Polychromatic Colorings of Geometric Hypergraphs via Shallow Hitting Sets

Tim Planken
University of Birmingham, UK
Torsten Ueckerdt
Karlsruhe Institute of Technology, Germany

Abstract
A range family \mathcal{R} is a family of subsets of \mathbb{R}^d, like all halfplanes, or all unit disks. Given a range family \mathcal{R}, we consider the m-uniform range capturing hypergraphs $\mathcal{H}(V, \mathcal{R}, m)$ whose vertex-sets V are finite sets of points in \mathbb{R}^d with any m vertices forming a hyperedge e whenever $e = V \cap R$ for some $R \in \mathcal{R}$. Given additionally an integer $k \geq 2$, we seek to find the minimum $m = m_R(k)$ such that every $\mathcal{H}(V, \mathcal{R}, m)$ admits a polychromatic k-coloring of its vertices, that is, where every hyperedge contains at least one point of each color. Clearly, $m_R(k) \geq k$ and the gold standard is an upper bound $m_R(k) = O(k)$ that is linear in k.

A t-shallow hitting set in $\mathcal{H}(V, \mathcal{R}, m)$ is a subset $S \subseteq V$ such that $1 \leq |e \cap S| \leq t$ for each hyperedge e; i.e., every hyperedge is hit at least once but at most t times by S. We show for several range families \mathcal{R} the existence of t-shallow hitting sets in every $\mathcal{H}(V, \mathcal{R}, m)$ with t being a constant only depending on \mathcal{R}. This in particular proves that $m_R(k) \leq tk = O(k)$ in such cases, improving previous polynomial bounds in k. Particularly, we prove this for the range families of all axis-aligned strips in \mathbb{R}^d, all bottomless and topless rectangles in \mathbb{R}^2, and for all unit-height axis-aligned rectangles in \mathbb{R}^2.

1 Introduction
We investigate polychromatic colorings of geometric hypergraphs defined by a finite set of points $V \subset \mathbb{R}^d$ and a family \mathcal{R} of subsets of \mathbb{R}^d, called a range family. Possible range families include for example all unit balls, all axis-aligned boxes, all halfplanes, or all translates of a fixed polygon. In this paper we prove results for the following range families:

- the family $\mathcal{R}_{ST} = \mathcal{R}_{ST}^1 \cup \cdots \cup \mathcal{R}_{ST}^d$ of all axis-aligned strips in \mathbb{R}^d with $\mathcal{R}_{ST}^i = \{(x_i, \ldots, x_d) \in \mathbb{R}^d \mid a \leq x_i \leq b \} \mid a, b \in \mathbb{R}$ for $i = 1, \ldots, d$,
- the family $\mathcal{R}_{BL} = \{(a, b) \times (-\infty, c) \mid a, b, c \in \mathbb{R}\}$ of all bottomless rectangles in \mathbb{R}^2,
- the family $\mathcal{R}_{TL} = \{(a, b) \times [c, \infty) \mid a, b, c \in \mathbb{R}\}$ of all topless rectangles in \mathbb{R}^2, and
- the family $\mathcal{R}_{UH} = \{(a, b) \times [c, c+1] \mid a, b, c \in \mathbb{R}\}$ of all unit-height rectangles in \mathbb{R}^2.

For a fixed range family \mathcal{R} and any finite point set $V \subset \mathbb{R}^d$, the corresponding range capturing hypergraph $H = \mathcal{H}(V, \mathcal{R})$ has vertex set $V(H) = V$, and a subset $e \subseteq V$ is a hyperedge in $E(H)$ whenever there exists a range $R \in \mathcal{R}$ with $e = V \cap R$. In this case, we say that e is captured by the range R. That is, we have points in \mathbb{R}^d and a subset of points forms a hyperedge whenever these vertices and no other vertices are captured by a range. For example, a set e of points in $V \subset \mathbb{R}^d$ forms a hyperedge in $\mathcal{H}(V, \mathcal{R}_{ST})$ if and only if in at least one of the d coordinates, the points in e are consecutive in V. (We assume throughout that points in V lie in general position, i.e., have pairwise different coordinates.)
Polychromatic Colorings of Geometric Hypergraphs via Shallow Hitting Sets

For a positive integer k, a k-coloring $c : V \to \{1, \ldots, k\}$ of the vertices of a hypergraph $H = (V, E)$ is called proper if each hyperedge $e \in E$ contains at least two colors, i.e., $|\{c(v) \mid v \in e\}| \geq 2$, and polychromatic if each hyperedge $e \in E$ contains all k colors, i.e., $|\{c(v) \mid v \in e\}| = k$. Hence, proper 2-colorings and polychromatic 2-colorings are the same concept. However, if $k \geq 3$, then every polychromatic k-coloring is also a proper k-coloring but the converse is not true in general. In fact, for polychromatic colorings we always seek to maximize the number of colors, as each polychromatic k-coloring, $k \geq 2$, also gives a polychromatic $(k-1)$-coloring by merging two color classes into one.

For polychromatic colorings of range capturing hypergraphs with respect to a given point set $V \subset \mathbb{R}^d$ and range family \mathcal{R}, we are particularly interested in the m-uniform subhypergraph $\mathcal{H}(V, \mathcal{R}, m)$ that consists of all hyperedges in $\mathcal{H}(V, \mathcal{R})$ of size exactly m. Instead of fixing m and then maximizing the k for which polychromatic k-colorings of $\mathcal{H}(V, \mathcal{R}, m)$ exist, one usually considers the equivalent setup of fixing k and minimizing m.

Definition 1. For a range family \mathcal{R} and integer $k > 0$, let $m = m_{\mathcal{R}}(k)$ be the smallest integer such that $\mathcal{H}(V, \mathcal{R}, m)$ admits a polychromatic k-coloring for every finite set $V \subset \mathbb{R}^d$.

Clearly, $m_{\mathcal{R}}(k) \geq k$ since every hyperedge must contain k different colors. Moreover, we have $m_{\mathcal{R}}(2) \leq m_{\mathcal{R}}(3) \leq \cdots$. But note that it is also possible that $m_{\mathcal{R}}(k) = \infty$ for some k. Namely this happens if for every positive integer m there exists a finite set of points $V \subset \mathbb{R}^d$ such that the corresponding hypergraph $\mathcal{H}(V, \mathcal{R}, m)$ has no polychromatic k-coloring. In fact, throughout the over 40 years since their introduction by Pach [18, 19], we always observe the following surprising phenomenon for polychromatic k-colorings of geometric range spaces and the quantity $m_{\mathcal{R}}(k)$ as a function of k: Either we already have that $m_{\mathcal{R}}(2) = \infty$, or the best known lower bounds are of the form $m_{\mathcal{R}}(k) = \Omega(k)$ for all $k \geq 2$.

Question 2. Is there a geometric range family \mathcal{R} with $m_{\mathcal{R}}(2) < \infty$ and $m_{\mathcal{R}}(k) = \omega(k)$?

So, if the answer to Question 2 is ‘No’, then we always have either $m_{\mathcal{R}}(2) = \infty$ or $m_{\mathcal{R}}(k) = O(k)$. With this paper, we make progress on Question 2 by improving the upper bounds on $m_{\mathcal{R}}(k)$ in several further cases from superlinear to $m_{\mathcal{R}}(k) = O(k)$. We do so by proving a stronger statement, namely the existence of so-called t-shallow hitting sets with $t = O(1)$; see Sections 1.1 and 1.2 below for the formal definition and a detailed discussion.

1.1 Related work

There is a rich literature on numerous range families \mathcal{R}, polychromatic colorings of their range capturing hypergraphs, and upper and lower bounds on $m_{\mathcal{R}}(k)$ in terms of k [2–4, 7–11, 13–17, 20, 21, 23, 24, 29]. Let us mention just a few here, while the interested reader is invited to have a look at the slightly outdated survey article [21] and the excellent website [1].

(Some) known range families \mathcal{R} with $m_{\mathcal{R}}(k) < \infty$ for all $k \geq 2$.

1. For axis-aligned strips \mathcal{R}_{ST} in \mathbb{R}^d it is known that $m_{\mathcal{R}_{ST}}(k) = O_d(k \log k)$ [3] and for $d = 2$ it is known that $3k/2 - 1 \leq m_{\mathcal{R}_{ST}}(k) \leq 2k - 1$ [3].
2. For bottomless rectangles \mathcal{R}_{BL} in \mathbb{R}^2 it is known that $1.67k \leq m_{\mathcal{R}_{BL}}(k) \leq 3k - 2$ [4].
3. For halfplanes \mathcal{R} in \mathbb{R}^2 it is known that $m_{\mathcal{R}}(k) = 2k - 1$ [29].
4. For axis-aligned squares \mathcal{R} in \mathbb{R}^2 it is known that $m_{\mathcal{R}}(k) = O(k^{8.75})$ [2].

1 A hypergraph $H = (V, E)$ is m-uniform if every hyperedge $e \in E$ has size $|e| = m$. So 2-uniform hypergraphs are just graphs (without loops), while m-uniform hypergraphs are also called m-graphs.
(5) For bottomless and topless rectangles $R_{BL} \cup R_{TL}$ it is known that $m_R(k) = O(k^{0.75})$ [10].
(6) For translates of a convex polygon R in \mathbb{R}^2 it is known that $m_R(k) = O(k)$ [12].
(7) For homothets of a triangle R in \mathbb{R}^2 it is known that $m_R(k) = O(k^{0.09})$ [8, 14].
(8) For translates of an octant R in \mathbb{R}^3 it is known that $m_R(k) = O(k^{0.99})$ [8, 14].

\textbf{(Some) known range families R with $m_R(k) = \infty$ for all $k \geq 2$.}

(9) For unit disks R in \mathbb{R}^2 it is known that $m_R(2) = \infty$ [20].
(10) For strips R in any direction in \mathbb{R}^2 it is known that $m_R(2) = \infty$ [21].
(11) For axis-aligned rectangles R in \mathbb{R}^2 it is known that $m_R(2) = \infty$ [11].
(12) For bottomless rect. and horizontal strips $R_{BL} \cup R_{ST}$ we have $m_{R_{BL} \cup R_{ST}}(2) = \infty$ [10].

Crucially, let us mention again, that in each of (1)–(8) the best known lower bound on $m_R(k)$ is linear in k, and it might be (in the light of Question 2) that in fact $m_R(k) = O(k)$ holds.

One tool to prove for a range family R that $m_R(k) = O(k)$ are shallow hitting sets. For a hypergraph $H = (V,E)$ and integer $t > 0$, a set $X \subseteq V$ of vertices is a t-shallow hitting set if

$$1 \leq |e \cap X| \leq t \quad \text{for every } e \in E.$$

That is, X contains at least one vertex of each hyperedge (X is hitting) but at most t vertices of each hyperedge (X is t-shallow). Shallow hitting sets for polychromatic colorings of range capturing hypergraphs have been used implicitly in [29], while being developed as a general tool in [7, 10, 15]. Clearly, for the m-uniform hypergraph $H(V,R,m)$ taking $X = V$ would be an m-shallow hitting set. But the challenge is to find t-shallow hitting sets with $t = O(1)$ being a constant independent of m. If we succeed, this implies $m_R(k) = O(k)$.

\textbf{Lemma 3 (Keszegh and Pálvölgyi [15]).} \textit{If for a shrinkable range family R there exists a constant $t \geq 1$ such that for every $m \geq 1$ every hypergraph $H(V,R,m)$ admits a t-shallow hitting set, then $m_R(k) \leq t(k - 1) + 1 = O(k)$.}

Here, a range family R is \textit{shrinkable} if for every finite set of points V, every positive integer m and every hyperedge e in $H(V,R,m)$ there exists a hyperedge e' in $H(V,R,m-1)$ with $e' \subseteq e$. Intuitively, we “decrease the size” of a range $R \in R$ with $R \cap V = e$ until the first point of V drops out of the range. In fact, all range families mentioned in this paper, except the translates of a convex polygon (6) and unit disks (9), are shrinkable.

Smorodinsky and Yuditsky [29] prove that every $H(V,R,m)$ admits 2-shallow hitting sets for R being all halfplanes (3), which implies $m_R(k) \leq 2k - 1$ in this case. This is extended to so-called ABA-free hypergraphs in [15] and unions of hypergraphs in [10]. On the other hand, for the family R_{BL} of all bottomless rectangles (2) the bound $m_{R_{BL}}(k) \leq 3k - 2$ is not proven [4] by shallow hitting sets, and in fact it was asked [10, 15] whether these exist in this case. For R being all translates of a fixed convex polygon (6) the proof [12] for $m_R(k) = O(k)$ also involves shallow hitting sets, even though these are not explicitly stated as such, and this range family is not shrinkable anyways. Finally, the family R of all translates of an octant in \mathbb{R}^3 (8) is the only case for which shallow hitting sets are known not to exist [7], which follows from a certain dual problem for bottomless rectangles.

\footnote{Recall that $m = m_R(k) \geq k$ is a growing function in k.}
1.2 Our results

We consider the range families mentioned at the beginning of Section 1 of all axis-aligned strips \mathcal{R}_{ST} in \mathbb{R}^d, all bottomless \mathcal{R}_{BL} and all topless \mathcal{R}_{TL} rectangles in \mathbb{R}^2, as well as all unit-height rectangles \mathcal{R}_{UH} in \mathbb{R}^2. We remark that for the axis-aligned strips \mathcal{R}_{ST} we could assume without loss of generality that these have unit-width. In this sense, unit-height rectangles are a generalization of horizontal strips. Additionally, unit-height rectangles are a generalization of bottomless and topless rectangles by “choosing the unit very large”. Thus, we can observe that $m_{\mathcal{R}_{UH}}(k) \geq m_{\mathcal{R}_{ST}}^2(k)$ and $m_{\mathcal{R}_{UH}}(k) \geq m_{\mathcal{R}_{BL} \cup \mathcal{R}_{TL}}(k)$ hold for all k.

Our main results are the following:

Section 2. The family \mathcal{R}_{ST} of all axis-aligned strips (1) in \mathbb{R}^d allows for t-shallow hitting sets for some $t = t(d) = O(d)$ (Theorem 5). This gives $m_{\mathcal{R}_{ST}}(k) = O_d(k)$, improving the $O_d(k \log k)$-bound in [3].

We complement this with a lower bound construction giving $m_{\mathcal{R}_{ST}}(k) \geq \Omega(k \log d)$ (Theorem 10). This greatly improves the $m_{\mathcal{R}_{ST}}(k) \geq 2\left\lfloor \frac{2d-1}{2d} \right\rfloor k$ lower bound in [3].

Section 3. The family \mathcal{R}_{BL} of all bottomless rectangles (2) in \mathbb{R}^2 allows for 10-shallow hitting sets (Theorem 12). This answers a question of Keszegh and Pálvölgyi [15], as well as Chekan and Ueckerdt [10], and provides a new proof that $m_{\mathcal{R}_{BL}}(k) = O(k)$.

The family \mathcal{R}_{UH} of all unit-height rectangles allows for 63-shallow hitting sets, which already gives $m_{\mathcal{R}_{UH}}(k) = O(k)$ but can be improved to $m_{\mathcal{R}_{UH}}(k) \leq 12k - 7$ (Theorem 19).

Remark. Most recently, we learnt about an unpublished manuscript of Rok, Schwartz, and Smorodinsky [28] concerning axis-aligned strips in \mathbb{R}^d. They prove an upper bound of $m_{\mathcal{R}_{ST}}(k) = O(k d)$, which is better than the $O_d(k \log k)$-bound in [3], but worse than our $O(k \log d)$-bound in Section 2, as well as the same lower bound of $m_{\mathcal{R}_{ST}}(k) \geq \Omega(k \log d)$ as in Section 2. Apparently, these results also appear in the PhD thesis of Alexandre Rok [27].

Remark. Let us also mention that Keszegh and Pálvölgyi [15] define a k-coloring $c: V \rightarrow \{1, \ldots, k\}$ of a hypergraph $H = (V, E)$ to be t-balanced if for any two colors $i, j \in \{1, \ldots, k\}$ and any hyperedge $e \in E$ we have $|\{v \in e \mid c(v) = i\}| \leq t \cdot (|\{v \in e \mid c(v) = j\}| + 1)$, i.e., any two colors appear roughly equally often in each hyperedge. They show that if a (shrinkable) range family admits t-shallow hitting sets then it also allows for t-balanced k-colorings for every k. And conversely, if we have t-balanced k-colorings for every k, then we have t^2-shallow hitting sets. Thus, Theorem 12 for example gives that every range capturing hypergraph $\mathcal{H}(V, \mathcal{R}_{BL}, m)$ for bottomless rectangles admits a 10-balanced k-coloring for every $k \geq 2$.

Notation. For an integer $n \geq 1$ we sometimes use $[n] = \{1, \ldots, n\}$ for the set of the first n positive integers. Also, throughout this paper a hypergraph is a tuple $H = (V, E)$ consisting of a finite set V of vertices (or points) and a finite multiset E of hyperedges, each being a subset of V. That is, hypergraphs may contain parallel hyperedges forming the same subset of vertices, sometimes called multiedges or hyperedges of multiplicity x for some $x \geq 2$.

2 Polychromatic Colorings for Axis-Aligned Strips

For a shorthand notation, let us define $m_d(k) = m_{\mathcal{R}_{ST}}(k)$ for the range family \mathcal{R}_{ST} of all axis-aligned strips in \mathbb{R}^d, $d \geq 2$. As [3] pointed out, the problem of determining $m_d(k)$ for \mathcal{R}_{ST} can be seen purely combinatorial. That is, the problem of determining $m_d(k)$ is equivalent to the following problem. Given a finite set V of size n and d bijections $\pi_1, \ldots, \pi_d: \{1, \ldots, n\} \rightarrow V$, we can observe that $m_{\mathcal{R}_{UH}}(k) \geq m_{\mathcal{R}_{ST}}^2(k)$ and $m_{\mathcal{R}_{UH}}(k) \geq m_{\mathcal{R}_{BL} \cup \mathcal{R}_{TL}}(k)$ hold for all k.

Remark. O

Remark. Let us also mention that Keszegh and Pálvölgyi [15] define a k-coloring $c: V \rightarrow \{1, \ldots, k\}$ of a hypergraph $H = (V, E)$ to be t-balanced if for any two colors $i, j \in \{1, \ldots, k\}$ and any hyperedge $e \in E$ we have $|\{v \in e \mid c(v) = i\}| \leq t \cdot (|\{v \in e \mid c(v) = j\}| + 1)$, i.e., any two colors appear roughly equally often in each hyperedge. They show that if a (shrinkable) range family admits t-shallow hitting sets then it also allows for t-balanced k-colorings for every k. And conversely, if we have t-balanced k-colorings for every k, then we have t^2-shallow hitting sets. Thus, Theorem 12 for example gives that every range capturing hypergraph $\mathcal{H}(V, \mathcal{R}_{BL}, m)$ for bottomless rectangles admits a 10-balanced k-coloring for every $k \geq 2$.

Notation. For an integer $n \geq 1$ we sometimes use $[n] = \{1, \ldots, n\}$ for the set of the first n positive integers. Also, throughout this paper a hypergraph is a tuple $H = (V, E)$ consisting of a finite set V of vertices (or points) and a finite multiset E of hyperedges, each being a subset of V. That is, hypergraphs may contain parallel hyperedges forming the same subset of vertices, sometimes called multiedges or hyperedges of multiplicity x for some $x \geq 2$.
we have to color the set V in k colors such that for each bijection π_i, every $m_d(k)$ consecutive elements contain an element of each color. More formally, let k and d be positive integers. Then, $m_d(k)$ is the least integer such that for any finite set V of size n and any d bijections $\pi_1, \ldots, \pi_d: \{1, \ldots, n\} \to V$, there exists a coloring c of V with k colors such that

$$\forall x \in [k] \forall i \in [d] \forall a \in [n - m_d(k) + 1] \exists b \in [m_d(k)]: c(\pi_i(a + b - 1)) = x.$$

First, we list some known results for $m_d(k)$.

- For $d = 1$ it is obvious that $m_d(k) = m_1(k) = k$ for all k.
- For $d = 2$ it holds that $3k/2 - 1 \leq m_d(k) = m_2(k) \leq 2k - 1$ for all k [3].
- For any $d \geq 2$ it holds that $m_d(k) \leq k(4 \ln k + \ln d)$ for all k [3]. Thus, if d is a constant, then $m_d(k) \leq O(k \log k)$.
- In [3] it is also proven that $m_d(k) \geq 2 \cdot \left\lceil \frac{2d-1}{2d} \cdot k \right\rceil - 1$, while in [22] it is proven that for every k we have $m_d(k) \to \infty$ as $d \to \infty$.

In this section, we show the existence of $O(d)$-shallow hitting sets for axis-aligned strips in \mathbb{R}^d. Moreover, we show an upper bound $m_d(k) \leq O(k \log d)$, improving the result from [3], and provide a lower bound of $m_d(k) \geq \Omega(k \log d)$.

2.1 Upper Bounds

Our upper bound uses a recent result about shallow hitting edge sets in regular uniform hypergraphs. For a vertex $v \in V$ in a hypergraph $H = (V, E)$, the set of incident hyperedges at v is denoted by $\text{Inc}(v) = \{e \in E \mid v \in e\}$. Hypergraph H is regular if $|\text{Inc}(v)|$, the degree of v, is the same for all vertices $v \in V$. For an integer $t \geq 1$, a subset $M \subseteq E$ of hyperedges is a t-shallow hitting edge set in $H = (V, E)$ if we have

$$1 \leq |M \cap \text{Inc}(v)| \leq t \quad \text{for every } v \in V.$$

That is, 1-shallow hitting edge sets are exactly perfect matchings, while t-shallow hitting edge sets for $t \geq 2$ still cover each vertex at least once, but only at most t times. It turns out, that all regular r-uniform hypergraphs admit t-shallow hitting edge sets with t only depending on the uniformity r, and not on the number of vertices or their degree. Crucially, this result even holds for r-uniform hypergraphs with multiedges, i.e., where two or more hyperedges can correspond to the same set of vertices.

Theorem 4 (Planken and Ueckerdt [26]). Every r-uniform regular hypergraph H (with possibly multiedges) has a $(t(r))$-shallow hitting edge set with $t(r) = cr(1 + o(1))$.

Here, $c = 2.71828 \ldots$ denotes Euler’s number.

Having Theorem 4, we find shallow hitting sets for axis-aligned strips as follows.

Theorem 5. Let \mathcal{R}_{ST} be the range family of all axis-aligned strips in \mathbb{R}^d and m be a positive integer. Then, for every finite point set $V \subset \mathbb{R}^d$, the hypergraph $\mathcal{H}(V, \mathcal{R}_{ST}, m)$ admits a $t(d)$-shallow hitting set, where $t(d) = 3ed(1 + o(1))$.

Proof. Let V be a set of n points in \mathbb{R}^d and let $H = (V, E) = \mathcal{H}(V, \mathcal{R}_{ST}, m)$ be the corresponding m-uniform range capturing hypergraph induced by axis-aligned strips in \mathbb{R}^d. We shall show that H has a t-shallow hitting set, where $t = 3ed(1 + o(1))$. Set $r = \lfloor m/2 \rfloor$. We want to ensure that n is a multiple of r. To this end, if $n \not\equiv l \pmod r$ for some $l \neq 0$, then we add a set A of $r - l$ new points, all of whose coordinates are larger than the coordinates in V. Observe that if X' is a t-shallow hitting set in $\mathcal{H}(V \cup A, \mathcal{R}_{ST}, m)$, then $X = X' \cap V$ is a t-shallow hitting set in H, since every $e \in E$ is also a hyperedge in $\mathcal{H}(V \cup A, \mathcal{R}_{ST}, m)$.
Thus, we may assume that $n = |V|$ and $r = \lfloor m/2 \rfloor$ divides n. For $i = 1, \ldots, d$, let $\pi_i : \{1, \ldots, n\} \to V$ be the ordering of the points along the i-th coordinate axis. That is, $\pi_i(1) \in V$ is the point in V with the lowest i-coordinate, $\pi_i(n) \in V$ is the point with the highest i-coordinate, and $\pi_i(1) < \cdots < \pi_i(n)$. Then, for each hyperedge e in $H(V, \mathcal{R}_\text{ST}, m)$, the vertices in e are m consecutive elements in π_i. For $i = 1, \ldots, d$ and $j = 0, \ldots, n/r - 1$, we define $W_{i,j}$ and W_i to be

$$W_{i,j} = \{\pi_i(rj + 1), \ldots, \pi_i(rj + 1)\} \quad \text{and} \quad W_i = \{W_{i,j} \mid j = 0, \ldots, n/r - 1\}.$$

In other words, each W_i is a partition of the point set V into n/r parts of r points with consecutive i-coordinates each. Thus, the hypergraph $H' = (V, E')$ with $E' = \bigcup_{i=1}^d W_i$ is r-uniform and d-regular. Let H^* be the dual\(^3\) hypergraph of H'. Then, H^* is d-uniform and r-regular, with the hyperedges of H^* corresponding to the vertices of H', hence the points in V. By Theorem 4, H^* has a t'-shallow hitting edge set, where $t' = t'(d) = ed(1 + o(1))$. Then, the corresponding set of vertices X of H' is a t'-shallow hitting set in H'. With $t = 3t'$, all that remains to show is that X is a $3t'$-shallow hitting set in $H = H(V, \mathcal{R}_\text{ST}, m)$.

Let e be any hyperedge in H. Since $|e| = m$, and since every hyperedge in H' has size $r = \lfloor m/2 \rfloor$, there exists a hyperedge e' in H' with $e' \subseteq e$. Since X is hitting in H', it is also hitting in H. Moreover, for every hyperedge e in H we can find three hyperedges e_1', e_2', e_3' in H' with $e \subseteq e_1' \cup e_2' \cup e_3'$. Thus, since X is t'-shallow in H', it is $3t'$-shallow in H.

\[\text{Theorem 6 (Bollobás, Pritchard, Rothvoss and Scott \cite{5}).} \quad \text{Every } r\text{-uniform } \Delta\text{-regular hypergraph (with possibly multiedges) has a polychromatic } k\text{-edge-coloring with } k \geq \Delta/(\ln r + O(\ln \ln r)).\]

\[\text{Corollary 7. For the range family } \mathcal{R}_\text{ST} \text{ of all axis-aligned strips in } \mathbb{R}^d \text{ and every integer } k \geq 2 \text{ we have } m_{\mathcal{R}_\text{ST}}(k) = m_d(k) \leq 2k(\ln d + O(\ln \ln d)).\]

\[\text{Proof. Let } V \text{ be a set of } n \text{ points in } \mathbb{R}^d. \text{ Let } r = \lfloor k(\ln d + O(\ln \ln d)) \rfloor \text{ and } m = 2r. \text{ We show that the } m\text{-uniform range capturing hypergraph } H = H(V, \mathcal{R}_\text{ST}, m) \text{ induced by axis-aligned strips in } \mathbb{R}^d \text{ admits a polychromatic } k\text{-coloring.}\]

We construct the r-uniform d-regular hypergraph H' as in the proof of Theorem 5 and consider its (d-uniform and r-regular) dual hypergraph H^*. By Theorem 6, H^* admits a polychromatic k'-edge-coloring with $k' \geq r/(\ln d + O(\ln \ln d)) \geq k$, i.e., every vertex of H^* is incident to an edge of every color. Thus, its dual H' admits a polychromatic k-coloring ψ.

It remains to show that ψ is a polychromatic k-coloring of H. Let e be any hyperedge in H. Since $|e| = m$ and since every hyperedge in H' has size $r = m/2$, there exists a hyperedge e' in H' with $e' \subseteq e$. Since e' is colored polychromatically, so is e.

\[\text{2.2 Lower Bounds}\]

We seek to give a lower bound on $m_d(k) = m_{\mathcal{R}_\text{ST}}(k)$ for the range family \mathcal{R}_ST of all axis-aligned strips in \mathbb{R}^d. That is, for every $d, k \geq 1$ we construct a point set $V = V_{d,k}$ in \mathbb{R}^d such that for some (hopefully large) m the range capturing hypergraph $H(V, \mathcal{R}_\text{ST}, m)$ admits no polychromatic k-coloring. Then it follows that $m_d(k) \geq m + 1$. As a first step towards the desired point sets, we present a construction of r-uniform r-partite\(^4\) t-regular hypergraphs with t being relatively large in terms of r, which admit no $(t - 1)$-shallow hitting edge sets.

\(^3\) For a hypergraph $H = (V, E)$ its dual is the hypergraph $H^* = (V^*, E^*)$ with vertex-set $V^* = E$ and edge-set $E^* = \{\text{Inc}(v) \mid v \in V\}$. Note that H^* may have parallel hyperedges.

\(^4\) A hypergraph $H = (V, E)$ is r-partite if there exists a partition $V = V_1 \cup \cdots \cup V_r$ such that for every $e \in E$ and every $i \in [r]$ we have $|e \cap V_i| \leq 1$. The sets V_1, \ldots, V_r are then called the parts of H.
Theorem 8. Let \(t \geq 2 \) be an integer. There exists an \(r \)-uniform \(r \)-partite \(t \)-regular hypergraph with parts of size two that has no \((t-1)\)-shallow hitting edge set, where \(r = \binom{2t}{t}/2 \leq 4^t \), i.e., \(t \geq \log_4(r) \).

Proof. Let \(H = (V,E) \) be the hypergraph with \(V = \{1, \ldots, 2t\} \) and \(E = \binom{V}{t} \), i.e., the hyperedges are all \(t \)-element subsets of \(V \). Observe that \(H \) is \(t \)-uniform and \(r \)-regular with \(r = \binom{2t}{t}/2 \). Moreover \(H \) is the union of \(r \) perfect matchings, each of the form \(A,B \in \binom{V}{t} \) with \(B = V - A \).

First, we show that \(H \) has no \((t-1)\)-shallow hitting (vertex) set. To this end let \(X \subseteq V \) be any set of vertices in \(H \). If \(|X| \leq t\), then \(|V - X| \geq t\) and there exists a hyperedge \(e \subseteq V - X \) which is not covered by \(X \). In this case, \(X \) is not hitting. If \(|X| \geq t\), then there exists a hyperedge \(e \subseteq X \). Since \(e \) has size \(t \), the set \(X \) is not \((t-1)\)-shallow.

Now consider the dual hypergraph \(H^* \) of \(H \). Then, \(H^* \) is an \(r \)-uniform \(r \)-partite \(t \)-regular hypergraph. Two vertices \(v \) and \(v' \) in \(H^* \) (recall that \(v,v' \) are \(t \)-subsets of \(\{1, \ldots, 2t\} \)) are in the same part if and only if \(v' = \{1, \ldots, 2t\} - v \). Since \(H \) has no \((t-1)\)-shallow hitting (vertex) set, \(H^* \) has no \((t-1)\)-shallow hitting edge set.

In the next theorem, we seek to find lower bounds for \(m_d(k) \) for axis-aligned strips in \(\mathbb{R}^d \).

Lemma 9. For every \(d \) and \(k \) we have \(m_d(k) \geq m'_d(k) \).

Proof. Let \(m = m_d(k) \). Then every range capturing hypergraph \(H = \mathcal{H}(V,R_{ST},m) \) (with \(V \subset \mathbb{R}^d \) finite) admits a polychromatic \(k \)-coloring of its vertices. Let \(H' = (V',E') \) be any \(d \)-uniform \(d \)-partite \(m \)-regular hypergraph with parts \(V'_1, \ldots, V'_d \) of size \(n \) and \(V'_i = \{v_{i,1}, \ldots, v_{i,n}\} \) for \(i = 1, \ldots, d \). We deduce from \(H' \) the following finite point set \(V \subset \mathbb{R}^d \), which defines the range capturing hypergraph \(H = \mathcal{H}(V,R_{ST},m) \). For each part \(V'_i \) of \(H' \), let \(\pi_i : E \rightarrow \{1, \ldots, mn\} \) be a bijection that satisfies the following condition. For two hyperedges \(e \) and \(e' \) with \(e \cap V'_i = \{v_{i,j}\} \) and \(e' \cap V'_i = \{v_{i,j'}\} \) and \(j < j' \) it holds that \(\pi(e) < \pi(e') \). Now, let the point set be \(V = \{(\pi_1(e), \ldots, \pi_d(e)) \mid e \in E \} \subset \mathbb{R}^d \). Note that for every vertex \(v_{i,j} \) in \(V'_i \), its incident hyperedges \(\text{Inc}(v_{i,j}) \subset E' \) correspond to points in \(V \) that are consecutive in the \(i \)-th dimension (by the definition of \(\pi_i \)). Recall that \(H \) admits a polychromatic \(k \)-coloring of its vertices, i.e., each \(m \)-set of points that are consecutive in some dimension \(i \) contains points of all \(k \) colors. Then it follows that \(H' \) admits a polychromatic \(k \)-coloring of its hyperedges.

Having Lemma 9, it remains to prove a lower bound for \(m'_d(k) \).

Theorem 10. \(m_d(k) \geq m'_d(k) > \frac{1}{2} (\log_2 d - 1) \cdot [k/2] \).
Polychromatic Colorings of Geometric Hypergraphs via Shallow Hitting Sets

Proof. Let k and d be positive integers. Let t be the largest integer such that \(\binom{k}{t}/2 \leq d \). Let $d_0 = \binom{k}{t}/2 \leq 4t/2$ and observe that $d_0 \leq d \leq 4d_0$. Let H_0 be the d_0-uniform d_0-partite t-regular hypergraph with two vertices per part from Theorem 8. Observe that if M is any subset of hyperedges in H_0 that together contain all vertices of H_0, called a hitting edge set, then M has size at least $t + 1$.

We construct the hypergraph H by replacing each hyperedge of H_0 by a multiedge of multiplicity $\lfloor k/2 \rfloor$. Then, H is a d_0-uniform d_0-partite $(t|k/2\rangle)$-regular hypergraph and each hitting edge set of H has size at least $t + 1$. Observe that $|E(H)| = 2t\lfloor k/2 \rfloor \leq tk$, since each part of H has size 2.

Assume for a contradiction that H admits a polychromatic k-coloring of its hyperedges, i.e., a k-coloring of the hyperedges such that every vertex is incident to at least one hyperedge of each color. Since each color class is a hitting edge set, each color class contains at least $t + 1$ hyperedges. Thus, the number of hyperedges is $|E(H)| \geq (t + 1)k > tk$, a contradiction.

With $d_0 \leq d \leq 4d_0$, we conclude

$$m_d'(k) \geq m_{d_0}(k) > \frac{k}{2} \geq \frac{1}{2} \log_2(2d_0) \left\lfloor \frac{k}{2} \right\rfloor \geq \frac{1}{2} \log_2(d/2) \left\lfloor \frac{k}{2} \right\rfloor = \frac{1}{2} \left(\log_2 d - 1 \right) \left\lfloor \frac{k}{2} \right\rfloor .$$

Remark. In [26] there is a more sophisticated (compared to Theorem 8) construction of r-uniform r-partite regular hypergraphs with two vertices per part that have no $(t - 1)$-shallow hitting edge set with a slightly better bound for t, namely with $t = \log_2(r + 1)$. Using this construction instead, an analogous proof as in Theorem 10 then gives that $m_d(k) \geq m_{d_0}(k) > \frac{1}{2} ((\log_2 d - 1) \cdot k - d)$, which is better by a factor of 2 as long as $k > d$.

3 Bottomless Rectangles

For the range family \mathcal{R}_{BL} of all bottomless rectangles in \mathbb{R}^2 we have $m_{\mathcal{R}_{BL}}(k) = O(k)$ [4].

Theorem 11 (Asinowski et al. [4]). For the range family \mathcal{R}_{BL} of all bottomless rectangles in \mathbb{R}^2 we have $m_{\mathcal{R}_{BL}}(k) \leq 3k - 2$.

However, the proof in [4] does not go via shallow hitting sets, and it is also not clear how to adjust it to give shallow hitting sets. In fact, Keszegh and Pálvölgyi [15] ask whether there exists a constant t such that for every V the hypergraph $\mathcal{H}(V, \mathcal{R}_{BL}, m)$ admits a t-shallow hitting set. We answer this question in the positive.

Theorem 12. Let \mathcal{R}_{BL} be the range family of all bottomless rectangles in \mathbb{R}^2 and m be a positive integer. Then for any finite point set $V \subset \mathbb{R}^2$ the hypergraph $\mathcal{H}(V, \mathcal{R}_{BL}, m)$ admits a 10-shallow hitting set $X \subseteq V$.

Proof. Let $V \subset \mathbb{R}^2$ be any finite point set and let $V = \{ p_1, \ldots, p_n \}$ with $y(p_1) < \cdots < y(p_n)$. (Recall that $y(p)$ denotes the y-coordinate of a point $p \in \mathbb{R}^2$.) Let $w = \lfloor (m + 3)/4 \rfloor$ and note that $4w - 3 \leq m \leq 4w$. We can assume that $m > 10$ since for $m \leq 10$, the point set $X = V$ is a 10-shallow hitting set of $\mathcal{H}(V, \mathcal{R}_{BL}, m)$. Moreover, we can assume that $|V| \geq m \geq 4w - 3$ since otherwise $\mathcal{H}(V, \mathcal{R}_{BL}, m)$ has no hyperedges.

We shall perform a sweep-line algorithm that goes through the points in order of increasing y-coordinates and builds the desired 10-shallow hitting set by selecting one by one points to be included in X, without ever revoking such decision. Such an algorithm is called semi-online as its choices will be independent of the points above the current sweep-line (with larger y-coordinates). During the sweep we consider the x-coordinates of the points below the sweep-line. Note that if m points have consecutive x-coordinates among those
below the sweep-line, then these \(m \) points form a hyperedge in \(H(V, R_{BL}, m) \), as verified by a bottomless rectangle whose top side lies on the sweep-line. And conversely, if some \(m \) points of \(V \) form a hyperedge in \(H(V, R_{BL}, m) \), then these have consecutive X-coordinates among those below the sweep-line at the time that the sweep-line contains the top side of a corresponding bottomless rectangle.

We start the sweep-line algorithm with step \(j = w \). In step \(j, j \geq w \), we consider the points \(V_j = \{p_1, \ldots, p_j\} \), i.e., the \(j \) points with the lowest \(y \)-coordinates. We construct a set \(X_j \subseteq V_j \) of black points (points that are definitely in the final set \(X \)) and a set of white points \(W_j \subseteq V_j \) (points that are definitely not in the final set \(X \)) such that (for \(j > w \)) we have \(X_{j-1} \subseteq X_j \) and \(W_{j-1} \subseteq W_j \) and \(X_j \cap W_j = \emptyset \). We refer to the points that are neither white nor black as uncolored points. Additionally, we maintain a partition \(\mathbb{R} = A_{j,1} \cup \cdots \cup A_{j,l} \) of the real line \(\mathbb{R} \) into \(l \), for some \(l \), pairwise disjoint intervals \(A_{j,i} \) with \(A_{j,1} = (-\infty, a_1), A_{j,2} = [a_1, a_2], \ldots, A_{j,l} = [a_{l-1}, \infty) \) with \(-\infty < a_1 < a_2 < \cdots < a_{l-1} < \infty \). We define \(V_j \) to be the set of points \(p \in V_j \) with x-coordinate \(x(p) \in A_{j,i} \). During the sweep-line algorithm, we maintain the following invariants:

- Each \(V_{j,i} \) contains exactly one black point and \(w-1 \) white points, i.e., \(|V_{j,i} \cap X_j| = 1 \) and \(|V_{j,i} \cap W_j| = w-1 \).
- Each \(V_{j,i} \) has size \(w \leq |V_{j,i}| \leq 2w-1 \).

We start with step \(j = w \) as follows. The set of black points is \(X_w = \{p_1\} \), the set of white points is \(W_w = \{p_2, \ldots, p_w\} \) and \(\mathbb{R} = (-\infty, \infty) \) is the partition of \(\mathbb{R} \) into one set. Clearly, all conditions are satisfied.

Now, suppose that \(X_j, W_j, \) and the partition \(\mathbb{R} = A_{j,1} \cup \cdots \cup A_{j,l} \) are given as the result of step \(j \). In the next step \(j+1 \), we consider the set \(V_{j+1} = V_j \cup \{p_{j+1}\} \). Let \(A_{j,i} \) be the interval with \(x(p_{j+1}) \in A_{j,i} \). We distinguish two cases. If \(|V_{j,i}| < 2w-1 \), then we set \(X_{j+1} = X_j, W_{j+1} = W_j \) and \(A_{j+1,i} = A_{j,i} \) for all \(i = 1, \ldots, l \) for the next step \(j+1 \). Then, \(|V_{j+1,i}| \leq 2w-1 \) and all conditions are again satisfied. Otherwise, assume that \(|V_{j,i}| = 2w-1 \). Let \(q_1, \ldots, q_{2w} \) be the points in \(V_{j,i} \cup \{p_{j+1}\} \) ordered by their x-coordinate, i.e., \(x(q_1) < \cdots < x(q_{2w}) \), and define \(a' = x(q_{w+1}) \). Then, we define the partition

\[
\mathbb{R} = A_{j+1,1} \cup \cdots \cup A_{j+1,l+1} \\
= (-\infty, a_1) \cup \cdots \cup [a_{w-1}, a') \cup [a', a_w) \cup \cdots \cup [a_{l-1}, \infty).
\]

That is, we split the interval \(A_{j,i} \) into two intervals \([a_{w-1}, a') \) and \([a', a_w) \). Observe that \(|V_{j,i+1}| = w = |V_{j+1,i+1}| \). Since there is exactly one black point in \(V_{j,i} \) (i.e., \(|X_j \cap V_{j,i}| = 1 \)), there is exactly one black point of \(X_j \) in \(V_{j+1,i} \cup V_{j+1,i+1} \). By symmetry, assume that this black point is contained in \(V_{j+1,i} \) and therefore, \(V_{j+1,i+1} \) has no black point in \(X_j \). Now we color all uncolored points in \(V_{j+1,i} \) white. Then, \(V_{j+1,i} \) contains exactly one black and \(w-1 \) white points. Since \(V_{j,i} \) has at most \(w-1 \) white points and \(V_{j+1,i+1} \subseteq V_{j,i} \cup \{p_{j+1}\} \), the set \(V_{j+1,i+1} \) has at most \(w-1 \) white points of \(W_j \), too. Thus, there exists an uncolored point \(q \) in \(V_{j+1,i+1} \). We color \(q \) black and all other uncolored points in \(V_{j+1,i+1} \) white. Then, \(V_{j+1,i+1} \) contains exactly one black and \(w-1 \) white points. This completes step \(j+1 \). Note that both invariants are again satisfied.

After step \(n = |V| \), we have considered all points in \(V \). Let \(X_n = X_n \) be the set of black points after the last step. We show that \(X \) is a 10-shallow hitting set of \(H(V, R_{BL}, m) \).

\begin{claim}
\(X \) is hitting in \(H(V, R_{BL}, m) \).
\end{claim}

\textbf{Proof.} Let \(R = [a, b] \times (-\infty, c] \) be a bottomless rectangle that contains \(m \) points of \(V \), i.e., \(|R \cap V| = m \). Let \(p \) be the topmost point in \(R \cap V \) and consider the state of the sweep-line algorithm right after \(p \) is inserted, that is, \(p = p_j \) for some \(j \) and step \(j \) is finished. Then, the
points in V_j with x-coordinate in the interval $[a, b]$ are exactly the points in $R \cap V$. Since we have $|R \cap V| = m \geq 4w - 3$ and each $V_{j,i}$ has size at most $2w - 1$, there exists a $V_{j,i'}$ with $V_{j,i'} \subseteq R \cap V$. Since $V_{j,i'}$ contains a black point ($V_{j,i'} \cap X \neq \emptyset$), $R \cap V$ contains a black point too ($R \cap X \neq \emptyset$) and X is hitting.

Claim 14. $|X \cap V_{j,i}| \leq 2$ for every $V_{j,i}$.

Proof. By the invariants above it holds that $|X_j \cap V_{j,i}| = 1$ (Be aware of the difference between $X \cap V_{j,i}$ and $X_j \cap V_{j,i}$) and $|W_j \cap V_{j,i}| = w - 1$. Moreover, observe that whenever an uncolored point $p \in V_{j,i}$ is colored black, all other uncolored points in $V_{j,i}$ are colored white. Since white points are definitely not contained in X, the claim follows.

Claim 15. X is 10-shallow in $H(V, R_{BL}, m)$.

Proof. Again, let R be a bottomless rectangle that contains m points of V, i.e., $|R \cap V| = m$, and let p be the topmost point in $R \cap V$. Consider the state of the sweep-line algorithm after p is inserted, that is, $p = p_j$ for some j and step j is finished. We have $|R \cap V| = m \leq 4w$ and each $V_{j,i}$ contains at least w points. Therefore, there exist at most five sets $V_{j,i}$ with $V_{j,i} \cap R \neq \emptyset$. By Claim 14, each $V_{j,i}$ contains at most two points of X. Therefore, $|R \cap X| \leq 5 \cdot 2 = 10$ and X is 10-shallow.

By Claims 13 and 15, X is a 10-shallow hitting set in $H(V, R_{BL}, m)$.

Remark. The procedure in the proof of Theorem 12 can be modified to directly get a polychromatic coloring of $H(V, R_{BL}, m)$. Let $w = \lfloor (m + 3)/4 \rfloor$ be as in the proof of Theorem 12. Instead of carrying black and white sets, we carry a partial w-coloring (i.e., a w-coloring of some vertices on the sweep-line) such that in each step $j \geq 1$, every set $V_{j,i}$ of points contains every color exactly once. At the end of the algorithm, we get a partial w-coloring of all vertices. We complete this to a w-coloring by assigning colors to the uncolored vertices such that every $V_{n,i}$ contains every color at most twice. Note that every color class is a 10-shallow hitting set in $H(V, R_{BL}, m)$. By setting $w = k$, one can observe that this k-coloring is polychromatic in $H(V, R_{BL}, m)$, which gives a proof of $m_{R_{BL}}(k) \leq 4k - 3$. Moreover, if e is an edge in $H(V, R_{BL})$, not necessarily of size m, and n_1, n_2 denote the size of two color classes in e then it holds that $n_1 \leq 4 + 2n_2 \leq 4(n_2 + 1)$. Therefore, this k-coloring is 4-balanced in $H(V, R_{BL})$.

Let us also remark that it was proven recently [6] that for every $m \geq 12$ there are finite point sets V in \mathbb{R}^2 such that $H(V, R_{BL}, m)$ admits no 3-shallow hitting sets, which also shows that one cannot achieve the bound $m_{R_{BL}}(k) \leq 3k - 2$ by using shallow hitting sets.

4 Bottomless and Topless Rectangles

Chekan and Ueckerdt [10] showed that $m_{R_{BL} \cup R_{TL}}(k) \leq O(k^{8.75})$ for the range family $R_{BL} \cup R_{TL}$ of bottomless and topless rectangles by a reduction to the family R of all axis-aligned squares, and using that $m_R(k) = O(k^{8.75})$ in this case [2]. We improve the upper bound on $m(k)$ for the case $R_{BL} \cup R_{TL}$ to $O(k)$ in the following theorem, by a simple reduction to the case R_{BL} of just all bottomless rectangles, and the case R_{TL} of just all topless rectangles. Observe that we clearly have $m_{R_{BL}}(k) = m_{R_{TL}}(k)$ for all k, and recall that $m_{R_{BL}}(k) \leq 3k - 2$ according to [4] (see Theorem 11).

Theorem 16. For $R_{BL} \cup R_{TL}$ the range family of all bottomless and topless rectangles in \mathbb{R}^2, we have $m_{R_{BL} \cup R_{TL}}(k) \leq 2m_{R_{BL}}(k) + 1 \leq 6k - 3$.
Proof. Let \(m' = m_{BL}(k) = m_{BL}(k) \) and \(m = 2m' + 1 \). Let \(V = \{p_1, \ldots, p_n\} \subset \mathbb{R}^2 \) be a finite point set with \(x(p_1) < \cdots < x(p_n) \). (Recall that \(x(p) \) denotes the \(x \)-coordinate of a point \(p \) in \(\mathbb{R}^2 \).) We partition the set \(V \) into two sets \(A \) and \(B \). For each pair \(\{p_{2i-1}, p_{2i}\} \), we put the vertex with the lower \(y \)-coordinate into set \(A \) and the point with the larger \(y \)-coordinate into set \(B \), see Figure 1(a).

There are polychromatic \(k \)-colorings \(c_1: A \to \{1, \ldots, k\} \) of the hypergraph \(\mathcal{H}(A, R_{BL}, m') \) and \(c_2: B \to \{1, \ldots, k\} \) of the hypergraph \(\mathcal{H}(B, R_{TL}, m') \). As \(V = A \cup B \), this naturally defines a \(k \)-coloring \(c: V \to \{1, \ldots, k\} \) of \(\mathcal{H}(V, R_{BL} \cup R_{TL}, m) \). To see that coloring \(c \) is polychromatic, let \(e \) be a hyperedge in \(\mathcal{H}(V, R_{BL} \cup R_{TL}, m) \) induced by a bottomless or topless rectangle \(R \in R_{BL} \cup R_{TL} \). If \(R \in R_{BL} \), then \(R \) contains at least \(\lceil (m - 2)/2 \rceil = \lceil (2m' - 1)/2 \rceil = m' \) points from \(A \), see Figure 1(b). Thus, \(e \cap A \) is colored polychromatically in \(\mathcal{H}(A, R_{BL}, m') \) and hence \(e \) is colored polychromatically in \(\mathcal{H}(V, R_{BL} \cup R_{TL}, m) \). Symmetrically, if \(R \in R_{TL} \), then \(R \) contains at least \(m' \) points from \(B \), thus \(R \cap B \) contains all \(k \) colors under \(c_2 \), and thus \(e = R \cap V \supseteq R \cap B \) contains all \(k \) colors under \(c \).

According to Theorem 16 we have \(m_{BL} \cup R_{BL}(k) = O(k) \). However, the proof relies on the polychromatic coloring from [4] and thus does not give shallow hitting sets, which (up to the constants) is the stronger statement. In fact, even if we had a shallow hitting set \(X \) for \(\mathcal{H}(A, R_{BL}, m') \) and a shallow hitting set \(Y \) for \(\mathcal{H}(B, R_{TL}, m') \) (\(A \) and \(B \) as in the proof above), their union \(X \cup Y \) would be hitting, but not necessarily shallow.

Recall that a subset \(X \) of vertices of a hypergraph \(\mathcal{H} = (V, E) \) is hitting if \(|X \cap e| \geq 1 \) for every \(e \in E \), and \(t \)-shallow if \(|X \cap e| \leq t \) for every \(e \in E \). In order to prove the existence of shallow hitting sets for \(R_{BL} \cup R_{TL} \), we shall first find a shallow hitting set for \(R_{BL} \), which is also shallow (but not necessarily hitting) for \(R_{TL} \). A similar approach has been done in [10].

Lemma 17. Let \(V \subset \mathbb{R}^2 \) be a finite point set and \(m \) be a positive integer. Then, there exists a set \(X \subset V \) such that
- \(X \) is a 14-shallow hitting set of \(\mathcal{H}(V, R_{BL}, m) \) and
- \(X \) is a 7-shallow set of \(\mathcal{H}(V, R_{TL}, m) \).

From Lemma 17, proven in the full version [25], we can quickly derive the full theorem.

Theorem 18. Let \(R_{BL} \cup R_{TL} \) be the range family of all bottomless and topless rectangles in \(\mathbb{R}^2 \) and \(m \) be a positive integer. Then for any finite point set \(V \subset \mathbb{R}^2 \) the hypergraph \(\mathcal{H}(V, R_{BL} \cup R_{TL}, m) \) admits a 21-shallow hitting set \(X \subset V \).

\[\text{SoCG 2024} \]
Theorem 19. Let \mathcal{R}_{UH} be the range family of all unit-height axis-aligned rectangles in \mathbb{R}^2 and m be a positive integer. Then, for every finite point set $V \subset \mathbb{R}^2$ the hypergraph $\mathcal{H}(V, \mathcal{R}_{UH}, m)$ admits a 63-shallow hitting set $X \subseteq V$. Moreover, $m_{\mathcal{R}_{UH}}(k) \leq 2m_{\mathcal{R}_{BL} \cup \mathcal{R}_{TL}}(k) - 1 \leq 12k - 7$ for the range family \mathcal{R}_{UH}.

Proof. Let m be a positive integer and $V \subset \mathbb{R}^2$ be a finite point set. Define $m' = \lfloor m/2 \rfloor$. For every integer $a \in \mathbb{Z}$, let $H_a = \mathcal{H}(V_a, \mathcal{R}_{BL} \cup \mathcal{R}_{TL}, m')$ be the range capturing hypergraph induced by the range family of all bottomless and topless rectangles, where V_a is the set of all points p in V with $a \leq y(p) < a + 1$. By Theorem 18, every H_a admits a 21-shallow hitting set X_a. Then, $X = \bigcup_{a \in \mathbb{Z}} X_a$ is a 63-shallow hitting set in $\mathcal{H}(V, \mathcal{R}_{UH}, m)$, which can be seen as follows. Every unit-height rectangle induces a topless rectangle R_t in H_a and a bottomless rectangle R_b in H_{a+1} (for some a). Then, at least one of R_t and R_b contains at least $\lfloor m/2 \rfloor = m'$ points of V, without loss of generality R_t. Therefore, R_t contains a point of X_a and hence, X is hitting. Since $m \leq 2m'$, the topless rectangle R_t can be covered with at most two topless rectangles of size m' of H_a, and R_b can be covered with at most one bottomless rectangle of size m' of H_{a+1}. As each of these three rectangles contains at most 21 points of X, we conclude that X is t-shallow for $t = 3 \cdot 21 = 63$.

Using the same argument, it is not difficult to see that $m_{\mathcal{R}_{UH}}(k) \leq 2m_{\mathcal{R}_{BL} \cup \mathcal{R}_{TL}}(k) - 1$. Let $m = 2m_{\mathcal{R}_{BL} \cup \mathcal{R}_{TL}}(k) - 1$ and let $H = \mathcal{H}(V, \mathcal{R}_{UH}, m)$ be the range capturing hypergraph induced by all unit-height rectangles. Let $m' = \lfloor m/2 \rfloor = m_{\mathcal{R}_{BL} \cup \mathcal{R}_{TL}}(k)$. For every $a \in \mathbb{Z}$, color each $H_a = \mathcal{H}(V_a, \mathcal{R}_{BL} \cup \mathcal{R}_{TL}, m')$ polychromatically with k colors with respect to bottomless and topless rectangles $\mathcal{R}_{BL} \cup \mathcal{R}_{TL}$. This polychromatic coloring exists by Theorem 16 and since $m' = m_{\mathcal{R}_{BL} \cup \mathcal{R}_{TL}}(k)$. Then, every unit-height rectangle R induces a topless rectangle R_t in H_a of size at least m' or a bottomless rectangle R_b in H_{a+1} of size at

Table 1
Shallow hitting sets and polychromatic colorings for range capturing hypergraphs.

<table>
<thead>
<tr>
<th>Range Family \mathcal{R}</th>
<th>t-Shell Hitting Sets Exist</th>
<th>$m_{\mathcal{R}}(k)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) axis-aligned strips in \mathbb{R}^d</td>
<td>Yes for $t \geq 3ed(1 + o(1))$ (Theorem 5)</td>
<td>$O_d(k)$ (Corollary 7)</td>
</tr>
<tr>
<td>(2) bottomless rectangles in \mathbb{R}^2</td>
<td>Yes for $t \geq 10$ (Theorem 12)</td>
<td>$\leq 3k - 2$ [4]</td>
</tr>
<tr>
<td>(3) half-planes in \mathbb{R}^2</td>
<td>Yes for $t \geq 2$ [29]</td>
<td>$\leq 2k - 1$ [29]</td>
</tr>
<tr>
<td>(4) axis-aligned squares in \mathbb{R}^2</td>
<td>Open</td>
<td>$O(k^{8.75})$ [2]</td>
</tr>
<tr>
<td>(5) bottomless and topless rectangles in \mathbb{R}^2</td>
<td>Yes for $t \geq 21$ (Theorem 18)</td>
<td>$\leq 6k - 3$</td>
</tr>
<tr>
<td>(6) translates of a convex polygon in \mathbb{R}^2</td>
<td>Open</td>
<td>$O(k)$ [12]</td>
</tr>
<tr>
<td>(7) homothets of a triangle in \mathbb{R}^2</td>
<td>Open</td>
<td>$O(k^{4.09})$ [14]</td>
</tr>
<tr>
<td>(8) translates of octants in \mathbb{R}^3</td>
<td>No [7]</td>
<td>$O(k^{5.09})$ [14]</td>
</tr>
</tbody>
</table>
least \(m' \) (for some \(a \in \mathbb{Z} \)). Since \(R_0 \) (respectively \(R_b \)) contains points of all colors, so does \(R \). Therefore, each unit-height rectangle with \(m \) points contains points of all colors and we have found a polychromatic \(k \)-coloring of \(H(V, R_{UH}, m) \).

5 Conclusions

In this paper, we extended the list of range families \(R \) for which the corresponding uniform range capturing hypergraphs admit shallow hitting sets. This in particular implies that \(m_R(k) = O(k) \) for that family \(R \), while \(m_R(k) \geq k \) always holds. In view of Question 2, it would be interesting to investigate further range families \(R \) for which \(m_R(k) < \infty \) is known, as to whether they admit shallow hitting sets. The current state of the art (for a selection of range families) is summarized in Table 1.

References

1 The geometric hypergraph zoo. URL: https://coge.elte.hu/cogezoo.html.

