplicial map g̃ : sd (K) −−−→ R(1−2ζ)β(M) such that the
following diagram commutes up to homotopy:

∣∣R(1−2ζ)β(M)
∣∣ ∣∣Rβ(S)

∣∣

∣∣K∣∣∣∣sd (K)
∣∣

∣∣ϕ∣∣
∣∣g∣∣∣∣g̃∣∣

h−1

(4)

where the linear homeomorphism h :
∣∣sd (K)

∣∣ −−−→
∣∣K∣∣ maps each vertex of sd (K) to the

corresponding point of
∣∣K∣∣ as discussed in Subsection 2.3.

We note that each vertex of sd (K) is the barycenter, σ̂, of a simplex σ of K. In order to
construct the simplicial map g̃ : sd (K) −−−→ R(1−2ζ)β(M), we define it on the vertices of
sd (K) first, and prove that the vertex map extends to a simplicial map.

Let σl = [v0, v1, . . . , vl] be an l–simplex of K. Since g is a simplicial map, then the
image g(σl) = [g(v0), g(v1), . . . , g(vl)] is a simplex of Rβ(S), hence a subset of S with
diamS (g(σl)) < β. For each 0 ≤ j ≤ l, there exists pj ∈ M such that (pj , g(vj)) ∈ C. Recall
that C is a correspondence with distortion dist(C) < 2ζβ as already fixed right above (3).
We denote σ′

j := [p0, p1, . . . , pj ] for 0 ≤ j ≤ l. We note for later that the diameter of σ′
l is

less than ∆(M):

diamM
(
σ′
j

)
≤ diamS (g(σj)) + 2ζβ < β + 2ζβ = (1 + 2ζ)β < ∆(M). (5)

We then define the vertex map

g̃(σ̂l)
def= Θ(σ′

l),

where Θ(σ′
l) ∈ M is a circumcenter of σ′

l. Due to the diameter bound in (5), Theorem 7
implies that a circumcenter of σ′

l exists.
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To see that g̃ extends to a simplicial map, we consider a typical l–simplex τl = [σ̂0, . . . , σ̂l],
of sd (K), where σi−1 ≺ σi for 1 ≤ i ≤ l and σi ∈ K. Now,

diamM (g̃(τl)) = diamM ([Θ(σ′
0),Θ(σ′

1), . . . ,Θ(σ′
l)])

= max
0≤i<j≤l

{dM(Θ(σ′
i),Θ(σ′

j))}

≤ max
0≤j≤l

{(
3
4

)
diamM

(
σ′
j

)}
,

by Proposition 9 as diamM
(
σ′
j

)
< ∆(M)

= 3
4diamM (σ′

l)

<
3
4(1 + 2ζ)β, from (5)

= (1 − 2ζ)β − (1 − 14ζ)β/4
≤ (1 − 2ζ)β, since ζ ≤ 1/14.

So, g̃(τl) is a simplex of R(1−2ζ)β(M). This implies that g̃ is a simplicial map.
We lastly invoke [21, Proposition A.2] to show that the diagram commutes up to homotopy.

We need to argue that the simplicial maps g and (ϕ◦g̃) satisfy the conditions of the proposition:
(a) For any vertex v ∈ K,

(ϕ ◦ g̃)(v) = g(v).

(b) For any simplex σm = [v0, v1, . . . , vm] of K, we have for 0 ≤ j ≤ m:

dS(g(vj), (ϕ ◦ g̃)(σ̂m)) = dS(g(vj), ϕ(Θ(σ′
m)))

≤ dM (pj ,Θ(σ′
m)) + 2ζβ, since (pj , g(vj)) ∈ C

≤ 3
4diamM (σ′

m) + 2ζβ, by Proposition 9 as pj = Θ(pj)

<
3
4(1 + 2ζ)β + 2ζβ, from (5)

= β − (1 − 14ζ)β/4
≤ β, since ζ ≤ 1/14.

So, g(σm) ∪ (ϕ ◦ g̃)(σ̂m) is a simplex of Rβ(S).
Therefore, [21, Proposition A.2] implies that the diagram commutes. Since

∣∣K∣∣ = Sm and
g is arbitrary, we conclude that

∣∣ϕ∣∣ induces a surjective homomorphism. ◀

▶ Remark 11. For the description and computation of homotopy groups, the consideration of
basepoint is deliberately ignored throughout this paper. This is justified, as the considered
scale parameters are such that all the Vietoris–Rips complexes used here are path-connected.
We prove the claim in [21, Proposition A.1].

▶ Theorem 12 (Manifold Reconstruction under Gromov–Hausdorff Distance). Let (M, dM) be
a closed, connected Riemannian manifold. Let (S, dS) be a compact metric space and β > 0
a number such that

1
ζ
dGH(M, S) < β <

1
1 + 2ζ∆(M)

for some 0 < ζ ≤ 1/14. Then,
∣∣Rβ(S)

∣∣ ≃ M.
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Proof. Since dGH(M, S) < ζβ, let us assume that C ∈ C(M, S) is a correspondence with
dist(C) < 2ζβ. As a result, we have the following chain of simplicial maps

R(1−2ζ)β(M) ϕ−−−−→ Rβ(S) ψ−−−−→ R(1+2ζ)β(M),

such that (p, ϕ(p)) ∈ C for all p ∈ M and (ψ(x), x) ∈ C for all x ∈ S. There is also the
natural inclusion R(1−2ζ)β(M) ι

↪−−−−→ R(1+2ζ)β(M). We first claim that (ψ ◦ ϕ) and ι are
contiguous. To prove the claim, take an l–simplex σl = [p0, p1, . . . , pl] in R(1−2ζ)β(M). So,
dM(pi, pj) < (1 − 2ζ)β for all 0 ≤ i, j ≤ l. We then have

dM((ψ ◦ ϕ)(pi), pj) = dM(ψ(ϕ(pi)), pj)
≤ dS(ϕ(pi), ϕ(pj)) + 2ζβ
≤ dM(pi, pj) + 2ζβ + 2ζβ
< (1 − 2ζ)β + 4ζβ = (1 + 2ζ)β.

This implies that (ψ ◦ ϕ)(σl) ∪ ι(σl) is a simplex of R(1+2ζ)β(M). Since σl is an arbitrary
simplex, the simplicial maps (ψ ◦ ϕ) and ι are contiguous. Consequently, the maps

∣∣ψ ◦ ϕ
∣∣

and
∣∣ι∣∣ are homotopic.

Since (1 + 2ζ)β < ∆(M) ≤ ρ(M), Theorem 4 implies that there exist homotopy
equivalences T1, T2 such that the following diagram commutes (up to homotopy):

∣∣R(1−2ζ)β(M)
∣∣ ∣∣R(1+2ζ)β(M)

∣∣

M

∣∣ι∣∣

T1 T2

So,
∣∣ι∣∣ is also a homotopy equivalence. Hence, the induced homomorphism

∣∣ι∣∣∗ on the
homotopy groups is an isomorphism. On the other hand, we already have

∣∣ι∣∣ ≃
∣∣ψ ◦ ϕ

∣∣.
Therefore, the induced homomorphism

(∣∣ψ∣∣
∗ ◦

∣∣ϕ∣∣
∗

)
is also an isomorphism, implying that∣∣ϕ∣∣

∗ is an injective homomorphism on πm
(
R(1−2ζ)β(M)

)
. The surjectivity of

∣∣ϕ∣∣
∗ comes

from Lemma 10. For any m ≥ 0, therefore,∣∣ϕ∣∣
∗ : πm

(∣∣R(1−2ζ)β(M)
∣∣) −−−→ πm

(∣∣Rβ(S)
∣∣) .

is an isomorphism.
It follows from Whitehead’s theorem that

∣∣ϕ∣∣ is a homotopy equivalence. Since∣∣R(1−2ζ)β(M)
∣∣ is homotopy equivalent to M, we conclude that

∣∣Rβ(S)
∣∣ ≃ M. ◀

▶ Remark 13. Whitehead’s theorem requires the two spaces to admit CW-complex structures.
In our case, they are the geometric realizations of Vietoris–Rips complexes on M and S.
Although they can be infinite, we can always assume a total ordering on them. Consequently,
the Vietoris–Rips complexes become ordered, abstract simplicial complexes; for the construc-
tion see [16]. Since an ordered simplicial complex is a simplicial set, its geometric realization
must attain a CW-complex structure [23].
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4 Hausdorff Reconstruction of Euclidean Submanifolds

Let M ⊂ Rd be a closed, connected (smoothly embedded) Euclidean submanifold. In this
section, we consider the topological reconstruction of M from a Euclidean subset S ⊂ Rd
that is close to M in the Hausdorff distance. Theorem 18 is the main homotopy equivalence
result of the section. To provide the sampling conditions, we use the reach of M, which we
define first.

The medial axis of a compact subset X ⊂ Rd is the set of points y ∈ Rd such that there
are at least two (distinct) points x1, x2 ∈ X with

∥x1 − y∥ = ∥x2 − y∥ = min
x∈X

∥x− y∥.

▶ Definition 14 (Reach). The reach of X, denoted by τ(X), is the minimum of the set of
distances between a point of X and a point on its medial axis.

It can be shown that τ(M) is positive for a smoothly embedded closed submanifold M. As
we show in the next proposition, the reach controls both the sectional curvatures and the
convexity radius of M.

Fix a point p ∈ M. Let Tp(M) and T⊥
p (M) denote, respectively, the tangent and normal

space of M at p. It can be shown that a symmetric, bilinear form B(u, v) : Tp(M)×Tp(M) →
T⊥
p (M) exists, called the second fundamental form at p. More details can be found in any

standard text, e.g., [7, Chapter 6]. For any orthonormal vectors u, v ∈ Tp(M), the sectional
curvature at p along the plane generated by u, v is defined as

κ(u, v) def= ⟨B(u, u), B(v, v)⟩ − ∥B(u, v)∥2, (6)

where ⟨·, ·⟩ and ∥·∥ denote the standard Euclidean inner product and norm, respectively. For
any normal vector η ∈ T⊥

p (M), one can define a symmetric, bilinear form

Bη(u, v) def= ⟨η,B(u, v)⟩, u, v ∈ Tp(M).

Let us denote by Lη : Tp(M) → Tp(M) the linear, self-adjoint operator associated to the
bilinear form Bη(u, v), i.e., Bη(u, v) =

〈
u, Lη(v)

〉
for all u, v ∈ Tp(M). Using an important

result from [25] connecting the norm of Lη with the reach τ(M), we list the following
consequences. A proof is presented in [21].

▶ Proposition 15. Let p ∈ M be any point and u, v ∈ Tp(M) unit norm. Then,
(i) ∥B(u, v)∥ ≤ 1/τ(M),
(ii) −1/τ(M)2 ≤ κ(M) ≤ 1/τ(M)2,
(iii) ρ(M) ≥ πτ(M)/2, and
(iv) ∆(M) ≥ πτ(M)/4.

Finally, we obtain the following important bound on the distortion of a pair of points on M.
See [21] for a proof.

▶ Proposition 16. Let 1 < ξ < 2 and p, q ∈ M be such that ∥p− q∥ ≤ 2
(
ξ−1
ξ2

)
τ(M). Then,

dM(p, q) ≤ ξ ∥p− q∥ .
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We now assume that S ⊂ Rd is a compact subset and β > 0 a number such that the Hausdorff
distance dH(M, S) < ζβ for some 0 < ζ < 1/2. There is a (possibly non-continuous and
non-unique) vertex map ϕ : M −−−→ S such that ∥p− ϕ(p)∥ < ζβ for all p ∈ M. The
vertex map ϕ extends to a simplicial map:

R(1−2ζ)β(M) ϕ−−−−→ Rβ(S). (7)

To see that ϕ is a simplicial map, take an l–simplex σl = [p0, p1, . . . , pl] in R(1−2ζ)β(M). By
the construction of the Vietoris–Rips complex, we must have dM(pi, pj) < (1 − 2ζ)β for any
0 ≤ i, j ≤ l. Using the triangle inequality, we get

∥ϕ(pi) − ϕ(pj)∥ ≤ ∥ϕ(pi) − pi∥ + ∥pi − pj∥ + ∥pj − ϕ(pj)∥
< ζβ + dM(pi, pj) + ζβ

< ζβ + (1 − 2ζ)β + ζβ = β.

So, the image ϕ(σl) = [ϕ(p0), ϕ(p1), . . . , ϕ(pl)] is a simplex of Rβ(S).
The following lemma proves that the simplicial map ϕ defined in (7) induces a surjective

homomorphism on the homotopy groups.

▶ Lemma 17 (Surjectivity). Let M ⊂ Rd be a closed, connected submanifold, S ⊂ Rd a
compact subset, and β > 0 a number such that

1
ζ
dH(M, S) < β ≤ 3(1 + 2ζ)(1 − 14ζ)

8(1 − 2ζ)2 τ(M)

for some 0 < ζ < 1/14. Then for any m ≥ 0, the simplicial map ϕ : R(1−2ζ)β(M) → Rβ(S)
(as defined in (7)) induces a surjective homomorphism on the m–th homotopy group.

Proof. Due to [21, Proposition A.1], the complexes R(1−2ζ)β(M) and Rβ(S) are path-
connected. So, the result holds for m = 0.

For m ≥ 1, let us take an abstract simplicial complex K such that
∣∣K∣∣ is a triangulation of

the m–dimensional sphere Sm. In order to show surjectivity of
∣∣ϕ∣∣

∗, we start with a simplicial
map g : K → Rβ(S), and argue that there must exist a simplicial map g̃ : sd (K) −−−→
R(1−2ζ)β(M) such that the following diagram commutes up to homotopy:

∣∣R(1−2ζ)β(M)
∣∣ ∣∣Rβ(S)

∣∣

∣∣K∣∣∣∣sd (K)
∣∣

∣∣ϕ∣∣
∣∣g∣∣∣∣g̃∣∣

h−1

(8)

where the linear homeomorphism h :
∣∣sd (K)

∣∣ −−−→
∣∣K∣∣ maps each vertex of sd (K) to the

corresponding point of
∣∣K∣∣.

We first note that each vertex of sd (K) is the barycenter, σ̂l, of an l–simplex σl of K. In
order to construct the simplicial map g̃ : sd (K) −−−→ Rβ(M), we define it on the vertices
sd (K) first, and prove that the vertex map extends to a simplicial map.

Let σl = [v0, v1, . . . , vl] be an l–simplex of K. Since g is a simplicial map, we have that
the image g(σl) = [g(v0), g(v1), . . . , g(vl)] is a subset of S with diamS (g(σl)) < β. There is a
corresponding subset σ′

l = [p0, p1, . . . , pl] ⊂ M with ∥pj − g(vj)∥ < ζβ for 0 ≤ j ≤ l. Choose
ξ = 4(1−2ζ)

3(1+2ζ) . Since 0 < ζ < 1/14, we observe that 1 < ξ < 2. Note from our assumption that

∥pi − pj∥ < β ≤ 3(1 + 2ζ)(1 − 14ζ)
8(1 − 2ζ)2 τ(M) = 2

(
ξ − 1
ξ2

)
τ(M).
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By Proposition 16, we then have

dM(pi, pj) ≤ ξ ∥pi − pj∥

= 4(1 − 2ζ)
3(1 + 2ζ) ∥pi − pj∥

≤ 4(1 − 2ζ)
3(1 + 2ζ) (∥pi − g(vi)∥ + ∥g(vi) − g(vj)∥ + ∥g(vj) − pj∥)

<
4(1 − 2ζ)
3(1 + 2ζ) (ζβ + ∥g(vi) − g(vj)∥ + ζβ)

<
4(1 − 2ζ)
3(1 + 2ζ) (β + 2ζβ) = 4

3(1 − 2ζ)β.

For any 0 ≤ j ≤ l, define σ′
j := [p0, p1, . . . , pj ]. Therefore, the diameter

diamM
(
σ′
j

)
<

4
3(1 − 2ζ)β. (9)

Moreover, due to our assumption on the upper bound on β:

diamM
(
σ′
j

)
<

4
3(1 − 2ζ)β

≤ 4
3(1 − 2ζ)3(1 + 2ζ)(1 − 14ζ)

8(1 − 2ζ)2 τ(M) (10)

= 1
2

(
1 − 12ζ − 28ζ2

1 − 2ζ

)
τ(M)

<
1
2 · 1 · τ(M), since ζ > 0

< πτ(M)/4 ≤ ∆(M), from Proposition 15.

So, Proposition 8 implies that Θ(σ′
l) exists. We define

g̃(σ̂l)
def= Θ(σ′

l).

To see that g̃ extends to a simplicial map, consider a typical l–simplex, τl = [σ̂0, σ̂1, . . . , σ̂l],
of sd (K), where σi ≺ σi+1 for 0 ≤ i ≤ l − 1 and σi ∈ K. Now,

diamM (g̃(τl)) = diamM ([Θ(σ′
0),Θ(σ′

1), . . . ,Θ(σ′
l)])

= max
0≤i<j≤l

{dM(Θ(σ′
i),Θ(σ′

j))}

≤ max
0≤j≤l

{
3
4diamM

(
σ′
j

)}
, by Proposition 9

≤ 3
4diamM (σ′

l)

<
3
4 · 4

3(1 − 2ζ)β, from (9)

= (1 − 2ζ)β.

So, g̃(τl) is a simplex of R(1−2ζ)β(M). This implies that g̃ is a simplicial map.
We invoke [21, Proposition A.2] to show that Diagram (8) commutes up to homotopy. We

need to argue that the simplicial maps g and (ϕ ◦ g̃) satisfy the conditions of the proposition:
(a) For any vertex v ∈ K,

(ϕ ◦ g̃)(v) = g(v).

SoCG 2024
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(b) For any simplex σm = [v0, v1, . . . , vm] of K, we have for 0 ≤ j ≤ m:

∥g(vj) − (ϕ ◦ g̃)(σ̂m)∥ < ∥pj − Θ(σ′
m)∥ + 2ζβ

≤ dM(pj ,Θ(σ′
m)) + 2ζβ

= 3
4diamM (σ′

m) + 2ζβ, by Proposition 9 as Θ(pj) = pj

< (1 − 2ζ)β + 2ζβ = β.

So, g(σm) ∪ (ϕ ◦ g̃)(Θ(σm)) is a simplex of Rβ(S).
Therefore, [21, Proposition A.2] implies that the diagram commutes. Since

∣∣K∣∣ = Sm and g

is arbitrary, we conclude that ϕ induces a surjective homomorphism on the m–th homotopy
group. ◀

▶ Theorem 18 (Submanifold Reconstruction under Hausdorff Distance). Let M ⊂ Rd be a
closed, connected Euclidean submanifold. Let S ⊂ Rd be a compact subset and β > 0 a
number such that

1
ζ
dH(M, S) < β ≤ 3(1 + 2ζ)(1 − 14ζ)

8(1 − 2ζ)2 τ(M)

for some 0 < ζ < 1/14. Then,
∣∣Rβ(S)

∣∣ ≃ M.

Since the technique of the proof is similarly to Theorem 12, we refer the reader to [21]
for a proof.

5 Conclusion

The current work provides satisfactory answers to the quest of recovering a closed Riemannian
manifold M from the Vietoris–Rips complexes of a compact metric space S close to it –
both in the Gromov–Hausdorff and Hausdorff distance. The study sparks a number of
intriguing future research directions. Although we provide a homotopy equivalent recovery
of a Euclidean submanifold, the resulting complex Rβ(S), being very high-dimensional,
does not produce a natural embedding for the reconstruction. Consequently, our result for
submanifold reconstruction does not lend itself well to recovering the geometry. Since S is a
subset of Rd, one may collapse the resulting Vietoris–Rips complex into something simpler [3];
or consider its shadow (as defined by Chambers et al. [8]) as a geometric reconstruction
of M. As pointed out in [8, Proposition 5.3], the shadow of a complex is notorious for
being topologically unfaithful. When the Hausdorff distance between S and M is very small,
however, we conjecture to have homotopy equivalent shadow of Rβ(S), hence providing a
homotopy equivalent reconstruction of M with an embedding in the same ambient space.
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