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—— Abstract

Schaefer’s dichotomy theorem states that a Boolean constraint satisfaction problem (CSP) is
polynomial-time solvable if one of four given conditions holds for every type of constraint allowed in
its instances. Otherwise, it is NP-complete. In this paper, we analyze Boolean CSPs in terms of
their topological complexity, instead of their computational complexity. Motivated by complexity and
topological universality results in computational geometry, we attach a natural topological space
to the set of solutions of a Boolean CSP and introduce the notion of projection-universality. We
prove that a Boolean CSP is projection-universal if and only if it is categorized as NP-complete by
Schaefer’s dichotomy theorem, showing that the dichotomy translates exactly from computational to
topological complexity. We show a similar dichotomy for SAT variants and homotopy-universality.
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1 Introduction

In this paper we study properties of solution spaces and their relation to complexity theory.
Such questions originated in the following famous problem in discrete geometry: Given a point
set P, its order type is a combinatorial description of P, assigning each triple of points (p, ¢, r)
its orientation. The problem of order type realizability asks whether for a given abstract order
type there exists a point set with this order type. In 1956, Ringel [35] asked whether for every
realizable order type, every point set P with this order type can be continuously transformed
into any other point set P’ with the same order type. Considering the uncountably infinite
family of such point sets as a topological space, Ringel’s question is equivalent to asking
whether this space is connected. We also call this space the realization space of the given
abstract order type, or alternatively, the solution space of the given order type realizability
instance. With this topological view, Mnév [31] famously answered the connectivity question
to the negative. In fact, Mnév proved a much stronger statement, nowadays known as Mnév’s
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ungversality theorem: every semi-algebraic set! is stably equivalent? to the realization space
of some abstract order type. In particular, this implies that realization spaces can not only
be disconnected, but can have arbitrarily complex topological features. Informally, we say
that the order type realizability problem exhibits topological universality.

Results like Mnév’s universality theorem have since been obtained for many types
of problems, in particular in discrete and computational geometry. Richter-Gebert and
Ziegler [34] showed a similar universality theorem for the realization spaces of 4-dimensional
polytopes. Datta [17] showed a universality theorem for the set of totally mixed Nash equilibria
of three-player games. Shitov [39] proved universality for the spaces of factorizations of
non-negative matrices into sums of non-negative rank-one matrices. Dobbins et al. proved
universality for the spaces of nested polytopes [18]. Recently, it was also shown that the Art
Gallery Problem exhibits topological universality [6, 42].

The result of Mnév also implies that the problem of order type realizability is complete for
the complexity class IR, which captures the computational complexity of many fundamental
geometric problems and recently is seeing much attention, e.g. [1, 7, 30, 36]. It is known
that NP C dR C PSPACE, with both inclusions conjectured to be strict [14]. IR is defined
as the class of decision problems polynomial-time reducible to its canonical problem, the
existential theory of the reals (ETR). In the ETR problem, one is tasked to decide whether
there exists a vector of real numbers that satisfies a given quantifier-free formula containing
polynomial inequalities and equalities. By definition, ETR is both JR-complete, and also
exhibits topological universality. Reductions used to prove problems dR-hard can often also
be adapted to yield topological (or algebraic) universality results about the solution spaces
of these problems, however no meta-theorem about the relationship between JR-hardness or
JR-completeness and topological universality is known.

So far, the topological lens has only been used when considering the solution spaces of
problems for which the solution space is naturally continuous, since solutions are described
by real numbers. While this is the case in algebraic or geometric problems, combinatorial
problems often have discrete solution spaces. However, topology can be useful to describe
properties of discrete sets too, one just needs to find a natural definition of a continuous
topological space. For this, the viewpoint of reconfiguration is a natural approach.

Reconfiguration problems are widely studied in computer science and discrete mathemat-
ics [32]. In reconfiguration problems, we are concerned with a set of configurations and the
ways we can obtain one from the other, defining a flip graph. Such flip graphs are also ubiqui-
tous in computational geometry, for example in the Lawson flip algorithm for computing De-
launay triangulations. Many questions can be asked about such a graph, for example, whether
it is connected, what its diameter is, or whether it is Hamiltonian. We are particularly inter-
ested in reconfiguration on the set of solutions for an instance of some problem. For example,
consider the set of satisfying variable assignments for a CNF formula ® on d variables, and con-
sider flipping of a single variable between 0 and 1 as the set of allowed moves. Instead of only
looking at the flip graph (which topologically speaking is a 1-dimensional topological space),
we can consider interactions between multiple variables too; if all the variable assignments
xoo = (21,...,a-2,0,0), 201 := (21,..,a—-2,0,1), 210 := (1,....a—2,1,0), 211 := (21,... .a-2,1,1)
are valid solutions, we not only consider the edges {zoo, Zo1}, {Zo1, 211}, {®11, 210} and
{10, %00}, but we can also “fill in” the 2-dimensional face between all of them. We can also
do this with higher-dimensional faces, yielding a cubical complex. In this very natural way,

! The semi-algebraic sets encompass a large variety of topological spaces and will be discussed later.
2 Stable equivalence is a very strong notion of equivalence of topological spaces.
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Figure 1 A CNF formula with a solution space homeomorphic to the circle S*.

we get a topological space from a discrete set of solutions. This very easily defined space can
have surprisingly intricate structure, see Figure 1 for an example where it is homeomorphic
to a circle.

In this paper, we study topological properties of such solution spaces of Boolean constraint
satisfaction problems (CSPs). A Boolean CSP is specified by its possible constraint types, a
set R of logical relations. The problem instances of a Boolean CSP are the formulae obtained
by taking the conjunction (“and”) of finitely many constraints, instantiated with variables or
constants (0 or 1). The decision problem SAT(R) is to decide satisfiability of a given such
formula.

CSPs are a very versatile and interesting class of problems. First off, they encompass a
wide range of problems, in particular all common SAT variants. Furthermore, their simple
and uniform definition makes it possible to prove very general statements. Thanks to this,

their computational complexity is very well-understood nowadays (see [16] for an overview).

A seminal result on the computational complexity of Boolean CSPs is the following dichotomy
theorem due to Schaefer:

» Theorem 1 (Schaefer's dichotomy theorem with constants [38]). For every finite set R of

logical relations, the Boolean constraint satisfaction problem SAT(R) (allowing for constants)

is polynomial-time solvable if there exists one condition in the following list that holds for all

logical relations R € R:

1. Horn SAT: R is equivalent to a CNF formula in which every clause has at most one
non-negated variable.

2. Dual-Horn SAT: R is equivalent to a CNF formula in which every clause has at most
one negated variable.

3. 2-SAT: R is equivalent to a CNF formula in which every clause has at most two literals.

4. R is affine: R is the set of solutions to a system of affine equations over F.

If there is no such condition, SAT(R) is NP-complete.

Note that a different formulation of this theorem with six conditions also sometimes
appears in the literature. In this other version it is not allowed to instantiate relations with
constants 0 or 1, but only with literals. We provide our exact definition of SAT(R) in the
next section.

1.1 Preliminaries and Results

In this paper, we prove a topological version of Schaefer’s dichotomoy theorem. Before
stating our results, let us formally define the relevant notions, starting with CSPs both with
and without constants.
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A logical relation R is a subset of {0, 1}* for some finite k > 1, where k is called its rank
rk(R). For a logical relation R of rank k, we write R(z1,...,xx) for its evaluation at the
value of the given variables x1,...,z;. Note that z1,...,z; are not necessarily distinct.

» Definition 2 (Boolean CSP). Given a set R = {Ry,...} of logical relations, an instance
of the Boolean constraint satisfaction problem SAT(R) is given by a sentence ® that is a
conjunction of relations in R, i.e.,

b = 31‘1, o, Xq € {O7 1}d : le(xl,l, .. ,xl’rk(le)) A A Rjn(xml, .. 7xn,rk(Rjn))7

where for all i,j, x; ; € {0,1,21,...,2q4}. We call d > 1 the dimension of ®, and n > 1 its
number of constraints.

To consider the solution space of discrete problems, we need two main ingredients: (i), a
way to assign an instance of the problem its discrete set of solutions, and (ii), a way to turn
this discrete set into a topological space. For Boolean CSPs, we define these two ingredients
as follows:

» Definition 3 (Discrete solution space). Given a sentence ® of dimension d, its discrete
solution space Sat(®) is the set of vertices of the hypercube [0,1]% which correspond to a
solution of ®.

» Definition 4 (Induced cubical complex). Given a set X of vertices of the hypercube [0,1]%,
its induced cubical complex I(X) is the collection of all faces f of [0,1]% for which every
vertex v € f is contained in X.

For the notion of universality, we want to be able to build (up to some notions of
equivalence formally defined later) any semi-algebraic set.

» Definition 5 (Semi-algebraic set [9]). A semi-algebraic set is the union of finitely many
solution sets to finite systems of polynomial equalities and inequalities. More formally, a
semi-algebraic set is a subset of R? of the following form (for finite s and r;),

U ﬁ{x € R fij*i; 0},

i=1j=1
where the functions f; ; are polynomials over R in the variables x1,...,xq and *; ; € {<,=}.

Throughout the paper, we will use several standard concepts of algebraic topology, such
as homeomorphism, homotopy equivalence, deformation retract and homology. We refer the
reader to any textbook on algebraic topology for a thorough introduction, e.g. [12, 22].

» Definition 6 (Homotopy-universality). A problem P with some function V assigning each
instance ® € P a topological space to the set of its solutions is called homotopy-universal, if
for every closed and bounded semi-algebraic set S, there exists an instance ® € P, such that
V(®) is homotopy equivalent to S.

Replacing “homotopy equivalent” with “stably equivalent” or “homeomorphic” in the
above definition yields universality up to stable equivalence and homeomorphism-equivalence,
respectively. For Boolean CSPs; the function V is given by the induced cubical complex of
the discrete solution space, that is, I(Sat(®)).

Homotopy-universality is a comparatively weak notion of universality. However, it is
not a very robust definition. For example, consider a problem that for any semi-algebraic
set S has an instance that has a solution space homeomorphic to two disjoint identical
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copies of S. One might want to consider such a problem topologically universal, however
homotopy-universality fails to capture this. In spirit of the proof strategy in [6] we suggest
adding a notion of projection: When a problem has a natural notion for expressing the
solution space as a sub-space of some product space, i.e., V(P) C X x Y, we allow to project
away one of the involved spaces Y. The projected solution space is then the set of points
2 € X for which there exists a point y € Y such that (z,y) € V(P). In the case of solutions
being vertices of the hypercube, which is the product space of d intervals, such a projection
has a simple definition:

» Definition 7 (Projection). Given a subset D C [d] = {1,...,d} of dimensions, the
projection 7p maps each vertex x € {0,1}% to the vertex @ € {0,1}* 1P by removing all
entries corresponding to dimensions in D. Similarly, for a subset X C {0,1}¢, we define
mp(X):={% |z € X}.

Note that projecting along a dimension i can be seen as existentially quantifying the variable
x;. Existential quantification is used in the proof of Schaefer’s dichotomy theorem, as well as
in concepts such as pp-definability that appear in the algebraic theory of CSPs (see e.g. [5]).
We thus think it is a very natural operation to consider.

In our discrete setting, we always first project the discrete solution space, and only turn
it into a topological space afterwards.3

» Definition 8 (Projection-universality). A problem P with some function V assigning each
instance ® € P and choice of projection m a topological space is called projection-universal,
if for every closed and bounded semi-algebraic set S, there exists an instance ® € P and a
projection w, such that V(®, ) is homeomorphic to S.

In our setting, this translates to the following definition:

» Definition 9 (Projection-universality for Boolean CSPs). A Boolean CSP SAT(R) is called
projection-universal, if for every closed and bounded semi-algebraic set S, there exists an
instance ® of SAT(R) and a set D, such that I(mp(Sat(®))) is homeomorphic to S.

We note here that universality up to stable equivalence implies projection-universality. Fur-
thermore, existing proofs of homotopy-universality such as the one in [6] also imply projection-
universality. In general, however, homotopy-universality and projection-universality are
incomparable definitions, with neither implying the other.

We are now ready to state our main results.

» Theorem 10. For every finite set R of logical relations, SAT(R) is projection-universal if
and only if it is categorized as NP-complete by Schaefer’s dichotomy theorem (Theorem 1).

We thus get the following corollary:

» Corollary 11. Assuming P # NP, a Boolean CSP is projection-universal if and only if it is
NP-complete.

We furthermore show that for the Boolean CSPs categorized as polynomial-time solvable
by Schaefer, the solution space (and any possible projections of it) has trivial homology in
all dimensions p > 1.

3 Note that this order of operations is crucial. Projecting after continuization can never turn a
0-dimensional space into a higher-dimensional one.

77:5

SoCG 2024



77:6

A Topological Version of Schaefer’'s Dichotomy Theorem

Finally, we show a similar dichotomy theorem for homotopy-universality in CSPs given
by CNF formulae with restrictions on the numbers of positive, negative, and overall variables
per clause.

» Theorem 12. For k,p,n with p,n < k < n + p, let p-POS-n-NEG-k-SAT be the CSP
defined by the constraints expressing all possible disjunctions of at most k literals, which
contain at most p positive literals and at most n negative literals. Then, p-POS-n-NEG-k-SAT
is homotopy-universal if and only if it is classified as NP-complete by Theorem 1.

However, we note that there are NP-complete CSPs which are not homotopy-universal, such
as 1-IN-3-SAT (see Lemma 31 in Section 3).

1.2 Discussion

A Hierarchy of Universalities. Various notions of topological universality have been studied
in the literature. The strongest notion, homeomorphism-universality has been shown for
the art gallery problem [42] and implicitly for SAT [6], see also Lemma 14. Universality up
to stable equivalence is the oldest type of universality, since it is the one used in Mnév’s
universality theorem [31]. Universality up to stable equivalence implies both homotopy-
universality and projection-universality, but not vice-versa.

While some link between topological universality and different levels of computational
complexity has been suspected by several researchers, there is no consensus on the correct no-
tion of universality. One suspected link was between dR-hardness and homotopy-universality,
however, recent results in [6] as well as the present paper show that homotopy-universality
can already be attained by problems in NP, even CSPs with finitely many constraint types.
JR-hardness might however still be related to universality up to stable equivalence, at least
for CSPs with finitely many constraint types?.

P vs. NP. Our results show a structural difference between those Boolean CSPs that lie in P
and those that are NP-complete. Such structural differences could be vital in proving P # NP,
however, since we only consider Boolean CSPs we are very far from making progress on this
fundamental problem. We discuss the possibilities for extending our results to larger classes of
problems further below. On the other hand, combined with the results in this paper, a result
showing that no problem in P can have homotopy-universality or projection-universality
would imply P # NP.

While we consider the topology of the solution spaces of problems, previous work consid-
ering solution spaces in the eye of computational complexity has focused on their geometry.
In the 1980s, there have been efforts to prove P = NP by giving an LP formulation of the
traveling salesman problem (TSP) [43]. However, the proposed formulation was later refuted
by Yannakakis [45], who showed that symmetric LPs for the TSP must have exponential size.
Recently, Fiorini et al. [20] strengthened this result and proved that every LP that projects
to the TSP, maximum cut, or maximum stable set polytopes must have a superpolynomial
number of constraints. The crucial tool in this series of works is the notion of extension
complexity of a polytope P, a measure that formalizes the necessary size of every alternative
polytope @ that projects to P. The extension complexities of the polytopes associated with
various problems have since been studied [3, 4, 21, 25, 33, 39].

1 Note that this excludes SAT, which is in NP and homeomorphism-universal.
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Algebraic Universality. Algebraic universality is another notion of universality that often
shows up in the context of algebraic and geometric JR-hard problems. A problem is
algebraically universal, if for every algebraic number x, there exists an instance of the
problem that does not have a solution over fields not including x, but has a solution over Q
extended by x. The ETR problem exhibits algebraic universality. Furthermore, algebraic

universality is often preserved by reductions, even by reductions aimed at proving IJR-hardness.

Thus, one can find many instances of algebraic universality being proven as a byproduct
from JR-hardness proofs [1, 7, 18, 37, 40]. Note that algebraic universality cannot occur in
problems with open solution spaces, such as the IR-hard ETR variant used in [26]. We are
not aware of any NP-complete problems exhibiting algebraic universality.

Future Work. In this work we only considered Boolean CSPs. To obtain more convincing
arguments for the suspected link between projection-universality and NP-hardness, one would
need to consider more general classes of problems. Interesting results in this line of research
would be statements such as “if a problem’s solution space cannot be too complicated®, then
it can be solved in polynomial time” or “a problem is NP-hard if and only if it is topologically
universal under some fixed equivalence relation”. Note that even both of these statements
together would not resolve the P vs. NP problem.

To generalize our results, one needs to consider a larger class of problems with a common
encoding and a common solution space definition. Natural candidates are more general classes
of CSPs. It may be more convenient to consider classes for which the computational complexity
is well-understood, however it may also be worthwhile to try and obtain computational
complexity results using topological methods, such as in [29]. Computational dichotomy
theorems have been found for various classes of CSPs, for example for CSPs on finite domains
by two independent and simultaneous papers by Zhuk [46] and Bulatov [13]. Miltzow and
Schmiermann showed that continuous constraint satisfaction problems are dR-complete as
soon as an addition constraint and any curved (i.e., not piecewise linear) constraint can

be encoded [30]. Bodirsky and Kéra showed a dichotomy theorem for temporal CSPs [10].

Bodirsky and Pinsker established a classification similar to Schaefer’s for propositional logic
of graphs [11]. Dichotomy theorems have also been obtained for optimization [27, 28] and
counting [15] versions of CSPs.

Another interesting approach is to study the topology of solution spaces of other CSPs in
P or of problems which are conjectured to be NP-intermediate, such as the graph isomorphism
problem. In particular, a result showing that the solution spaces are not universal but can
still have arbitrarily complicated topology in some sense would be further evidence for a
relationship between complexity of solution spaces and computational complexity.

Finally, it is interesting to study universality through a more fine-grained lens. Already
Schaefer [38] and later also Allender et al. [2] refined the classification of the complexity
of Boolean CSPs into more fine-grained classes than just P vs NP-complete. This refined
classification could also be interesting to investigate from a topological view. For example, is
there a topological complexity measure that is more fine-grained than topological universality
vs. non-universality that agrees with this more fine-grained classification?

1.3 Proof Techniques and Paper Overview

To prove universality of the NP-complete Boolean CSPs, we show projection-universality and
homotopy-universality of 3-SAT. For this, we extend the techniques of Bertschinger et al. [6]
used to show homotopy-universality of the art gallery problem. Analogous methods work for

5 For example, if the solution spaces are always contractible, always have trivial homology, etc.
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the other NP-complete SAT variants in Theorem 12. We then show that by applying the
reduction used by Schaefer [38] we get projection-universality of all Boolean CSPs classified
as NP-complete. This is done in Section 2.

To prove non-universality of the four types of Boolean CSPs characterized as polynomial-
time solvable by Schaefer, we have to consider two cases separately. In the case of affine
constraints, the solution space can be observed to be a disjoint union of faces. In the cases
of 2-SAT, Horn SAT, and Dual-Horn SAT, we show that the union of the solution spaces
of k individual constraints cannot possess non-trivial p-homology for p > k. We then use
the Mayer-Vietoris sequence to prove that the intersection of these solution spaces (thus the
solution space of the whole formula) has trivial p-homology for all p > 1. This already implies
that we do not have homotopy-universality. To show the absence of projection-universality,
we show that any projection of a 2-SAT, Horn SAT or Dual-Horn SAT instance is again a
2-SAT, Horn SAT or Dual-Horn SAT instance, respectively. This is done in Section 3.

2 Topological Universality

We first show that every closed and bounded semi-algebraic set S can be homeomorphically
represented as the induced cubical complex of some vertices in the hypercube. Using this, we
show homeomorphism-universality of SAT. Applying the classic reduction of SAT to 3-SAT
we show projection-universality and homotopy-universality of 3-SAT. With this, we then
show projection-universality of all CSPs classified as polynomial-time by Theorem 1. We
also strengthen this to homotopy-universality for CNF variants.

» Lemma 13. For every closed and bounded semi-algebraic set S, there exists a dimension d,
such that S is homeomorphic to the induced cubical complex 1(V') of some set V C {0,1}.

Proof. Every semi-algebraic set S can be triangulated [23, 24]. Simplicial complexes can
be turned into homeomorphic cubical complexes [8, Lemma 1.2]. This can for example be
achieved as follows: Given a simplicial complex K on the vertices [d], we map each vertex
i € [d] to a unit vector e; in the d-dimensional hypercube [0, 1]¢. For each face f € K, we
add the induced cubical complex of the set

Vi={ve{0,1}*|v#£0and v < Zei}.
ief
One can easily verify that this yields a homeomorphic cubical complex. Furthermore, one
can verify that the induced cubical complex of V := [ rer Vs is equal to the union of the
induced cubical complexes of each V. Thus, the cubical complex induced by V' is indeed
homeomorphic to K and to the semi-algebraic set S. |

From this we already get the following universality statement.
» Lemma 14. SAT is homeomorphism-universal.

Proof. Let S be a closed and bounded semi-algebraic set. By Lemma 13 there exists an
integer d such that S is homeomorphic to the induced cubical complex I(V) of some set
V C {0,1}%. Then there exists a CNF formula ¥ with Sat(¥) = V. Such a formula can for
example be obtained by building a DNF formula and converting it to CNF. |

Applying the classic reduction from SAT to 3-SAT, we get projection-universality of
3-SAT.
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» Lemma 15. For R being the set of all logical relations of rank k < 3 that can be expressed
as the disjunction of k (possibly negated) variables, SAT(R) (also called 3-SAT) is projection-
universal.

Proof. Let S be a closed and bounded semi-algebraic set. By Lemma 14 there exists a CNF
formula W whose cubical complex induced by its solutions is homeomorphic to S. We now
translate ¥ into a 3-SAT formula ®. For every clause C of ¥ with at least four literals,
we apply the classical translation of CNF into 3-CNF. For simplicity, assume that there is
only one such clause; the following arguments can be applied to each clause independently.
Let C =2 V23 V...V z, with k >4 and z; € {x1,-21,...,24, 7xq}. C is replaced by the
formula

F=(z:VaVy)A(ry1 VzsVy) Ao A(mYr—a V 2k—2 V Yr—3) A (mYp—3 V 2k—1 V 2k).

It is well-known that for this construction, = € {0,1}¢ is in Sat(¥) if and only if there exists
y € {0,1}*73 such that (x,y) € Sat(®). Thus, considering D to be the set of dimensions
corresponding to yi, ..., yk—3, we have I(mp(Sat(®))) = I(Sat(¥)), which is homeomorphic
to S, proving projection-universality. |

To extend this further to homotopy-universality of 3-SAT, we use a mapping theorem
due to Smale [41] in a similar way as used in [6]. We defer the proof to the appendix.

» Lemma 16. 3-SAT is homotopy-universal.

Following the proof of Theorem 1 as stated in [38], one quickly obtains projection-
universality of the NP-complete SAT(R) problems:

» Lemma 17. Let R be a finite set of logical relations. If Theorem 1 classifies SAT(R) as
NP-complete, then it is projection-universal.

Proof. In the proof of NP-hardness in [38], it is shown that for every 3-SAT formula ®
on the variables x1, ..., 24 there exists a formula ¥ € SAT(R) on the variables z1,...,z4
and y1, ..., Yk, such that x1,..., x4 solves ® if and only if there exist y1, ..., yg, such that
T1y.--3Td,Y1,---,Yk solves W. Thus, letting D be the set of dimensions corresponding
to Y1, .-, Yk, p(Sat(¥)) = Sat(P). As 3-SAT is projection-universal (Lemma 15) and
projections can be chained (7p o mp = mpyups), SAT(R) is projection-universal. <

This finishes the proof of the “if” direction of our main result, Theorem 10. While
Lemma 17 does not hold for homotopy-universality (as we will prove in Section 3), a
homotopy-universality result does hold for a sub-class of CSPs. We prove the “if” direction
of Theorem 12:

» Lemma 18. For k,p,n with p,n < k < n+p, let p-POS-n-NEG-k-SAT be the CSP defined
by the constraints expressing all possible disjunctions of at most k literals, which contain
at most p positive literals and at most n negative literals. Then, p-POS-n-NEG-k-SAT is
homotopy-universal if it is classified as NP-complete by Theorem 1.

Proof. If £ < 2, p < 1, or n < 1, p-POS-n-NEG-k-SAT is expressible in 2-SAT, Horn
SAT, or Dual-Horn SAT, and thus classified as polynomial-time solvable. Otherwise, if
k,p,n > 3, p-POS-n-NEG-k-SAT contains the homotopy-universal 3-SAT and is thus also
homotopy-universal.
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Thus, the only missing cases are k > 3, p = 2, n > max(2, k — 2). We prove homotopy-
universality for the simplest of these cases, namely 2-P0S-2-NEG-3-SAT, which is contained
by all other such cases. We prove this by translating every 3-SAT formula ® into a 2-P0S-2-
NEG-3-SAT formula ¥ with homotopy equivalent solution space. To achieve this, we simply
translate a clause of the form (x V y V z) into the formula (x V y V —a) A (o V z) for a new
variable a. We apply the symmetric construction to clauses of the form (—z V -y V —z).
Homotopy equivalence of I(Sat(®)) and I(Sat(¥)) follows from exactly the same arguments
as in the proof of Lemma 16. |

3 Absence of Topological Universality

To prove the “only if” part of Theorem 10, we first show that for each of the four cases of
Theorem 1, SAT(R) is not homotopy-universal. We then extend this to projection-universality
in Section 3.2.

3.1 Absence of Homotopy-Universality

First, we handle case 4. (affine).
» Lemma 19. For a finite set R of affine logical relations, SAT(R) is not homotopy-universal.

Proof. We can represent every formula in SAT(R) by a formula ® where every constraint
of ® is of the form z1 & ... Pz =c for ¢ € {0,1} and x1, ..., xy are all distinct. Let n be
the dimension of ®. Let us consider I(Sat(®)). Without loss of generality, every variable x;
for i € [n] occurs in some constraint of ®: otherwise, the projection in these dimensions is a
deformation retract, which preserves homotopy equivalence. If 2 € {0,1}" is a solution to ®,
we know that no neighboring assignment z’ (with :v; = x; for all j # i for some 7) can be a
solution, since every constraint in which x; occurs must be violated by a’. Thus, I(Sat(®))
contains no edges and thus also not any faces of larger dimension. We conclude that for
every @, I(Sat(®)) is homotopy equivalent to a discrete topological space. <

For the remaining three cases, 1. (Horn SAT), 2. (Dual-Horn SAT), and 3. (2-SAT), we
aim to prove that the solution space I(Sat(®)) of every instance ® has trivial homology groups
(considered over any non-trivial ring) for all dimensions p > 1. Without loss of generality, we
assume that each constraint in ® is a single clause (disjunction) of the respective SAT variant.
Note that disjunctions containing a constant 1 are trivially satisfied and can be removed.
Similarly, disjunctions containing a constant 0 are equivalent to the same disjunction with
the constant removed. We thus only need to consider formulae without constants.

To prove the absence of homotopy-universality, we run one single proof by induction,
where only the base case has to be proven separately for each of the three variants. The
proof makes heavy use of a theorem due to Mayer and Vietoris [44], with a more modern
version due to Eilenberg and Steenrod [19] known as the Mayer-Vietoris sequence. We first
need to define exact sequences:

» Definition 20 (Exact sequence). An exact sequence Gg LA G EESL G, 1s a sequence
of groups Gy, ...,G, and homomorphisms fi1,..., fn with f; : G;_1 — G;, such that for all
1 S 7 S n — 1, 1mfl = kerf7;+1.

We are now ready to state our main tool:
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» Theorem 21 (Mayer-Vietoris sequence). Let X be a topological space, and A, B C X be
two subspaces whose interiors cover X (the interiors do not need to be disjoint). Then, there
is an infinite exact sequence: ... — Hyy1(A) @ Hpy1(B) = Hpy1(AUB) - Hy(ANB) —
H,(A)® H,(B) = ... — Hy(AU B).

Here, G & H denotes the direct sum of groups. Note that 00 = 0. We use the following
simple and well-known fact:

» Fact 22. Let 0% AL B %0 be an exact sequence. Then, A= B.

Given a sentence ® = Jx1,...,xz4 : C1 A ... AN (), we consider the solution spaces of
each of the clauses C; individually. The wedge W; is the solution space I(Sat(®;)) of
®; := Jz1,...,24 : C;. Note that I(Sat(®)) = (-, W;. We first claim that in the three
considered settings, unions of wedges have very limited topological complexity. This is the
only part of the proof that needs to be shown for each setting separately. We defer the proof
of this lemma to the appendix.

» Lemma 23. Given n wedges Wy, ..., W, of some 2-SAT, Horn SAT, or Dual-Horn SAT
formula ® with n’ > n clauses, we have that

n

Hp( U Wi) >0, for allp > n.

=1

For the rest of the proof, we assume that ® is either a 2-SAT, Horn SAT, or Dual-Horn
SAT formula, and do not need to distinguish between these settings.

> Claim 24. Theorem 21 also applies to any A and B that are composed of unions and
intersections of wedges.

Proof. Such spaces A and B are unions of faces of the d-dimensional hypercube. There exist
open supersets A’ and B’ obtained by slightly thickening A and B, such that A, B, AN B,
and AU B are deformation retracts of A’, B, A’ N B’, and A’ U B’, respectively. Since A’
and B’ are open, their interiors cover their union A’ U B’, and Theorem 21 applies. However,
the thickening has not changed any of the homology groups appearing in the sequence of
Theorem 21, and the sequence is thus also exact for A and B. <

» Lemma 25. Foreveryn>1,p>1,and0<k<n-—1,

n—k n
Hy((\Wiu | W) =o
i=1 j=n—k+1

Proof. We prove this by total induction on n. The base case n = 1 trivially follows from
Lemma 23. For the induction step we assume that the theorem holds for all n’ < n, and prove
it for n. Using this induction hypothesis, we prove the following for all k£ with 0 <k <n —2:

~
Il
—-
<
Il
3
|
e
+
—
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Combined with Lemma 23, Equation (1) directly implies the theorem. It thus only remains
to prove Equation 1. We define the three sets

n—k—1 n
A= (| Wi, We=W,, B:= [J W,
i=1 j=n—k+1

Now note that Equation (1) is equivalent to Hyyp+1(AU (W UB)) = Hpy,(ANW) U B).
Let X =AUB and Y = W U B. Then,

XUY=AU(WUB) and XNY =(AUB)N(WUB)=(ANnW)UB.

We thus only need to prove that H, x4 (X UY) = H, (X NY). By Theorem 21 and
Claim 24, there exists an exact sequence

Hpi41(X) © Hppp1 (V) = Hppp1 (X UY) = Hp ) (XNY) = Hp 1 (X) & Hp (V). (2)

We can now use the induction hypothesis to show that the left-most and right-most group in
this sequence are 0, and thus the two in the middle are isomorphic as desired. To achieve
this, we see that X can be written as

n—k—1 n (n—1)—k n—1

x= () wu U wy= ) wiv U Wi,
=1 J

i=1 j=n—k+1 j=(n—1)—k+1

which is of the correct form (up to re-indexing) to apply the induction hypothesis with
n’ =n —1, yielding Hyp4+x(X) = 0. Since p can always be increased, also Hptx41(X) = 0.
We apply a similar approach to Y: Y can be written as

n—k n (n—(n—k—1))—k n—(n—k—1)
Y = ﬂ W;U U W; = ﬂ Wit(n—r—1)U U Wit (n—k—1)s

i=n—k j=n—k+1 =1 j=(n—(n—k—1))—k+1

which is of the correct form to apply the induction hypothesis with n’ =n—(n—k—1) <n-—1,
to also yield Hp(Y) = 0 and Hpix41(Y) = 0.

Thus, Hy1p4+1(X) ® Hprp,+1(Y) Z 000 =0, as well as Hp (X)) ® Hp,(Y) Z 000 =20,
and thus by exactness of the sequence in Equation (2), Hp1x+1(X UY) = H, (X NY). We
have thus proven Equation (1), and the theorem follows. |

As a consequence of Lemma 25 for k = 0, we get the following desired corollaries:

» Corollary 26. For every 2-SAT, Horn SAT, or dual-Horn SAT formula ®, Hy,(I(Sat(®))) =
0 for allp > 1.

» Corollary 27. For a finite set R of logical relations that are all equivalent to either 2-SAT,
Horn SAT, or Dual-Horn SAT, SAT(R) is not homotopy-universal.

Furthermore, together with Lemma 18, this finishes the proof of the homotopy-universality

dichotomy for CNF variants, Theorem 12.

3.2 Absence of Projection-Universality

We now make the necessary adaptations for the results of Section 3.1 to translate to
projection-universality.
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We will show that for every instance ® of SAT(R) and every projection mp, there exists
an instance ®’ of SAT(R’), such that R’ fulfills the same condition of Schaefer’s dichotomy
theorem as R, and Sat(®’) = wp(Sat(P)). Recall that by Corollary 26 and the proof of
Lemma 19, there exists a semi-algebraic set X, such that for no instance ® of SAT(R’),
I(Sat(®’)) is homotopy equivalent to X. Since two spaces being homeomorphic implies that
they are homotopy equivalent, I(7p(Sat(®))) can thus also not be homeomorphic to X . This
shows that SAT(R) is not projection-universal.

» Lemma 28. Let R be a finite set of affine logical relations. Then, for every d-dimensional
instance ® € SAT(R) and every D C [d], there exists an instance D' of SAT(R') for some
finite set R’ of affine logical relations, such that Sat(®') = wp(Sat(P)).

Proof. By [38, Lemma 3.1A], a relation R is affine if and only if for every three sy, s9, s35 € R,
we also have s1 @ so P s3 € R.

Let [d] be the set of variables of ®. Without loss of generality, let D = {z4_|p|+1,...,%a}
A vertex z € {0,1}% 1Pl is in 7p(Sat(®)) if and only if there exists y € {0,1}?! such that
(x,y) € Sat(P).

We build a single relation R of rank d — |D| consisting of exactly mp(Sat(®)) and show
that R is affine: For every three x1,z2,23 € R = mp(Sat(®)), we have

Y1, y2,y3 ¢ (21, 91), (T2, y2), (3,y3) € Sat(P).

However, since Sat(®) is the set of solutions to a system of affine equations over Fy, we must
have that (z1 ® 22 ® x3,y1 ® y2 B y3) € Sat(P), and thus (x; & x2 & x3) € mp(Sat(P)) = R.
Thus, R is affine.

We conclude that the formula 3z1,...,24-|p| : R(21,...,24—|p|), Which is an instance of
SAT(R’) for R’ = {R}, fulfills the necessary conditions. <

We prove the following similar lemmata for 2-SAT and (Dual-)Horn SAT in the appendix:

» Lemma 29. Let R be a finite set of logical relations each equivalent to a 2-SAT formula.
Then, for every d-dimensional instance ® € SAT(R) and every D C [d], there exists a 2-SAT
formula @ such that Sat(®’) = mp(Sat(P)).

» Lemma 30. Let R be a finite set of logical relations each equivalent to a Horn SAT (Dual-
Horn SAT) formula. Then, for every d-dimensional instance ® € SAT(R) and every D C [d],
there exists a Horn SAT (Dual-Horn SAT) formula ® such that Sat(®') = wp(Sat(P)).

This finishes the proof of Theorem 10. Finally, we show that Theorem 10 and Theorem 12
cannot be strengthened to a homotopy-universality dichotomy for CSPs in general:

» Lemma 31. There exists a finite set of logical relations R such that SAT(R) is classified
as NP-complete by Theorem 1, but SAT(R) is not homotopy-universal.

Proof. Consider 1-IN-3-SAT, the Boolean CSP given by the constraints encoding that
exactly one of three literals is true. Then, the solution space of each clause is the disjoint
union of (at most) three (at least) (d — 3)-dimensional faces of the hypercube. Taking
the intersection of such solution spaces can only yield disjoint faces. Thus, for every ® in
1-IN-3-SAT, I(Sat(®)) is the disjoint union of contractible components, and 1-IN-3-SAT is
not homotopy-universal. <
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