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Abstract
Given in the plane a set of points and a set of halfplanes, we consider the problem of comput-
ing a smallest subset of halfplanes whose union covers all points. In this paper, we present an
O(n4/3 log5/3 n logO(1) log n)-time algorithm for the problem, where n is the total number of all
points and halfplanes. This improves the previously best algorithm of n10/32O(log∗ n) time by roughly
a quadratic factor. For the special case where all halfplanes are lower ones, our algorithm runs in
O(n log n) time, which improves the previously best algorithm of n4/32O(log∗ n) time and matches
an Ω(n log n) lower bound. Further, our techniques can be extended to solve a star-shaped poly-
gon coverage problem in O(n log n) time, which in turn leads to an O(n log n)-time algorithm for
computing an instance-optimal ϵ-kernel of a set of n points in the plane. Agarwal and Har-Peled
presented an O(nk log n)-time algorithm for this problem in SoCG 2023, where k is the size of the
ϵ-kernel; they also raised an open question whether the problem can be solved in O(n log n) time.
Our result thus answers the open question affirmatively.
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1 Introduction

Let P be a set of points and H a set of halfplanes in the plane. In the halfplane coverage
problem, the goal is to find a smallest subset of halfplanes in H whose union covers all points
in P . The problem was studied in the literature before. Har-Peled and and Lee [18] first
proposed an O(n5)-time algorithm for the problem, where n = |P | + |H|. Later, Pedersen
and Wang [29] provided an improved algorithm of O(n4 log n) time. Very recently, Liu
and Wang [24] solved the problem in n10/32O(log∗ n) time. In this paper, we present a new
algorithm for the problem of O(n4/3 · log5/3 n logO(1) log n) time, which improves the best
known bound [24] by roughly a quadratic factor.

In the lower-only version where all halfplanes in H are lower-open (i.e., of the form
y ≤ ax + b), our new algorithm runs in O(n log n) time. The lower-only halfplane coverage
problem has also been studied before. Chan and Grant’s techniques [10] solved the problem
in O(n4 log n) time. Pedersen and Wang [29] derived an O(n2 log n)-time algorithm. The
recent work of Liu and Wang [24] proposed an improved solution of n4/32O(log∗ n) time, which
was the best known result prior to this paper. We also show that Ω(n log n) is a lower bound
for the problem under the algebraic decision tree model; therefore, our algorithm is optimal.
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Interestingly, our new techniques for the halfplane coverage problem can also be applied
to efficiently compute instance-optimal kernels in the plane. For a set Q of n points in the
plane and a parameter ϵ ∈ (0, 1), a subset Q′ ⊆ Q is an ϵ-kernel of Q if the projection of the
convex hull of Q′ approximates that of Q within (1 − ϵ) factor in every direction. Given
Q and ϵ, the problem is to compute a smallest ϵ-kernel for Q, called an instance-optimal
ϵ-kernel. Very recently, Agarwal and Har-Peled [1] gave an O(nk log n)-time algorithm for
the problem in SoCG 2023, where k is the size of the instance-optimal ϵ-kernel. They raised
as an open question whether the problem can be solved in O(n log n) time. We provide an
O(n log n)-time algorithm based on our techniques for halfplane coverage, and hence answer
the open question affirmatively.

To see how the problem of computing instance-optimal ϵ-kernels is related to halfplane
coverage, we recall the approach of Agarwal and Har-Peled [1]. In this approach, the task
of finding instance-optimal ϵ-kernel is first reduced in O(n log n) time to the following star-
shaped polygon coverage problem. Given a star-shaped polygon R of n vertices with respect
to a center point o (i.e., the segment op ⊆ R for every point p ∈ R) and a set of n halfplanes
that do not contain o, the problem is to compute a smallest subset of halfplanes whose union
covers the boundary of R (after the problem reduction, the size of a smallest subset is exactly
equal to k, the size of an instance-optimal ϵ-kernel in the original problem). Agarwal and
Har-Peled [1] then solved the star-shaped polygon coverage problem in O(nk log n) time.
By extending our techniques for the halfplane coverage problem, we present an improved
algorithm of O(n log n) time for the star-shaped polygon coverage problem, which in turn
solves the problem of computing instance-optimal ϵ-kernels in O(n log n) time. In addition,
we prove that Ω(n log n) is a lower bound for the star-shaped polygon coverage problem
under the algebraic decision tree model, and thus our algorithm is optimal.

Besides computing kernels, our techniques may find other applications as well. One
remarkable example is the computation of Hausdorff approximation [1, 19].

Agarwal and Har-Peled [1] proposed an O(nk log n) time algorithm for computing an
optimal Hausdorff approximation for a set of n points in the plane, where k is the size of
the optimal solution. In this algorithm, they followed the similar techniques to the above
instance-optimal ϵ-kernel problem. Specifically, they reduced the Hausdorff approximation
problem to a problem of covering the boundary of a star-shaped region Q of curved
boundary in the plane. Using our new techniques, the optimal Hausdorff approximation
problem can now also be solved in O(n log n) time.
Har-Peled and Raichel [19] considered a “dual” Hausdorff approximation problem for a set
of n points in the plane and a parameter k ∈ {1, . . . , n}. They gave a randomized algorithm
whose runtime is bounded by O(

√
k(n log n)3/2 + kn log2 n) with high probability. Their

algorithm utilizes the above O(nk log n)-time algorithm in [1] for the optimal Hausdorff
approximation problem as a black box. Using our new O(n log n)-time algorithm instead
and follow the same analysis as in [19], the dual Hausdorff approximation problem can
now be solved in O((n log n)3/2) time with high probability.

1.1 Other related work
The halfplane coverage problem belongs to the domain of geometric set cover, which in
turn is a special case of the (general) set cover problem. For most types of geometric
objects, the geometric set cover problem is NP-hard. One example that has received much
attention in the literature is the disk coverage problem, i.e., given a set of disks and a
set of points in the plane, the problem is to find a smallest subset of disks that together
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cover all points. The problem is NP-hard even if all disks have the same radius [16], while
many approximation algorithms have been proposed [22, 27, 28]. On the other hand, the
problem becomes polynomial-time solvable if all disk centers lie on the same line or if the
disk centers and the points are separated by a line [5, 9, 13, 24, 29]. Another well-studied case
of geometric set cover is the rectangle coverage problem where the given geometric objects
are (axis-parallel) rectangles. This problem is also NP-hard, even when the rectangles are
slabs, unit squares, or with certain constraints [10, 17]. Agarwal and Pan [3] proposed an
O(log log k)-approximation algorithm for rectangle coverage with near-linear running time,
where k is the optimum. Finally, geometric set cover with other objective functions have
also been studied, e.g., minimizing the membership or the ply of the solution [6, 8, 14,26].

For the ϵ-kernel problem, Agarwal, Har-Peled, and Varadarajan proved in their seminal
paper [2] that an ϵ-kernel of size O(ϵ−(d−1)/2) exists for a set of n points in the d-dimensional
space Rd. However, an ϵ-kernel could be much smaller in practice [31]. Therefore, it is
well-motivated to study algorithms for computing instance-optimal ϵ-kernels. The problem
unfortunately becomes NP-hard in R3 [1]. Agarwal and Har-Peled [1] thus studied the exact
algorithms for the 2D case.

1.2 Our approach
For the lower-only halfplane coverage problem, we show that the problem can be reduced
to an interval coverage problem: Given a set P ′ of points and a set S of intervals on the
x-axis, compute a smallest subset of intervals whose union covers all points. The problem
can be easily solved in O(|P ′| + |S|) time by a greedy algorithm after sorting. However,
the issue with this approach is that while |P ′| = n, we may have |S| = Ω(n2) after the
problem reduction. More specifically, points of P ′ are defined by points of P and intervals of
S are defined by halfplances of H. While each point of P defines a single point in P ′ (thus
|P ′| = n), each halfplane could define Θ(n) intervals of S (thus |S| = Ω(n2)). As such, the
total time of the algorithm could be Ω(n2). To improve the algorithm, our crucial observation
is that it suffices to use one particular interval of S for each halfplane. Consequently, we only
need to use a subset Ŝ ⊆ S of size at most n such that a smallest subset of Ŝ for covering
P ′ is also an optimal solution for covering P ′ with S. In this way, the lower-only halfplane
coverage problem is solved in O(n log n) time.

For the star-shaped polygon coverage, we extend the above idea. We reduce it to a circle
coverage problem: Given a set S of arcs on a circle C, compute a smallest subset of arcs whose
union covers the entire circle C. The problem can be solved in O(|S| log |S|) time [1, 21].
As above, the issue is that |S| could be Ω(n2) (more specifically, arcs of S are defined by
halfplanes of H and each halfplane may define Θ(n) arcs). Indeed, this is the main obstacle
that prevents Agarwal and Har-Peled [1] from obtaining an O(n log n) time algorithm. Our
new and crucial observation is that, as above, it is sufficient to use only one particular arc
for each halfplane. Consequently, we only need to use a subset Ŝ ⊆ S of size at most n such
that a smallest subset of arcs of Ŝ covering C is also an optimal solution for covering C with
S. In this way, the star-shaped polygon coverage problem is solved in O(n log n) time.

To solve the general halfplane coverage problem, we consider two cases depending on
whether H has three halfplanes whose union is R2. In the case where H does not have such
three halfplanes, by Helly’s theorem, the common intersection of the complements of all
halfplanes of H is not empty; let o be a point in the common intersection. Then, no halfplane
of H contains o. With the help of o, we can compute in O(n log n) time a smallest subset
of halfplanes to cover all points, by extending the idea for solving the lower-only halfplane
coverage problem. In the case where H has three halfplanes whose union is R2, the optimal

SoCG 2024
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solution size τ∗ is at most three. If τ∗ = 3, then it suffices to find three halfplanes from H

whose union is R2, which can be done in linear time [18]. If τ∗ = 1, then this case can be
easily solved in O(n log n) time using halfplane range emptiness queries. For the remaining
case τ∗ = 2, we wish to find two halfplanes from H whose union covers all points of P .
Although this looks like a special case, it turns out this is the bottleneck case of the entire
problem, which is surprising (and perhaps also interesting). Our algorithm for this case runs
in O(n4/3 log5/3 n logO(1) log n) time, which takes significantly more time than all other parts
of the overall algorithm (all other parts together take O(n log n) time). Although we do not
have a proof, we feel that Ω(n4/3) might be a lower bound for this subproblem (and thus the
entire problem), at least under a somewhat restricted computational model [15].

Remark. After the submission of this paper, Liu and Wang [23] gave a new implementation
of their original algorithm in [24] for the lower-only halfplane coverage problem; the new
implementation runs in O(n log n) time. Although their algorithm also reduces the problem
to an interval coverage problem, it is fundamentally different from ours. For instance, their
algorithm first identifies some “prunable” halfplanes that are useless to the optimal solution
and then proceed to reduce to the interval coverage problem using the remaining halfplanes.
Our algorithm, in contrast, does not need such a pruning step. In addition, it seems difficult
to extend their algorithm to the circle coverage or polygon coverage problem because it relies
on the left-to-right order of all points. As such, our techniques appear to be more powerful.
On the other hand, their approach can be used to solve a more general line-separable unit-disk
coverage problem (the lower-only halfplane coverage is just a special case of the problem).
Also, using their O(n log n) time new implementation for the lower-only halfplane coverage,
their algorithm for the general halfplane coverage now runs in O(n3 log n) time.

Outline. The rest of the paper is organized as follows. In Section 2, we present our algorithm
for the lower-only halfplane coverage problem. By extending the techniques, we solve the
star-shaped polygon coverage problem in Section 3. As mentioned above, with the O(n log n)-
time problem reduction in [1], this also solves the 2D instance-optimal ϵ-kernel problem in
O(n log n) time. The general halfplane coverage problem is discussed in Section 4 and our
approach uses an algorithm similar to the lower-only case algorithm as a subroutine. Due to
the space limit, many proofs and details are omitted but can be found in the full paper.

2 Lower-only halfplane coverage

In this section, we present an O(n log n)-time algorithm for the lower-only halfplane coverage
problem. Let P be a set of points and H a set of lower halfplanes in R2. We wish to compute
a smallest subset of halfplanes whose union covers P (i.e., covers all points of P ). To simplify
the notation, let n = |P | = |H|.

2.1 Preliminaries
We call a subset of H a feasible solution if the halfplanes of the subset together cover P ; an
optimal solution refers to a smallest feasible solution. We assume that the union of halfplanes
of H covers P since otherwise there would be no feasible solution. Indeed, this can be easily
determined O(n log n) time, e.g., by first computing the upper envelope of the bounding lines
of all halfplanes of H and then check whether every point of P is below the upper envelope.

We make a general position assumption that no two points of P have the same x-
coordinate. We also assume that no two halfplanes of H have their bounding lines parallel
(since otherwise the one with lower bounding line is redundant and can be removed from H

because it is completely contained in the other halfplane).
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We sort all points of P from left to right and let p1, p2, . . . , pn be the sorted list. For
any two indices i, j with 1 ≤ i ≤ j ≤ n, let P [i, j] denote the subsequence of points
{pi, pi+1, . . . , pj}.

For any halfplane h ∈ H, let ℓh denote the bounding line of h.
Consider a halfplane h ∈ H. A subsequence P [i, j] of P , with 1 ≤ i ≤ j ≤ n, is called a

maximal subsequence covered by h if all points of P [i, j] are in h but neither pi−1 nor pj+1 is
in h (to make the definition rigorous, we could add two dummy points p0 and pn+1 that are
not covered by any halfplane of H). Let Γh denote the set of all maximal subsequences of P

covered by h. It is not difficult to see that subsquences of Γh are pairwise disjoint.

2.2 Reducing to interval coverage
We reduce the problem to an instance of the interval coverage problem on a set P ′ of points
and a set S of line segments (or intervals) on the x-axis. For each point pi ∈ P , let p′

i

be the (vertical) projection of pi onto the x-axis (i.e., p′
i has the same x-coordinate as pi).

Define P ′ = {p′
i | 1 ≤ i ≤ n}. As such, P ′ has exactly n points. For any 1 ≤ i ≤ j ≤ n, let

P ′[i, j] = {p′
i, p′

i+1, . . . , p′
j}.

We now define the set S. For each halfplane h ∈ H, we define a set Sh of segments as
follows. For each subsequence P [i, j] ∈ Γh, we create a segment on the x-axis, denoted by
s[i, j], whose left and right endpoints are p′

i and p′
j , respectively; we add s[i, j] to Sh. As

such, P ′ ∩ s[i, j] = P ′[i, j]. We say that s[i, j] is defined by h. Define S =
⋃

h∈H Sh.
Consider the following interval coverage problem on P ′ and S: Find a smallest subset

of segments of S whose union covers P ′. This problem can be solved by a simple greedy
algorithm in O(|P ′| + |S|) time after sorting the left endpoints of all segments of S along
with all points of P ′. Let S∗ ⊆ S be an optimal solution to the above interval coverage
problem. Based on S∗, we create a subset H∗ ⊆ H as follows. For each segment s ∈ S∗, if s

is defined by a halfplane h ∈ H, then we add h to H∗ (it is possible that the same segment s

is defined by multiple halfplanes, in which case we add an arbitrary such halfplane to H∗).
In what follows, we show that H∗ is an optimal solution to our original halfplane coverage
problem for P and H. To this end, we first have the following lemma.

▶ Lemma 1.
1. The union of all halfplanes of H∗ covers P .
2. P ′ can be covered by k segments of S if and only if P can be covered by k halfplanes of H.

The above lemma leads to the following corollary.

▶ Corollary 2.
1. The size of a smallest subset of H for covering P is equal to the size of a smallest subset

of S for covering P ′.
2. No two segments of S∗ are defined by the same halfplane.
3. H∗ is a smallest subset of H for covering P .

In light of Corollary 2, the above gives an algorithm that computes an optimal solution
to the halfplane coverage problem for P and H. However, the algorithm is not efficient
because the size of S could be Ω(n2). Indeed, it is not difficult to see that |Γh| (and thus
|Sh|) could be Θ(n) for each halfplane h ∈ H. Hence, |S| could be Ω(n2) in the worst case.
In the following, we reduce the time to O(n log n) by showing that a smallest subset of S for
covering P ′ can be computed in O(n log n) time by using only a small subset of S.

SoCG 2024
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pi−1
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Figure 1 Illustrating the definition of s(h) = s[i, j] for the case where ℓh contains an edge e of U .
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Figure 2 Illustrating the definition of s(h) = s[i, j] when ℓh does not contain any edge of U .

2.3 Improvement
The main idea is to show that it suffices to use at most one segment from Sh for each h ∈ H.
More specifically, we show that for each halfplane h ∈ H, it is sufficient to define a segment,
denoted by s(h), for at most one subsequence of Γh, such that Ŝ = {s(h) | h ∈ H}, which is
of size at most n and is a subset of S, must contain a smallest subset of S for covering P ′.
This implies that to compute a smallest subset of S for covering P ′, it suffices to compute a
smallest subset of Ŝ to cover P ′. The latter problem can be solved faster as |Ŝ| ≤ n.

Next, we first define the segment s(h) for each h ∈ H. Then, we prove that Ŝ contains a
smallest subset of S for covering P ′. Finally, we discuss how to compute Ŝ efficiently.

Defining s(h) and Ŝ. For each halfplane h ∈ H, we define a segment s(h) as follows. Let
U denote the upper envelope of the bounding lines of all halfplanes of H. Depending on
whether the bounding line ℓh of h contains an edge on U , there are two cases.
1. If ℓh contains an edge e on U , then let e′ be the vertical projection of e on the x-axis (see

Fig. 1). Since e is on U , no point of P is vertically above e. Hence, e′ is contained in
at most one segment s[i, j] of Sh (note that such a segment may not exist, e.g., if e′ is
between p′

i and p′
i+1 and neither point is in h). If such a segment s[i, j] exists, then we

define s(h) = s[i, j]; otherwise, s(h) is not defined.
2. If ℓh does not contain any edge on U , then let vh be the unique vertex of U that has a

tangent line parallel to ℓh (see Fig. 2). Let v′
h be the vertical projection of vh onto the

x-axis. Clearly, Sh has at most one segment s[i, j] containing v′
h. If such a segment s[i, j]

exists, then we define s(h) = s[i, j]; otherwise, s(h) is not defined.

Define Ŝ = {s(h) | h ∈ H}.
The following crucial lemma implies that a smallest subset of segments of Ŝ whose union

covers P ′ is an optimal solution to the interval coverage problem for P ′ and S.
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▶ Lemma 3. For any segment s ∈ S \ Ŝ, Ŝ has a segment s′ containing s.

With Lemma 3, the lower-only halfplane coverage problem on P and H can be solved
as follows. (1) Compute Ŝ. (2) Compute a smallest subset Ŝ∗ of segments of Ŝ whose
union covers P ′. (3) Using Ŝ∗, obtain an optimal solution for P and H (in the same way
as described in Section 2.2). Since |Ŝ| ≤ n and |P ′| = n, the second and third steps can be
implemented in O(n log n) time. Lemma 4 shows that the first step can be done in O(n log n)
time too, by making use of ray-shooting queries in simple polygons [11, 12, 20]. We thus
conclude with Theorem 5.

▶ Lemma 4. Computing all segments of Ŝ can be done in O(n log n) time.

▶ Theorem 5. Given in the plane a set of points and a set of lower halfplanes, one can
compute a smallest subset of halfplanes whose union covers all points in O(n log n) time,
where n is the total number of all points and halfplanes.

Lower bound. Theorem 6 proves a lower bound even for certain special cases, by reductions
from set equality and set inclusion problems [7].

▶ Theorem 6. It requires Ω(n log n) time to solve the lower halfplane coverage problem under
the algebraic decision tree model, even if all points are given sorted by x-coordinates or if the
bounding lines of all halfplanes are given sorted by their slopes.

3 Star-shaped polygon coverage and 2D instance-optimal ϵ-kernels

In this section, we solve the star-shaped polygon coverage problem. Let P be a star-shaped
polygon with respect to a center point o, i.e., the line segment op ⊆ P for any point p ∈ P.
Let n be the number of vertices of P. Let H be a set of n halfplanes that do not contain o.
The goal is to compute a smallest subset of halfplanes whose union covers ∂P , the boundary
of P. We present an O(n log n) time algorithm for the problem.

For any halfplane h, denote by h the complement halfplane of h. Define H = {h | h ∈ H}.
As in Section 2, we assume that no two halfplanes of H have their bounding lines parallel

to each other. We also assume that H has a feasible solution (i.e., H has a subset of halfplanes
whose union covers ∂P ). Indeed, this can be determined in O(n log n) time as follows. We
first compute the common intersection U of the halfplanes of H, which must contain o. U
can be computed in O(n log n) time. Notice that H has a feasible solution if and only if the
interior of U does not intersect ∂P [1]. Since P is star-shaped with respect to o, whether the
interior of U intersects ∂P can be determined in O(n) by rotating a sweeping ray round o.
As such, in total O(n log n) time, one can determine whether H has a feasible solution. In
the following, we focus on finding an optimal solution.

Let C be a circle centered at o and containing P. For any point p inside C with p ̸= o,
define its projection point on C as the intersection between C and the ray from o to p.

3.1 Reducing to circle coverage
Following a similar idea to Section 2, we reduce the problem to a circle coverage problem on
C: Given a set of circular arcs on C, find a smallest subset of arcs that together cover C.

Consider a halfplane h. Recall that ℓh denote its bounding line. Let Γh denote the set
of the maximal segments of P ∩ ℓh (intuitively Γh plays a similar role to the same notation
in Section 2). For each segment s ∈ Γh, it “blocks” the visibility of a portion of ∂P from o,

SoCG 2024
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o

P
s

αs

`h

C

Figure 3 Illustrating the definition of an arc αs.

and it also blocks the visibility of an arc of C from o, denoted by αs (see Fig. 3). The two
endpoints of αs are exactly the projections of the two endpoints of s on C, respectively. Let
Sh denote the set of arcs defined by the segments of Γh. Define S =

⋃
h∈H Sh.

Now consider the circle coverage problem for S: Compute a smallest subset of arcs of S

whose union covers C. To solve the problem, Lee and Lee [21] first gave an O(|S| log |S|) time
algorithm, and Agarwal and Har-Peled [1] presented a much simpler solution with the same
runtime. Suppose we have an optimal solution S∗. We create a subset H∗ of H as follows.
For each arc α of S∗, if h is the halfplance that defines α, then we include h in H∗. Lemma 7,
analogous to Lemma 1 in Section 2, has been proved by Agarwal and Har-Peled [1].

▶ Lemma 7 (Agarwal and Har-Peled [1]).
1. The union of all halfplanes H∗ covers ∂P.
2. C can be covered by k arcs of S if and only if ∂P can be covered by k halfplanes of H.

With Lemma 7, we can obtain results analogous to Corollary 2. In particular, H∗ is a
smallest subset of H for covering ∂P . As such, the above gives an algorithm for computing a
smallest subset of H to cover ∂P. However, the algorithm is not efficient because the size
of S could be Ω(n2) (since |Γh| and thus |Sh| could be Θ(n) for each halfplane h ∈ H). In
the following, we reduce the time to O(n log n) by showing that a smallest subset of S for
covering ∂P can be computed in O(n log n) time by using only a small subset of S.

3.2 Improvement
As in Section 2, we will define a subset Ŝ ⊆ S such that Ŝ contains at most one arc α(h)
defined by each halfplane h ∈ H (and thus |Ŝ| ≤ n) and Ŝ contains a smallest subset of S for
covering C. Further, we will show that Ŝ can be computed in O(n log n) time. Consequently,
applying the circle coverage algorithm [1,21] can solve the problem in O(n log n) time.

Defining α(h) and Ŝ. For each halfplane h ∈ H, we define an arc α(h) on C as follows.
As will be seen, α(h) is in Sh and thus is in S. Let U be the common intersection of all
halfplanes of H. As discussed before, U must be inside P since H has a feasible solution.

We represent a direction in R2 by a unit vector. Let S denote the set of all unit vectors
(directions) in R2, i.e., S = {v : ∥v∥ = 1}.

For each halfplane h, we define the norm of its bounding line ℓh as the direction perpen-
dicular to ℓh and towards the interior of h. For each edge e of U , it is contained in ℓh for
some halfplane h ∈ H; the norm of e refers to the norm of ℓh.
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Figure 4 Illustrating the definition of α(h) when ℓh contains an edge e of U . The dashed lines are
halfplane bounding lines. The solid polyline is part of ∂P. The red arc on the circle C is α(h).
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Figure 5 Illustrating α(h) (the red arc on circle C) when ℓh does not contain any edge of U .

The norms of all edges of U partition S into |U| basic intervals such that the interior of
each interval does not contain the norm of any edge of U , where |U| is the number of edges
of U . Note that the endpoints of every basic interval are norms of two adjacent edges of U .

To define α(h), depending on whether the bounding line ℓh of h contains an edge of U ,
there are two cases.
1. If ℓh contains an edge e of U , then since U is inside P , e must be contained in a segment

s of Γh. Let α(h) be the arc of C defined by s (see Fig. 4).
2. If ℓh does not contain any edge of U , then let I be the basic interval of S that contains

the norm of h. Let e1 and e2 be the two adjacent edges of U whose norms are endpoints
of I. Define vh to be the vertex of U incident to both e1 and e2 (Fig. 5). Let v′

h be the
projection of vh on C. Define α(h) to be the unique arc (if exists) of Sh containing v′

h.

Define Ŝ = {s(h) | h ∈ H}.
The following crucial lemma implies that a smallest subset of arcs of Ŝ whose union

covers C is also a smallest subset of arcs of S covering C.

▶ Lemma 8. For any arc α ∈ S \ Ŝ, Ŝ must have an arc α′ such that α ⊆ α′.

With Lemma 8, a smallest subset of H for covering ∂P can be computed as follows. (1)
Compute Ŝ. (2) Compute a smallest subset Ŝ∗ of Ŝ for covering C. (3) Using Ŝ∗, obtain
a smallest subset of H to cover ∂P. Since |Ŝ| ≤ n, the second and third steps can be
done in O(n log n) time using the circle coverage algorithm in [1,21]. Lemma 9 shows that
the first step can be done in O(n log n) time too, using the ray-shooting queries in simple
polygons [11,12,20]. As such, we conclude with Theorem 10.
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▶ Lemma 9. Computing all arcs of Ŝ can be done in O(n log n) time.

▶ Theorem 10. The star-shaped polygon coverage problem is solvable in O(n log n) time,
where n is the sum of the number of vertices of the polygon and the number of halfplanes.

Computing instance-optimal ϵ-kernels in R2. As discussed in Section 1, computing an
instance-optimal ϵ-kernel for a set of n points in the plane can be reduced in O(n log n)
time to an instance of the star-shaped polygon coverage problem with n halfplanes and a
star-shaped polygon of n vertices. Consequently, with our algorithm for the star-shaped
polygon coverage problem, an instance-optimal ϵ-kernel can be computed in O(n log n) time.

Covering an x-monotone polyline. A special case of the star-shaped polygon coverage is
as follows. Given in the plane an x-monotone polyline P of n vertices and a set H of n lower
halfplances, we aim to compute a smallest subset of halfplanes so that their union covers P.
If we consider a point o with y-coordinate at +∞, then the problem becomes a special case
of the star-shaped polygon coverage problem and thus can be solved in O(n log n) time.

Lower bound. We finally have the lower bound in Theorem 11 by reduction from a problem
in Theorem 6, which justifies the optimality of Theorem 10.

▶ Theorem 11. Solving the star-shaped polygon coverage problem requires Ω(n log n) time
under the algebraic decision tree model.

4 The general halfplane coverage

In this section, we consider the general halfplane coverage problem. Given in the plane a
set P of n points and a set H of n halfplanes, the goal is to compute a smallest subset of
halfplanes so that their union covers all points of P . Note that H may have both upper and
lower halfplanes. We present an O(n4/3 log5/3 n log logO(1)) time algorithm for the problem.

For a halfplane h, denote by h the complement halfplane of h. Let H = {h | h ∈ H}.
We first determine whether the union of all halfplanes of H is the entire plane. This

can be done by computing the common intersection U of all halfplanes of H, which can be
done in O(n log n) time. Notice that U = ∅ if and only if the union of all halfplanes of H

is the entire plane. Depending on whether U = ∅, our algorithm will proceed in different
ways. Below, we first discuss the case U ≠ ∅ in Section 4.1 and the other case is solved in
Section 4.2.

4.1 The case U ̸= ∅
Assuming that U ̸= ∅, we solve this case in O(n log n) by an algorithm similar to those in
the previous two sections. One may consider it a cyclic version of the lower-only halfplane
coverage algorithm in Section 2 or a point version of the start-shaped polygon coverage
algorithm in Section 3. Since U ̸= ∅, let o be any point inside U . Then, no halfplanes of H

cover o. Let C be a circle containing o and all points of P .
We reduce the problem to a circular-point coverage problem: Given on C a set P ′ of

points and a set S of arcs, the goal is to compute a subset of arcs whose union covers all
points. This problem is different from the circle coverage problem in Section 3 in that here we
only need to cover points of P ′ instead of the entire circle C. To solve this new problem, we
will show that the problem can be reduced to the circle coverage problem and consequently
applying the circle coverage algorithm [1,21] can solve the problem.
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o

C

α[i, j]

ℓh
pi pj

pi−1

pj+1

p′i p′j

Figure 6 Illustrating the definition of arcs α[i, j].

4.1.1 Reducing to the circular-point coverage problem
We order the points of P counterclockwise around o and let p1, p2, . . . , pn be the ordered
list. For any point p in C with p ≠ o, we define its projection point on C as the intersection
between C and the ray from o to p. For each point pi ∈ P , let p′

i be its projection on C.
Hence, the points p′

1, p′
2, . . . , p′

n are ordered on C counterclockwise. Let P ′ be the set of all
these projection points.

We consider P ′ as a cyclic sequence of points. Each point p′
i ∈ P ′ refers to p′

j with j = i

mod n if i > n. For two indices i, j, we use P ′[i, j] to denote the subsequence of points
p′

i, p′
i+1, . . . , p′

j . We define the same notation for the points of P .
For each halfplane h ∈ H, we define a set Sh of arcs on C as follows. A subsequence

P [i, j] of P is called a maximal subsequence covered by h if all points of P [i, j] are in h

but neither pi−1 or pj+1 is in h. Let Γh denote the set of all maximal subsequences of P

covered by h. For each subsequence P [i, j] of Γh, we define an arc α[i, j] on C starting from
p′

i counterclockwise until p′
j (see Fig. 6). Let Sh be the set of all arcs thus defined by the

subsequences of Γh. Define S =
⋃

h∈H Sh.
Now consider the circular-point coverage problem for S and P ′ on C: Compute a smallest

subset of arcs of S whose union covers P ′. We show in the full paper that the problem can
be solved in O((|S| + |P ′|) log(|S| + |P ′|)) time. Suppose we have an optimal solution S∗.
We create a subset H∗ of H as follows. For each arc α of S∗, if α is defined by a halfplane
h ∈ H, then we add h to H∗. We have the following lemma, analogous to Lemmas 1 and 7.

▶ Lemma 12.
1. The union of all halfplanes of H∗ covers P .
2. P ′ can be covered by k arcs of S if and only if P can be covered by k halfplanes of H.

With Lemma 12, we can obtain results analogous to Corollary 2. In particular, H∗ is an
optimal solution of H for covering P .

The above gives an algorithm for computing a smallest subset of H for covering P .
However, the algorithm is not efficient because |S| could be Ω(n2) (since |Γh| and thus |Sh|
could be Θ(n) for each halfplane h ∈ H). As for the lower-only halfplane coverage problem
in Section 2, we can reduce the time to O(n log n) by showing that a smallest subset of
S for covering P ′ can be computed in O(n log n) time by using only a small subset of S.
More specifically, we can define a subset Ŝ ⊆ S such that Ŝ contains at most one arc α(h)
defined by each halfplane h ∈ H (and thus |Ŝ| ≤ n) and Ŝ contains a smallest subset of S

for covering P ′. Further, we can show that Ŝ can be computed in O(n log n) time.
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4.2 The case U = ∅
We now consider the case U = ∅. By Helly’s theorem, there are three halfplanes in H whose
common intersection is ∅. This means that there are three halfplanes in H whose union is
the entire plane and thus covers all points of P . As such, the size τ∗ of the smallest subset
of H for covering P is at most three. Depending on whether τ∗ is one, two, or three, there
are three subcases.

If τ∗ = 3, then since H has three halfplanes whose union is R2, it suffices to find such
three halfplanes. As discussed in [18] (see Lemma 4.1 [18]), this problem can be solved in
O(n) time using the linear-time linear programming algorithm [25].

If τ∗ = 1, then the problem becomes determining whether H has a halfplane containing
all points of P , or alternatively, determining whether H has a halfplane that does not contain
any point of P . For each halfplane h ∈ H, determining whether h ∩ P = ∅ can be easily done
in O(log n) time by a halfplane range emptyness query, after constructing a convex hull of P .
Therefore, the problem in this subcase can be solved in O(n log n) time.

In what follows, we discuss the subcase τ∗ = 2. Our goal is to find two halfplanes
from H such that their union covers all points of P . In the following, we present an
O(n4/3 log5/3 n logO(1) log n)-time algorithm for this problem. It turns out that the runtime
for solving this case dominates the algorithm for the overall problem, which is surprising
(and perhaps also interesting) because it means that this “special” case actually exhibits the
difficulty of the general halfplane coverage problem. As discussed in Section 1, although we
do not have a proof, we feel that Ω(n4/3) might be a lower bound for this problem, at least
under a partition model [15].

4.2.1 Algorithm for the subcase τ ∗ = 2

Our algorithm is based on a modification (and simplification) of Agarwal, Sharir, and Welzl’s
algorithm [4] (referred to as the ASW algorithm) for the decision version of the discrete
two-center problem: Given a set Q of n points in R2 and a parameter r, determine whether
there are two congruent disks centered at two points of Q with radius r that are together
cover all points of Q. The ASW algorithm runs in O(n4/3 log4 n) time, which was recently
improved to O(n4/3 log7/3 n logO(1) log n) by Wang [30]. Wang’s algorithm follows the same
idea as the ASW algorithm but uses a more efficient data structure developed in [30]. In the
following, we modify the ASW algorithm to solve our problem.

Assume that H has two halfplanes h∗
1 and h∗

2 whose union covers P . If both of them are
lower or upper halfplanes, then we can apply our lower-only halfplane coverage algorithm in
Section 2 to find them in O(n log n) time. As such, we assume that h∗

1 is a lower halfplane
and h∗

2 is an upper one. In the following, we describe an algorithm that can find a lower
halfplane and an upper halfplane whose union covers P .

Let Hl denote the subset of all lower halfplanes of H and Hu the subset of all upper
halfplanes. For each lower halfplene hl ∈ Hl, we consider the subproblem of determining
whether there is an upper halfplane hu ∈ Hu such that P ⊆ hl ∪ hu, or equivalently,
P ∩ hl ⊆ hu. Our eventual goal (referred to as the original problem) is to decide whether Hl

has a halfplane hl whose subproblem has an affirmative answer.
To solve the subproblems for all hl ∈ H, we work in the dual setting. For any subset

H ′ ⊆ H, let D(H ′) denote the set of dual points of the bounding lines of the halfplanes of
H ′. For any subset P ′ ⊆ P , let D(P ′) denote the set of dual lines of the points of P ′. In
the dual setting, the subproblem for hl becomes determining whether D(Hu) has a dual
point above all dual lines of D(P ∩ hl). If we consider each dual line of D(P ) bounding an
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upper halfplane, then it is equivalent to determining whether the common intersection of
all upper halfplanes bounded by the dual lines of D(P ∩ hl) contains a point of D(Hu). Let
K(hl) denote the above common intersection. As such, the subproblem for hl is to determine
whether K(hl) ∩ D(Hu) = ∅.

With the above discussion, our original problem is to determine whether K(Hl) =⋃
hl∈Hl

K(hl) contains a point of D(Hu), i.e., whether K(Hl) ∩ D(Hu) = ∅. Note that
K(Hl) ∩ D(Hu) ̸= ∅ implies that there are a halfplane hl ∈ Hl and a dual point h∗

u ∈ D(Hu)
such that h∗

u ∈ K(hl). In the primal plane, this means that P ⊆ hl ∪ hu, where hu is the
halfplane of Hu whose bounding line is dual to h∗

u. In the case where K(Hl) ∩ D(Hu) ̸= ∅,
our algorithm will return a halfplane hl ∈ Hl and a dual point h∗

u ∈ D(Hu) with h∗
u ∈ K(hl).

Observation 13 has been proved in [4, Theorem 2.8].

▶ Observation 13. (ASW [4]) For any two lower halfplanes h1, h2 ∈ Hl, the boundaries
∂K(h1) and ∂K(h2) cross each other at most twice.

For a subset H ′
l ⊂ Hl, define K(H ′

l) =
⋃

hl∈H′
l
K(hl). The following observation holds

particularly for our case (it does not hold for the disk case in [4]).

▶ Observation 14. For any subset H ′
l ⊆ Hl, the boundary ∂K(H ′

l) is x-monotone.

Proof. For each halfplane hl ∈ H ′
l , ∂K(hl) is the upper envelope of a set of lines and thus is

x-monotone. Therefore, ∂K(H ′
l) is the lower envelope of the upper envelopes ∂K(hl) for all

hl ∈ H ′
l and thus ∂K(H ′

l) must also be x-monotone. ◀

To determine whether K(Hl)∩D(Hu) = ∅, we run the ASW algorithm (see Section 4.3 [4]).
The algorithm uses the divide-and-conquer approach. In the merge step, we are given implicit
representations of K(H1

l ) and K(H2
l ) for two subsets H1

l and H2
l of Hl (i.e., K(H1

l ) and
K(H2

l ) are implicitly maintained by a data structure so that certain operations needed by the
algorithm can be efficiently supported by the data structure), and the problem is to obtain
an implicit representation of K(H1

l ∪ H2
l ). The merge step is done by sweeping a vertical line

in the plane from left to right, which runs in O(m4/3 log3 m) time, where m = |H1
l ∪ H2

l |. As
such, the total time of the divide-and-conquer algorithm is O(n4/3 log4 n). For our problem,
we can improve the runtime of the merge step by a logarithmic factor based on Observation 14.
Indeed, in the original ASW algorithm (which is for disks), their corresponding structure
∂K(Hi

l ), i = 1, 2, may have Ω(m) edges intersecting the vertical sweepline and therefore
the algorithm uses a balanced binary search tree to maintain all these intersections. In our
problem, by Observation 14, ∂K(Hi

l ), i = 1, 2, is x-monotone and thus intersects the vertical
sweepline at most once. As such, we do not have to use a tree, which saves the runtime by
a logarithmic factor. In this way, an implicit representation of K(Hl) can be computed in
O(n4/3 log3 n) time. Refer to Section 4.3 [4] for the algorithm details.

With the implicit representation of K(Hl), to determine whether K(Hl) ∩ D(Hu) = ∅,
another sweeping procedure is done on both K(Hl) and the points of D(Hu). This takes
O(n4/3 log3 n) time for the disk case in [4]. Again, for our case, we do not need to use
a tree in the sweeping procedure and thus the time of the procedure can be bounded by
O(n4/3 log2 n). Further, in the case where K(Hl) ∩ D(Hu) ̸= ∅, the algorithm will return a
halfplane hl ∈ Hl and a point h∗

u ∈ D(Hu) with h∗
u ∈ K(hl). As discussed above, this means

P ⊆ hl ∪ hu, where hu is the halfplane of Hu whose bounding line is dual to h∗
u.

In summary, we can determine in O(n4/3 log3 n) time whether Hl has a halfplane hl and
Hu has a halfplane hu such that P ⊆ hl ∪ hu. The runtime can be slightly improved using a
recent result of Wang [30].
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▶ Theorem 15. Given in the plane a set of points and a set of halfplanes, one can compute
a smallest subset of halfplanes whose union covers all points in O(n4/3 log5/3 n logO(1) log n)
time, where n is the total number of all points and halfplanes.
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