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Abstract
We study the k-th nearest neighbor distance function from a finite point-set in Rd. We provide
a Morse theoretic framework to analyze the sub-level set topology. In particular, we present a
simple combinatorial-geometric characterization for critical points and their indices, along with
detailed information about the possible changes in homology at the critical levels. We conclude by
computing the expected number of critical points for a homogeneous Poisson process. Our results
deliver significant insights and tools for the analysis of persistent homology in order-k Delaunay
mosaics, and random k-fold coverage.
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1 Introduction

Let P be finite subset of Rd, with |P| ≥ k. We define the k-nearest neighbor distance (k-NN)
function d

(k)
P : Rd → R+ as

d
(k)
P (x) := min {r : |Br(x) ∩ P| ≥ k} ,

where Br(x) is a closed ball of radius r centered at x. For k = 1 we have the simple case of
the distance function

d
(1)
P (x) = dP(x) := min

p∈P
∥x − p∥.

The k-NN distance function arises naturally in numerous applications, including coverage in
sensor networks, shape reconstruction, and clustering [10, 30]. A key reason for the interest
in d

(k)
P comes from fact that its sub-level sets are the k-fold covers, i.e.,

(d(k)
P )−1((−∞, r]) = B(k)

r (P) :=
{

x ∈ Rd : |Br(x) ∩ P| ≥ k
}

.

In other words B
(k)
r (P) contains all points that are covered by at least k balls of radius r,

centered at P. For k = 1 we denote Br(P) := B
(1)
r (P), which is simply the union of the

balls around P . Our main goal in this paper is to present a simple and comprehensive Morse
theory for d

(k)
P , which is key to future study of this function within the context of applied

and stochastic topology.
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Morse theory [25] lies at the intersection of topology and analysis, linking local differential
properties to global structural changes. Specifically, it analyzes how critical points of different
indexes affect the homotopy type of the sub-level sets of a function. The classical definition of
Morse theory applies to smooth functions, where the location and index of the critical points
are determined by the gradient and Hessian, respectively. As d

(k)
P is not a differentiable

function, the original notions do not apply anymore.
In [5] the authors provided a combinatorial-geometric description for the critical points of

the distance function dP , their index and homological effect, based on an adaptation of Morse
theory to min-type functions [18]. The key property of dP which enabled the results in [5] is
that d2

P is a min-type function, i.e., it can be expressed as the minimum of a finite collection
of differentiable functions. This property, however, does not extend to d

(k)
P (k > 1), rendering

the previous approach inapplicable. In response, our paper adopts an alternative strategy,
employing a more expansive Morse-theoretic framework [2] designed for piecewise smooth
functions. Leveraging this framework, we establish a simplified combinatorial-geometric
representation of critical points and their homological effect. Notably, this description
generalizes the one in [5] for the distance function dP .

A key motivation for this work is the study of random k-fold coverage [7, 15, 17, 20,
22, 26, 27]. While the k-fold coverage process has an intrinsic mathematical interest, it
also has applications in numerous fields. For instance, in cellular networks, k-fold coverage
provides redundancy that guarantees the network robustness to antennae failures [32]. In
shape reconstruction, guaranteeing k-fold coverage is useful in the context of outliers removal
[15, 31]. Other examples include wireless communication [19], stochastic optimization [33],
topological data analysis (TDA) [4], immunology [26], and more [3, 9].

A related theoretical motivation comes from the field of stochastic topology, and specifically
from the study of homological connectivity for a random k-fold cover. For k = 1, the critical
points of dP played a key role in analyzing the last changes in the homology of the random
cover Br(P), as r is increased. Taking Pn to be a homogeneous Poisson process on a
d-dimensional compact manifold, with rate n, it was proved [4] that passing the threshold
r = ((log n + (i − 1) log log n)/n)1/d, the i-th homology of Br(Pn) will remain unchanged if
we further increase r. Additionally, a functional Poisson limit was proved [6] for the locations
and radii at which the last i-cycles appear. Note that for i = d, this analysis describes
the exact moment at which Br(Pn) covers the manifold, and the critical points of index d

correspond to the last uncovered connected components. The results presented here will play
a similar role in analyzing homological connectivity for the random k-fold cover B

(k)
r (Pn).

In particular, this will enable a detailed theoretical analysis for k-fold coverage problem
discussed above.

We note that the Morse theoretic framework we develop here for d
(k)
P is tightly related

to the study of the order-k Delaunay mosaics [13, 15]. These simplicial complexes, denoted
Delk(P), generalize the Delaunay triangulation and are analogously constructed from the
order-k Voronoi tessellations [16]. Similarly to the alpha shapes, the authors in [15] define
a sub-complex Delk(P, r) ⊂ Delk(P) that has the same homotopy type as the k-fold cover
B

(k)
r (P). Thus, these sub-complexes can serve as a proxy for computing the persistent

homology of the k-fold cover filtration. The study in [13] identifies critical configurations
in Delk(P), in the sense that once the corresponding cell enters the filtration Delk(P, r), it
changes the Euler characteristic, and consequently the homotopy-type. What we provide
here is a Morse theoretic view on such critical configurations (“steps”), showing that they in
fact originate from critical points of d

(k)
P . Additionally, we are able to classify them by their

index, and to provide a detailed description for the effect these critical configurations have
on the homology of Delk(P, r), i.e., beyond the Euler characteristic.
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2 Main Results

We start by briefly reviewing the fundamental statements for Morse theory for the distance
function dP [5], based on Morse theory for min-type function [18]. The assumption (here and
throughout the paper) is that the points in P are in general position. For a point c ∈ Rd,
denote rc := dP(c), and P∂

c := ∂Brc
(c) ∩ P (where ∂Br(c) denotes the boundary of the ball).

The point c ∈ Rd is critical for dP if and only if c ∈ σ(P∂
c ) (the open simplex spanned by

P∂
c ). The index of c in this case is µc := |P∂

c | − 1. Similarly to classical Morse theory, it
follows from [18] that every such critical point of index µc = i either adds a new generator
to the i-th homology of Br(P), or kills a generator in the (i − 1)-th homology.

While the function d
(k)
P can be defined as a minimum of a finite set of functions (8), d

(k)
P

is not a min-type function (for k > 1) since the minimum is over functions that are not
smooth. Therefore, we switch to the more general context of piecewise smooth functions and
continuous selections, developed in [2]. In the following when we refer to “critical points”,
we mean that in the sense of [2] (Definition 1.1).

Let c ∈ Rd, and denote rc := d
(k)
P (c). Define

Bc := Brc
(c), Pc := Bc ∩ P, PI

c := int(Bc) ∩ P, and P∂
c := ∂Bc ∩ P, (1)

and correspondingly,

Nc := |Pc|, NI
c := |PI

c |, and N∂
c := |P∂

c |, (2)

so that Pc = PI
c ∪ P∂

c , and Nc = NI
c + N∂

c . Note that the definition of d
(k)
P implies that

NI
c < k, and since the points are in general position, we have N∂

c ≤ d + 1. For examples, see
Figure 1.

The following theorems are the main contribution of our paper, namely the characterization
of critical points and their indexes, and the changes in homology induced by critical points.

▶ Theorem 1. A point c ∈ Rd is a critical point of d
(k)
P , if and only if c ∈ σ(P∂

c ). The index
of c is defined as µc := Nc − k. All critical points of d

(k)
P are non-degenerate.

Since N∂
c ≤ d + 1, and NI

c ≤ k − 1, we have µc ≤ d, as expected. Additionally, in the
special case µc = d, we have only one option – N∂

c = d + 1, and NI
c = k − 1. Finally, note

that for k = 1, the characterization in Theorem 1 coincides with that of the distance function
dP discussed above. For examples of critical points of d

(2)
P , see Figure 1.

The next theorem summarizes the effects of critical points on the homology of the k-fold
cover B

(k)
r (P). We consider homology with coefficients in a field F. We will assume from

here onward that d
(k)
P is a Morse function, in the sense that the critical levels are distinct.

While it is easy to find examples where this is not the case, our motivation is the case where
P is random. For random point-sets, the probability to have two critical points with the
same critical value is zero.

▶ Theorem 2. Let c ∈ Rd be a non-degenerate critical point of d
(k)
P of index µc. Let ϵ > 0

such that the interval [rc − ϵ, rc + ϵ] contains a single critical value (namely, rc). Denote
Br := B

(k)
r (P) and ∆c :=

(
N∂

c −1
µc

)
. Then for i = µc, we have

Hi(Brc+ϵ) ∼= Hi(Brc−ϵ) ⊕ F∆+
c , and Hi−1(Brc−ϵ) ∼= Hi−1(Brc+ϵ) ⊕ F∆−

c ,

where ∆+
c , ∆−

c are positive integers such that ∆+
c + ∆−

c = ∆c. If i ̸= µc, µc − 1, then

Hi(Brc+ϵ) ∼= Hi(Brc−ϵ).

SoCG 2024
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Figure 1 Critical points of d
(k)
P in R2, for k = 2. The points x1, x2, x3, and y are in P, and the

point c represents the critical point. Top left: P∂
c = {x1, x2}, PI

c = ∅, and µc = 0. This critical point
adds a new generator to H0 (new component). Bottom left: P∂

c = {x1, x2}, PI
c = {y}, and µc = 1.

This critical point kills a generator in H0 (components merge). Top right: P∂
c = {x1, x2, x3},

PI
c = ∅, and µc = 1. This critical point kills two generators in H0 (three components merge into

one). Bottom right: P∂
c = {x1, x2, x3}, PI

c = {y}, and µc = 2. This critical point kills an existing
1-cycle.

Note that, this results generalizes the behavior known in classical Morse theory (and for
the distance function dP), where ∆c = 1. As in classical Morse theory, finding the values
of ∆+

c and ∆−
c requires additional geometric analysis (see Figure 2). For the highest index

(µc = d), we have that ∆c = 1 in the k-NN distance as well.

▶ Remark 3. While Theorem 2 provides the total number of changes in the homology, it does
not indicate whether these changes are positive (creation of a cycle) or negative (elimination
of a cycle). This follows from the nature of Morse theory which is local, while the exact
changes are associated with global properties of the ball cover. One way to identify the exact
changes, is via the persistent homology [11, 34] of the k-Delaunay complex [12].

▶ Remark 4. The characterization of critical points via Theorem 1 coincides with the notion
of “critical steps” in [13]. Thus, an immediate conclusion is that there is a one-to-one
correspondence between critical points of d

(k)
P and the critical steps in the order-k Delaunay

filtration. The approach in [13] was to examine the combinatorial structure of the order-
k Delaunay mosaic, and track changes in the Euler characteristic. The Morse-theoretic
approach allows us to obtain the detailed description for homology presented in Theorem 2.

3 Morse theory for piecewise smooth functions

We briefly review the relevant statements from [2] for piecewise smooth functions. For
simplicity, we focus on the case of functions in Rd.



Y. Reani and O. Bobrowski 75:5

Figure 2 The effect of a critical point on the homology. The point c ∈ R2 is a critical point of
d

(2)
P of index µc = 1, where P = {x1, x2, x3, y1, . . . , y4}. In this case, we have N∂

c = 3, and therefore,
∆c =

(2
1

)
= 2. Indeed, we observe exactly two changes in the homology of the sub-level sets (purple

shaded regions), once c is reached. One change is the generation of a new 1-cycle on the right side
(the red dashed cycle). Another change is the elimination of the connected component (0-cycle) on
the left side.

The definition of critical points in [2] relies on the notion of the Clarke subdifferential [8].
Let f : Rd → R be Lipschitz near a point x0 ∈ Rd. The Clarke generalized derivative at x0
in the direction v ∈ Rd, is defined as

fo(x0; v) := lim sup
x→x0
α→0
α>0

f(x + αv) − f(x)
α

.

The Clarke subdifferential of f at x0, denoted by ∂f(x0), is defined as

∂f(x0) := {ξ ∈ Rd : fo(x0; v) ≥ ⟨ξ, v⟩ for all v ∈ Rd}.

This Clarke subdifferential allows us to define critical points for locally-Lipschitz functions.

▶ Definition 5 (Definition 1.1 in [2]). Let f : Rd → R be locally Lipschitz. A point c ∈ Rd is
called critical if 0 ∈ ∂f(c).

Let f1, . . . , fm : Rd → R be a collection of continuous functions. A function f : Rd → R
is called a continuous selection of f1, . . . , fm, if for every x ∈ Rd we have f(x) = fi(x) for
some 1 ≤ i ≤ m. For every x, define

I(x) := {i : x ∈ Ai}, Ai := cl(int({x : f(x) = fi(x)})), (3)

where cl(·) and int(·) stand for the closure and interior, respectively. In the case where
f1, . . . , fm are all C1, then f is locally Lipschitz, and its Clarke subdifferential is given by

∂f(x) = conv {∇fi(x) : i ∈ I(x)} , (4)

where conv stands of the convex hull. This representation allows us to define non-degenerate
critical points for continuous selections.

For fixed x0 ∈ Rd and λ ∈ R|I(x0)|, define

Lλ(x) :=
∑

i∈I(x0)

λifi(x), and T (x0) :=
⋂

i∈I(x0)

ker (∇fi(x0)) .

SoCG 2024
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▶ Definition 6 (Definition 2.2 in [2]). A critical point c ∈ Rd is called non-degenerate if the
following conditions hold:
1. For each i ∈ I(c), the set of gradients {∇fj(c) : j ∈ I(c)\{i}} is linearly independent,
2. The Hessian of Lλ∗ at c, denoted Hλ∗(c), is invertible on T (c) , where λ∗ satisfies

∇Lλ∗(c) = 0,
∑

i∈I(c)

λ∗
i = 1, and λ∗

i ≥ 0, for every i ∈ I(c).

Note that (4) guarantees that λ∗ exists, since 0 can be represented as a convex combination
of {∇fj(c) : j ∈ I(c)}, and the first condition in Definition 6 guarantees that it is unique.
The quadratic index µ̃c is defined as the dimension of the maximal linear subspace of T (c)
on which Hλ∗(c) is negative definite.

According to [2] (Theorem 2.3), for every non-degenerate point c, there exists a neighbor-
hood Uc, where f is locally topologically equivalent to a function g : Rd → R of the form

g(y) = f(c) + ℓ(y1, . . . , yq) −
q+µ̃c∑

j=q+1
y2

j +
d∑

j=q+µ̃c+1
y2

j , y = (y1, . . . , yd) ∈ Ũ0, (5)

where q = |I(c)| − 1, ℓ(y1, . . . , yq) is a continuous selection of {y1, . . . , yq, −
∑q

j=1 yj}, µ̃c is
the quadratic index, and Ũ0 is some neighborhood of 0.

Next, we define

U◦
c := {x ∈ Uc : f(x) < f(c)}, and U•

c := {x ∈ Uc : f(x) ≤ f(c)}. (6)

The following theorem presents the effect of a critical point c on the relative homology.

▶ Theorem 7 (Theorem 4.2 in [2]). Let f : Rd → R be locally Lipschitz, and let c ∈ Rd be a
non-degenerate critical point of f . Then,
1. If c is a local minimum (U◦

c = ∅), then

Hi(U•
c , U◦

c ) ∼= Hi(U•
c ) ∼=

{
F i = 0,

0 i > 0.

2. If c is not a local minimum, (U◦
c ̸= ∅), then

Hi(U•
c , U◦

c ) ∼=


Hi−1(U◦

c ) i ≥ 2,

Fα−1 i = 1,

0, i = 0,

where α is the number of connected components of the set U◦
c (with F0 ≡ 0).

4 Critical points for the k-NN distance function

Our goal in this section is to prove Theorem 1.
To simplify some of the calculations, we will prove Theorem 1 for the squared k-

NN distance, denoted δ
(k)
P := (d(k)

P )2. Any conclusion we make using Morse theory
for (δ(k)

P )−1((−∞, t]) can be immediately translated to an equivalent statement about
(d(k)

P )−1((−∞,
√

t]). We will therefore consider every critical point of δ
(k)
P as a critical

point of d
(k)
P .

Note that to prove Theorem 1 we have to show that the point in question is (a) critical,
and (b) non-degenerate. We start with criticality.
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▶ Lemma 8. A point c ∈ Rd is a critical point of δ
(k)
P if and only if c ∈ σ(P∂

c ), where P∂
c

was defined in (1).

Proof. Without loss of generality we take c = 0. Recall the definition of I(x) in (3), and
note that for δ

(k)
P the indexes in the set I(0) correspond to the points in P∂

0 . From (4), we
have that the Clarke subdifferential of δ

(k)
P at 0 is given by

∂δ
(k)
P (0) = conv({∇d2

p(0) : p ∈ P∂
0 }).

Since d2
p is the squared distance from p, we have ∇d2

p(0) = −2p, and therefore ∂δ
(k)
P (0) =

−2σ(P∂
0 ). Since 0 ∈ σ(P∂

0 ) if and only if 0 ∈ −2σ(P∂
0 ) (reflected and scaled versions of the

same simplex), and using Definition 5, the proof is complete. ◀

Next, we will show that all critical points in Theorem 1 are indeed non-degenerate.

▶ Lemma 9. Let c ∈ Rd, such that c ∈ σ(P∂
c ). Then, c is non-degenerate for δ

(k)
P .

Proof. As before, we take c = 0. In our setting we have fi = d2
pi

, and ∇fi(0) = −2pi.
Since we assume the points are in general position, the first condition in Definition 6 holds
immediately. The Hessian of fi is Hi = 2Id×d (the identity matrix). Therefore, Hλ∗ = 2Id×d

everywhere, implying that the second condition in Definition 6 holds as well. ◀

▶ Remark 10. The proof above shows that the Hessian is always positive definite, and
therefore the quadratic index µ̃c (see Section 3) in this case is zero.

Proof for Theorem 1. Follows immediately from Lemma 8 and 9. ◀

5 Critical points and homology

In this section, we study the effect of the critical points of d
(k)
P on the homology of its

sub-level sets B
(k)
r (P), and prove Theorem 2. Recall the definition of U•

c , U◦
c in (6). A key

observation in the special case of δ
(k)
P is that the homology of U◦

c is simple to describe.

▶ Lemma 11. Let c be a non-degenerate critical point of δ
(k)
P , of index µc, and denote

∆c :=
(

N∂
c −1
µc

)
. If µc > 1, then

Hi(U◦
c ) ∼=


F i = 0,

F∆c i = µc − 1,

0 otherwise.

If µc = 1, then

Hi(U◦
c ) ∼=

{
F∆c+1 i = 0,

0 otherwise.

The proof for Lemma 11 requires more details from [2], and is postponed to Section 6.
We use it here to prove the following simpler version of Theorem 7.

▶ Proposition 12. Let c ∈ Rd be a critical point of δ
(k)
P of index µc. Then, the following

holds.
1. If µc = 0, then c is a local minimum, and

Hi(U•
c , U◦

c ) ∼=

{
F i = 0,

0 i > 0.

SoCG 2024
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2. If µc > 0, then

Hi(U•
c , U◦

c ) ∼=

{
F∆c i = µc,

0 otherwise.

Proof. When µc = 0 we have that |Pc| = k. Additionally, from Corollary 14, there is a small
neighborhood Uc, such that δ

(k)
P (x) = δ

(k)
Pc

(x) = maxp∈Pc
d2

p(x) for all x ∈ Uc. Note that at
c we have δ

(k)
P (c) = r2

c = d2
p(c), for any p ∈ P∂

c . However, since c ∈ σ(P∂
c ), for every point

x ∈ Uc there exists p ∈ P∂
c such that dp(x) ≥ dp(c). Thus, c is a local minimum. The first

part of the theorem then follows from the first part of Theorem 7.
For µc > 0, c is not a minimum, so we refer to the second part of Theorem 7. If µc > 1,

then the result follows directly from Lemma 11. For µc = 1, from Lemma 11 the number
of connected components of U◦

c is α = ∆c + 1 = N∂
c , and therefore, the second case in

Definition 7 reduces to Hi(U•
c , U◦

c ) ∼= F∆c , for i = 1, and 0 otherwise. ◀

We can now prove Theorem 2.

Proof of Theorem 2. Define

Br := {x ∈ Rd : d
(k)
P (x) ≤ r}, and B◦

r := {x ∈ Rd : d
(k)
P (x) < r}.

Then U◦
c ≃ U•

c \{c}, and B◦
rc

≃ Brc
\{c}, since the critical values of d

(k)
P are distinct. By the

excision theorem (cf. Theorem 2.20 in [21]), we have

Hi(Brc
, B◦

rc
) ∼= Hi(U•

c , U◦
c ). (7)

Next, consider the long exact sequence for the relative homology,

· · · −→ Hi+1(Brc
, B◦

rc
)−→Hi(B◦

rc
)−→Hi(Brc

)−→Hi(Brc
, B◦

rc
) −→ · · ·

Firstly, consider the case where µc > 0. Then for i ≠ µc, µc − 1, from Proposition 12 we have

0 −→ Hi(B◦
rc

)−→Hi(Brc
) −→ 0,

which implies Hi(B◦
rc

) ∼= Hi(Brc). In other words, there is no change in the i-th homology
of Br when reaching the point c. For i = µc, we have

0 −→ Hi(B◦
rc

)−→Hi(Brc)−→F∆c−→Hi−1(B◦
rc

)−→Hi−1(Brc) −→ 0.

Exactness then implies that

Hi(Brc
) ∼= Hi(B◦

rc
) ⊕ F∆+

c , and Hi−1(B◦
rc

) ∼= Hi−1(Brc
) ⊕ F∆−

c ,

for some ∆+
c , ∆−

c ≥ 0, with ∆+
c + ∆−

c = ∆c.
Next, assume that µc = 0. Similarly to the above, for i > 0 there is no change in the

homology. For i = 0 we have

0 −→ H0(B◦
rc

)−→H0(Brc
)−→F −→ 0.

By exactness, we have H0(Brc
) ∼= H0(B◦

rc
) ⊕ F.

Finally, note that there exists ϵ > 0 such that the interval [rc − ϵ, rc + ϵ] contains exactly
one critical value (namely, rc). From Proposition 2.1 in [2], we have that Brc−ϵ ≃ B◦

rc
, and

Brc+ϵ ≃ Brc
. This completes the proof. ◀
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6 Additional proof elements

In this section we provide more details required for the proofs in Sections 4 and 5.

6.1 Geometric ingredients
To use the framework presented in Section 3, we will show that for every c ∈ Rd we can find
a small enough neighborhood, where d

(k)
P is a continuous selection of

{
dp : p ∈ P∂

c

}
.

▶ Lemma 13. Let P ⊂ Rd be a finite set, and let c ∈ Rd. Then there exists an open ball Uc,
centered at c, where d

(k)
P (x) is a continuous selection of {dp : p ∈ P∂

c }, and this representation
is minimal.

Proof. Let rin = maxp∈PI
c

∥p − c∥, and rout = minp∈P\Pc
∥p − c∥. Define

ρin = rc − rin

2 , ρout = rout − rc

2 , and ρ = min{ρin, ρout}.

Let z ∈ Bρ(c). Then the open ball of radius rc+rin
2 centered at z includes Brin(c), and thus all

the points in PI
c . In addition, this open ball is included in Brc(c), and therefore it excludes

the points of P \ PI
c . Similarly, the open ball of radius rc+rout

2 centered at z, includes P∂
c and

excludes the points of P \ Pc. Thus, setting Uc = Bρ(c) concludes the first part of the proof.
Next, let p ∈ P∂

c and denote p̂c = (p − c)/∥p − c∥. Let ϵ > 0 sufficiently small, and denote
z = c + ϵp̂c ∈ Uc. Then, p is necessarily one of the k-nearest neighbors of z, since for all
q ∈ P∂

c \{p}, we have

∥q − z∥2 = r2
c + ϵ2 − 2⟨q − c, ϵp̂c⟩ > r2

c + ϵ2 − 2rcϵ = ∥p − z∥2.

Thus, the representation of d
(k)
P as a continuous selection of {dp : p ∈ P∂

c } is minimal. ◀

The k-NN distance function is tightly related to the order-k Voronoi tessellation [16, 23].
This is a generalization of the (order-1) Voronoi tessellation, that decomposes Rd into convex
regions whose points have the same k-nearest-neighbors. Formally, let X ⊂ P be a subset of
size k. Then the order-k Voronoi cell of X is defined as

Vor(X , P) := {y ∈ Rd : ∥x − y∥ ≤ ∥x′ − y∥, for all x ∈ X and x′ ∈ P\X }.

Alternatively, we can write

Vor(X , P) =
⋂

x∈X
Vor(x, P\X ),

where Vor(x, P\X ) is a standard Voronoi cell. Note that Vor(X , P) is a convex set, and can
also be empty. If Vor(X , P) ̸= ∅ we say that X is a k-NN subset.

Let P = {p1, . . . , pn} ⊂ Rd, and denote all the k-NN subsets of P by P1, . . . , PJ . In
addition, for any c ∈ Rd, define Φc = {1 ≤ j ≤ J : c ∈ Vor(Pj , P)}, and for all j ∈ Φc,
denote by Nj the set of indices, such that Pj ∩ P∂

c = {pi : i ∈ Nj}. Using the definitions
above, we can write d

(k)
P as

d
(k)
P (x) = min

1≤j≤J
max
p∈Pj

dp(x). (8)

We can refine this representation, using Lemma 13.
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▶ Corollary 14. Let P ⊂ Rd be a finite set, and let c ∈ Rd. Then there exists a neighborhood
Uc where

d
(k)
P (x) = min

j∈Φc

max
p∈Pj

dp(x) = min
j∈Φc

max
i∈Nj

dpi
(x).

In particular, in Uc, we have d
(k)
P ≡ d

(k)
Pc

.

6.2 Topological ingredients
Our goal here is to provide a refined local description for δ

(k)
P , which will lead to the proof of

Lemma 11.
Let c ∈ Rd be a critical point of δ

(k)
P . By Lemma 13, there exists a neighborhood Uc ⊂ Rd,

in which δ
(k)
P is a continuous selection of {d2

p : p ∈ P∂
c }. Moreover, from (5), and since the

quadratic index is 0, it is locally topologically equivalent to

g(y) = δ
(k)
P (c) + ℓ(y1, . . . , yN∂

c −1) +
d∑

j=N∂
c

y2
j , y = (y1, . . . , yd) ∈ Ũ0. (9)

Furthermore, the function ℓ(y1, . . . , yN∂
c −1) admits a min-max representation as a continuous

selection of linear functions [2]. The exact representation is given by the following lemma.

▶ Lemma 15. The min-max representation of ℓ(y1, . . . , yN∂
c −1) is given by

ℓ(y1, . . . , yN∂
c −1) = min

j∈Φc

max
i∈Nj

ℓi(y), (10)

where ℓi(y) is one of the functions y → yl (1 ≤ l ≤ N∂
c − 1), or y → −

∑N∂
c −1

l=1 yl.

Proof. Denote f = δ
(k)
P , and assume without loss of generality that c = 0. In addition,

denote q = N∂
c − 1, H = Rq × {0}d−q, and H⊥ = {0}q × Rd−q. Recall that P∂

0 all lie on a
q-dimensional plane, and assume without loss of generality, that this plane is H.

Let x ∈ Rd, such that ∥x∥ is sufficiently small. Using Corollary 14, we know that f(x) is
determined by one of the functions {d2

p : p ∈ P∂
c } at 0. We can approximate f(x) based on

the second order approximations of d2
p around 0. Namely,

f(x) ≈ f(0) + min
j∈Φc

max
i∈Nj

(
ℓi(x) + ∥x∥2)

, (11)

where ℓi(x) := ⟨∇d2
pi

(0), x⟩, and we used the fact that the Hessian of d2
p is 2Id×d. Let

x = x∥ + x⊥ , where x∥ , x⊥ denote the projections of x to H, H⊥, respectively. Note that
since ∇d2

p(0) ∈ H, for all p ∈ P∂
c , we have ⟨∇d2

p(0), x⟩ = ⟨∇d2
p(0), x∥⟩ for all x ∈ Rd. In

other words, the linear terms in (11) depend only on the first q = N∂
c − 1 coordinates of x.

Thus, for x∥ , we can assume that the second order term is negligible, while for x⊥ the first
order term vanishes. Therefore, we have

f(x) ≈ f(0) + min
j∈Φc

max
i∈Nj

ℓi(x∥) + ∥x⊥∥2. (12)

Finally, since the gradients {∇d2
P(0) : p ∈ P∂

c } are linearly dependent, we can express ℓN∂
c

(x∥)
as ℓN∂

c
(x∥) = −

∑N∂
c −1

i=1 ηiℓi(x∥), where ηi := λ∗
i /λ∗

N∂
c

, where λ∗ = (λ∗
1, . . . , λ∗

N∂
c

) is defined
in Definition 6. Therefore, the form (12) is the same as (9) up to a change of coordinates,
and we can identify ℓ(y1, . . . , yN∂

c −1) with the min-max term in (12). ◀



Y. Reani and O. Bobrowski 75:11

Proof of Lemma 11. Based on the min-max representation for δ
(k)
P we obtained in (9) and

(10), we can use Theorem 4.1 in [2] to establish the homology of U◦
c . This theorem makes

use of an “auxiliary complex”, which we compute below for the special case of δ
(k)
P .

Take a critical point c ∈ Rd and assume without loss of generality that P∂
c = {p1, . . . , pN∂

c
}.

For ℓ(y) in (9), define S = {y ∈ Ũ0 : ℓ(y) < 0}. Following (10) we have S =
⋃

j∈Φc
Sj , where

Sj := {y ∈ Ũ0 : ℓi(y) < 0, i ∈ Nj}. Given this representation, it was shown in Proposition
2.5 in [2] that the following simplicial complex is homotopy equivalent to S. For each Nj we
define its complement by N̄j := {1, . . . , N∂

c }\Nj . The auxiliary complex of c, denoted Kc,
is the nerve of the simplexes {N̄j : j ∈ Φc}. In fact, for the special case of δ

(k)
P , we observe

that Kc is just the (µc − 1)-dimensional skeleton (recall that µc = Nc − k) of the simplex
spanned by {1, . . . , N∂

c }. Note that the dimension of Kc does not exceed d. See Figure 3 for
examples of this auxiliary complex.

For the case where the quadratic index is zero (as in our case), Theorem 4.1 in [1] states
that Hi(U◦

c ) ∼= Hi(Kc). Since Kc is the (µc−1)-dimensional skeleton of a (N∂
c −1)-dimensional

simplex, we have the following. Denote ∆c :=
(

N∂
c −1
µc

)
. If µc > 1,

Hi(Kc) ∼=


F i = 0,

F∆c i = µc − 1,

0 otherwise,

If µc = 1,

Hi(Kc) ∼=

{
F∆c+1 i = 0,

0 otherwise.

This completes the proof. ◀

7 The expected number of critical points

In this section we examine the k-NN distance function for a random point set P. In this
setting, we analyze the expected value for the number of critical points with a given index,
contained within a compact region.

A homogeneous Poisson point process in Rd with intensity ν > 0, has the following
properties:
1. The number of points in a Borel set A ⊂ Rd has a Poisson distribution with parameter

ν|A| (where | · | is the volume).
2. If A and B are two disjoint Borel sets, then the number of points in A and the number

of points in B are independent random variables.
The homogeneous Poisson process is a typical case study in stochastic geometry and topology.
It has been shown that various topological quantities are linear in ν (in expectation) [14, 12, 28].
We will show that the critical points for d

(k)
P are no different.

▶ Theorem 16. Let Pν ⊂ Rd be a homogeneous Poisson point process with intensity ν > 0.
Let k > 0, and let 0 ≤ i ≤ d. Let Ω ⊂ Rd be a compact subset, and denote by Fi the number
of critical points of d

(k)
Pν

, with index µc = i, lying in Ω. Then,

E{Fi} = Dk,iν,

where Dk,i is a constant that depends on k, i, and Ω.
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Figure 3 The auxiliary complex used in the proof of Lemma 11. Left: In both figures c is a
critical point of d

(2)
P , and the purple regions are the 2-fold cover, at radius r that is slightly smaller

than rc. Right: The corresponding auxiliary complex Kc (in green). Top: The critical point c is
of index µc = 1. The sets N1, N2, N3 are equal to {1, 2}, {1, 3}, {2, 3}, respectively. Thus, the sets
N̄1, N̄2, N̄3 that span Kc, are equal to {3}, {2}, {1}, respectively. Bottom: The critical point c is of
index µc = 2. The sets N1, N2, N3 are equal to {1}, {2}, {3}. Thus, the sets N̄1, N̄2, N̄3 that span
Kc, are equal to {2, 3}, {1, 3}, {1, 2}, respectively.

To prove the above theorem, we follow the configurations of points in Pν that generate
critical points for the k-NN distance function d

(k)
Pν

.
Let P ⊂ Rd be a finite set in general position, of size n > d. Each critical point of d

(k)
P is

associated with a critical configuration of points of P, as follows. Let X ⊂ P of size l + 1,
where 1 ≤ l ≤ d, and denote by S(X ) the unique (l − 1)-dimensional minimal circumsphere
of X . In addition, denote

c(X ) := the center of S(X ),
ρ(X ) := the radius of S(X ),
B(X ) := the d-dimensional ball centered at c(X ) with radius ρ(X ),

I(X , P) := int(B(X )) ∩ P,

µ(X , P) := |X | + |I(X , P)| − k

From Theorem 1 we have that c = c(X ) is a critical point of d
(k)
P of index µc := µ(X , P), if

and only if

0 ≤ µ(X , P) ≤ d, and c ∈ σ(X ).

▶ Lemma 17. Let Pν ⊂ Rd be a homogeneous Poisson point process with intensity ν > 0.
Let 1 ≤ i ≤ d, and j ≥ 0. Let Ω ⊂ Rd be a compact subset, and denote by Fi,j the number of
subsets X ⊂ Pν of size |X | = i + 1, such that c(X ) ∈ Ω, and |I(X , P)| = j. Then,

E{Fi,j} = D
(i,j)
d ν,

where D
(i,j)
d is a constant that depends on d, i, j, and Ω.
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For a proof of the above lemma see Appendix A.

Proof of Theorem 16. Recall from Section 2 that µ(X , P) = |X |+ |I(X , P)|−k is the index
of the generated critical point. In addition, 2 ≤ |X | ≤ d + 1, and 0 ≤ |I(X , P)| ≤ k − 1. The
last three terms, limit the possible values |X | can take, namely

max{2, µ(X , P) + 1} ≤ |X | ≤ min{d + 1, µ(X , P) + k},

and |I(X , P)| = µ(X , P) + k − |X |. Thus, the number of critical points of index µ(X , P) =
i ≥ 0, is given by

Fi =
I2∑

i′=I1

Fi′,j′ ,

where I1 := max{1, i}, I2 := min{d, i+k −1}, and j′ = i+k − i′ −1. By taking the expected
value and applying Lemma 17, we have

E{Fi} =
I2∑

i=I1

E{Fi′,j′} = ν

I2∑
i′=I1

D
(i′,j′)
d .

Setting Dk,i :=
∑I2

i′=I1
D

(i′,j′)
d concludes the proof. ◀

8 Discussion

In this paper we studied the k-NN distance function d
(k)
P . We showed that using the

Morse theory for piecewise smooth functions we can derive simple combinatorial-geometric
characterization for critical points and their indices. In addition, we showed the effect of
such critical points on the homology of the sub-level sets. We observe that the behavior of
d

(k)
P is similar to classical Morse theory, in the sense that if the index is µc the homology

affected is only in dimensions µc (positively) and µc − 1 (negatively). However, in contrast
to classical Morse theory, at each critical level there can be several simultaneous changes to
homology. Our results provide new means to analyze the homology and persistent homology
of the k-degree Delaunay mosaics. In addition, they will be instrumental for the analysis of
random k-fold coverage and its homology. Specifically, counting critical faces, as we present
in Theorem 16, will allow us to draw conclusions about the homology of the random k-fold
coverage objects, in different regimes. This remains future work.
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A Proof of Lemma 17

In the following, we provide the proof for Lemma 17.

Proof of Lemma 17. Fix 1 ≤ i ≤ d, and j ≥ 0. For finite subsets X ⊂ P ⊂ Rd, with
|X | = i + 1, define

hσ(X ) := 1{c(X ) ∈ σ(X )}, hI(X , P) = 1{|I(X , P)| = j},

and

g(X , P) := hσ(X )hI(X , P)1{c(X ) ∈ Ω}.

Using these notations, we can express Fi,j as

Fi,j =
∑

X ⊂Pν

|X |=i+1

g(X , Pν).

Taking the expectation, and applying the Slivnyac-Mecke formula (see Corollary 3.2.3 in
[29]), yields

E{Fi,j} = νi+1

(i + 1)!

∫
(Rd)i+1

E{g(x, Pν ∪ x)}dx, (13)

where abusing notation we treat x as both an ordered tuple and a set. For a fixed x we have

E{g(x, Pν ∪ x)} =
(
νωdρ(x)d

)j

j! e−νωdρ(x)d

hσ(x)1{c(x) ∈ Ω}.

Next, we use generalized spherical coordinates (a Blaschke-Petkantschin formula [24]). As-
suming the points in x are in general position (which is true almost surely), they lie on a
unique i-dimensional linear space, denoted Π(x) (that includes c(x)). Recall that the points
of x lie on a (i − 1)-dimensional sphere centered at c(x) of radius ρ(x). We will denote
θ(x) ⊂ Si−1 the spherical coordinates of x on this sphere. We are interested in the bijective
transformation x → (c, ρ, Π, θ).

Turning back to the integral in (13), and applying Lemma C.1 in [4], we have∫
(Rd)i+1

E{g(x,Pν ∪ x)}dx

= |Ω||Gr(d, i)|
∞∫

0

∫
(Si−1)i+1

ρdi−1
(
νωdρd

)j

j! e−νωdρd

hσ(θ)(i!Vsimp(θ))d−i+1dθdρ

= C
(i,j)
d νj

∞∫
0

ρd(i+j)−1e−νωdρd

dρ,
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where Vsimp(θ) stands for the i-dimensional volume of the simplex spanned by θ,

C
(i,j)
d :=

|Ω||Gr(d, i)|ωj
d

j!

∫
(Si−l)i+1

hσ(θ)(i!Vsimp(θ))d−i+1dθ,

and Gr(d, i) is the volume of the i-dimensional Grassmannian in Rd. Taking the change of
variable t = νωdρd, yields

∫
(Rd)i+1

E{g(x, Pν ∪ x)}dx = C̃
(i,j)
d ν−i

∞∫
0

ti+j−1e−tdt = C̃
(i,j)
d ν−i(i + j − 1)!

where C̃
(i,j)
d := C

(i,j)
d

dωi+j
d

. Going back to (13), we have

E{Fi,j} = D
(i,j)
d ν,

where D
(i,j)
d := C̃

(i,j)
d

(i+j−1)!
(l+1)! , concluding the proof. ◀

B Blaschke–Petkantschin-type formula

The following lemma (Lemma C.1 in [4]), introduces a change of variables that extends the
idea of polar coordinates. For further details, see [4].

Let x = (x1, . . . , xd+1) ⊂ (Td)d+1, and consider the following mapping x → (c, ρ, Π, θ)
defined in Appendix A. Next, let f : (Td)k+1 → R be affine invariant. This implies that

f(x) = f(c + ρθ(Π)) = f(ρθ(Π0)) := f(ρθ), (14)

where Π0 is the canonical embedding of Rk in Rd as Rk × {0}k.

▶ Lemma 18 (Lemma C.1 in [4]). Let f : (Td)k+1 → R be a measurable bounded function
satisfying (14). Then,∫

(Td)k+1
f(x)dx = Dbp

∫ ∞

0

∫
(Sk−1)k+1

ρdk−1f(ρθ)(Vsimp(θ))d−k+1dθdρ,

where Vsimp(θ) is the volume of the k-simplex spanned by θ, Dbp = (k!)d−k+1Γd,k, and Γd,k

is the volume of the Grassmannian Gr(d, k).
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