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Abstract
An eight-partition of a finite set of points (respectively, of a continuous mass distribution) in R3

consists of three planes that divide the space into 8 octants, such that each open octant contains
at most 1/8 of the points (respectively, of the mass). In 1966, Hadwiger showed that any mass
distribution in R3 admits an eight-partition; moreover, one can prescribe the normal direction of one
of the three planes. The analogous result for finite point sets follows by a standard limit argument.

We prove the following variant of this result: Any mass distribution (or point set) in R3 admits
an eight-partition for which the intersection of two of the planes is a line with a prescribed direction.

Moreover, we present an efficient algorithm for calculating an eight-partition of a set of n points
in R3 (with prescribed normal direction of one of the planes) in time O∗(n5/2).
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1 Introduction

Geometric methods for partitioning space, point sets, or other geometric objects are a central
topic in discrete and computational geometry. Partitioning results are often proved using
topological methods and also play an important role in topological combinatorics [7, 15, 17, 20].
A classical example is the famous Ham-Sandwich Theorem, which goes back to the work of
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8:2 Eight-Partitioning Points in 3D

Steinhaus, Banach, Stone, and Tukey (see [17, Sec. 1] for more background and references).
A “discrete” version of this theorem asserts that, given any d finite point sets P1, . . . , Pd

in Rd, there is an (affine) hyperplane H that simultaneously bisects all Pi, i.e., each of the
two open half-spaces determined by H contains at most |Pi|/2 points, 1 ≤ i ≤ d. This follows
(by a standard limit argument, see [15, Sec. 3.1]) from the following “continuous” version:
Let µ1, . . . , µd be mass distributions in Rd, i.e., finite measures such that every open set
is measurable and every hyperplane has measure zero. Then there exists a hyperplane H

such that µi(H+) = µi(H−) = 1
2 µi(Rd) for 1 ≤ i ≤ d, where H+ and H− are the two open

half-spaces bounded by H.
In this paper, we are interested in another classical equipartitioning problem, first posed

by Grünbaum [9] in 1960: Given a mass distribution (respectively, a finite point set) in Rd,
can one find d hyperplanes that subdivide Rd into 2d open orthants, each of which contains
exactly 1/2d of the mass (respectively, at most 1/2d of the points)? We call such a d-tuple of
hyperplanes a 2d-partition of the mass distribution (respectively, of the point set).

For d = 2, it is an easy consequence of the planar Ham-Sandwich theorem that any mass
distribution (or point set) in R2 admits a four-partition; moreover, the four-partition can
be chosen such that one of the lines has a prescribed direction (indeed, start by choosing
a first line in the prescribed direction that bisects the given mass distribution; by the
Ham-Sandwich Theorem, there exists a second line that simultaneously bisects the two parts
of the mass on either side of the first line). Alternatively, one can also show that there is
always a four-partition such that the two lines are orthogonal. Intuitively, the reason that
we can impose such additional conditions is that the four-partitioning problem in the plane
is underconstrained: A line in the plane can be described by two independent parameters, so
a pair of lines have four degrees of freedom, while the condition that the four quadrants have
the same mass can be expressed by three equations, leaving one degree of freedom; either
one of the additional constraints uses this extra degree of freedom.

In 1966, Hadwiger [10] gave an affirmative answer to Grünbaum’s question for d = 3 and
showed that any mass distribution in R3 admits an eight-partition; moreover, the normal
vector of one of the planes can be prescribed arbitrarily. This result was later re-discovered
by Yao, Dobkin, Edelsbrunner, and Paterson [21].

▶ Theorem 1.1 ([10, 21]). Let µ be a mass distribution on R3, and let v ∈ S2. Then there
exists a triple of planes (H1, H2, H3) that form an eight-partition for µ and such that the
normal vector of H1 is v.

More recently, Blagojević and Karasev [5] gave a different proof for the existence of
eight-partitions and showed the following variant:

▶ Theorem 1.2 ([5]). Let µ be a mass distribution on R3. Then there exists an eight-partition
(H1, H2, H3) of µ such that the plane H1 is perpendicular to both H2 and H3.

Our first result is the following alternative version of eight-partitioning, which to the best
of our knowledge is new:

▶ Theorem 1.3. Given a mass distribution µ in R3 and a vector v ∈ S2, there exists an
eight-partition (H1, H2, H3) of µ such that the intersection of the two planes H1 and H2 is a
line in direction v.

As in the case of the Ham-Sandwich Theorem, each of the three theorems above also
implies the existence of the corresponding type of eight-partition for finite point sets, again
by a standard limit argument (see the full version [2, Lemma A.1] for details).
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We remark that, in general, d hyperplanes in Rd are described by d2 independent
parameters, while the condition that 2d orthants have equal mass can be expressed by
2d − 1 equations. For d = 3, this leaves 9 − 7 = 2 degrees of freedom, which allows for
any one of the additional conditions imposed in Theorems 1.1, 1.2, and 1.3, respectively.
On the other hand, for d ≥ 5, we have d2 < 2d − 1, so intuitively Grünbaum’s problem is
overconstrained. Avis [3] made this precise and constructed explicit counterexamples using
the well-known moment curve γ = {(t, t2, . . . , td) : t ∈ R} in Rd. The crucial fact is that any
hyperplane intersects the moment curve γ in at most d points ([15, Lemma 1.6.4]). Thus, for
d ≥ 5, a mass distribution supported on γ admits no 2d-partition because any d hyperplanes
intersect γ in at most d2 points, which subdivide γ into at most d2 + 1 intervals, hence there
are always at least 2d − d2 − 1 > 0 orthants that do not intersect γ and hence contain no
mass. The last remaining case d = 4 of Grünbaum’s problem, i.e., the question whether any
mass distribution in R4 admits a 16-partition by four hyperplanes, remains stubbornly open
(see [4], [7, Conjecture 7.2], [15, pp. 50–51], and [17, Problem 2.1.4] for more background and
related open problems).

We now turn to the algorithmic question of computing eight-partitions in R3.

▶ Problem 1. Given a set P of n points in R3, in sufficiently general position, compute three
planes H1, H2, H3 that form an eight-partition of the points.

As remarked above, the corresponding problem of computing a four-partition of a planar
point can be reduced to finding a Ham-Sandwich cut of two planar point sets that are
separated by a line; Megiddo [16] showed that this can be done in linear time.

Computing a Ham-Sandwich cut in R3 can be done efficiently, in time O∗(n3/2) [14]
(where n is the total number of points and the O∗(·)-notation suppresses polylogarithmic
factors). In general, the best known algorithm for computing Ham-Sandwich cuts in fixed
dimension d ≥ 3 runs in time O(nd−1−αd) where αd > 0 a constant depending only on d [14],
and a decision variant of the problem becomes computationally hard when the dimension is
part of the input, see, e.g., [12]. However, the problem of computing eight-partitions in R3

seems significantly more difficult, and there is no known way of reducing it to the computation
of a Ham-Sandwich cut; in particular, given two planes H1 and H2 that four-sect a finite
point set P (in the sense that every one of the four open orthants determined by H1 and H2
contains at most |P |/4 points), there generally need not exist a third plane H3 such that
H1, H2, H3 form an eight-partition.

The following concept is useful for characterizing the complexity of Problem 1. A halving
plane for an n-point set for n odd in R3 in general position is a plane that passes through
three of the points and contains exactly (n − 3)/2 points on each side. Let h3(n) be the
maximum number of halving planes for an n-point set R3 as above. The best known upper
and lower bounds for h3(n) are O(n5/2) and Ω(n2e

√
log n), due to Sharir, Smorodinsky, and

Tardos [18] and Tóth [19], respectively. A brute-force algorithm that checks every triple of
halving planes solves Problem 1 in time roughly proportional to (h3(n))3.

Yao et al. [21] and Edelsbrunner [8] gave a O(n6) time algorithm for Problem 1 that
computes an eight-partition (with a prescribed normal direction for one of the planes, as
in Theorem 1.1) by an expensive search, using the fact that only two planes need to be
identified. Fixing one plane and performing a brute-force search for the remaining two would
yield an algorithm with a running time comparable to (h3(n))2.

Here, we present, to our knowledge, the fastest known algorithm for Problem 1. Roughly
speaking, our algorithm runs in time near-linear in h3(n) rather than quadratic in it.

SoCG 2024



8:4 Eight-Partitioning Points in 3D

▶ Theorem 1.4 (Algorithm). An eight-partition of n points in general position in R3, with
a prescribed normal vector for one of the planes, can be computed in time O∗(n5/2); the
O∗(·)-notation suppresses polylogarithmic factors.

Our algorithm can be seen as a constructive version of Hadwiger’s proof [10]. We start by
bisecting the point set by a plane with a fixed normal direction, which partitions the initial
point set into two subsets of “red” and “blue” points, respectively, of equal size. After that,
our algorithm finds two more planes that simultaneously four-sect both the red points and
the blue points.

It remains an open question whether Theorem 1.2 or our own Theorem 1.3 can also be
used to obtain an efficient algorithm for Problem 1. It would also be interesting to decide
whether there is an algorithm for Problem 1 with running time o(h3(n)).

2 The Topological Result

2.1 Notation and Preliminaries
In what follows, it will often be convenient to assume that the mass distributions we work
with have connected support where the support of a mass distribution µ is Supp(µ) := {x ∈
R3 : µ(Br(x)) > 0 for every r > 0} and Br(x) denotes the ball of radius r > 0 centred at x.
By a standard limit argument (see the full version [2, Lemma A.3] for details), the existence
of eight-partitions for mass distributions with connected support implies the existence of
eight-partitions for the general case. Hereafter, unless stated otherwise, we assume, without
loss of generality, that every mass distribution has connected support.

We denote the scalar product of two vectors x, y ∈ R3 by x · y :=
∑3

i=1 xiyi. A vector
v ∈ R3 \ {0} and a scalar a ∈ R determine an (affine) plane

H = Hv(a) := {x ∈ R3 : x · v = a},

together with an orientation of H (given by the direction of the normal vector v). We
denote by −H := H−v(−a) the affine plane with the same equation as H but with opposite
orientation. The oriented plane H determines two open half-spaces, denoted by

H+ := {x ∈ R3 : x · v > a} and H− := {x ∈ R3 : x · v < a}.

More generally, let H = (H1, . . . , Hk) be an ordered k-tuple of (oriented) planes in R3, k ≤ 3.
In what follows, it will be convenient to identify the set {+, −} with the group Z2 (where the
group operation is multiplication of signs). Elements of {+, −}k = Zk

2 are strings of signs of
length k, and we will denote by + = + · · · + the identity element of Zk

2 .
For α = (α1, . . . , αk) ∈ Zk

2 = {+, −}k, we define the open orthant determined by H and α

as OH
α := Hα1

1 ∩· · ·∩Hαk

k . Given a mass distribution µ in R3, we say that an ordered k-tuple
H = (H1, . . . , Hk) of planes (k ≤ 3) forms a 2k-partition of µ if every orthant contains
1/2k of the mass, i.e., µ(OH

α ) = µ(R3)/2k for every α ∈ {+, −}k. For k = 1, 2, 3, this
corresponds to the notions of bisecting, four-secting, and eight-partitioning µ as mentioned
in the introduction. Analogously, we say that H forms a 2k-partition of a finite point set P

in R3 if |P ∩ OH
α | ≤ |P |

2k for all α.
We will parameterize oriented planes in R3 by S3, where the north pole e4 and the south

pole −e4 map to the plane at infinity with opposite orientations. For this we embed R3

into R4 via the map (x1, x2, x3) 7→ (x1, x2, x3, 1). An oriented plane in R3 is mapped to an
oriented affine 2-dimensional subspace of R4 and is extended (uniquely) to an oriented linear
hyperplane. The unit normal vector on the positive side of the linear hyperplane defines a
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point on the sphere S3. Hence, there is a one-to-one correspondence between points v in
S3 \{e4, −e4} and oriented affine planes Hv in R3. The positive side of the plane at infinity is
R3 for v = e4 and ∅ for v = −e4. Hence H+

−v = H−
v for every v. Note that planes at infinity

cannot arise as solutions to the measure partitioning problem, since they produce empty
orthants. Therefore we do not need to worry about the fact that the sphere includes these.

We parameterize triples of planes (called plane configurations) in R3 by (S3)3, and denote
by Hv the triple corresponding to v ∈ (S3)3. Given a mass distribution µ on R3, for each
v ∈ (S3)3 and α ∈ Z3

2 \ {+}, we set

Fα(v, µ) =
∑

β∈Z3
2

(−1)p(α,β)µ(OHv

β ).

where p(α, β) is the number of coordinates where both α and β are −. As an example, with
H := Hv = (H1, H2, H3) and α = − − + ∈ Z3

2 \ {+}, we obtain

F−−+(H, µ) =
∑

β∈Z3
2

(−1)p(α,β)µ(OH
β ) =

∑
β∈Z3

2: p(α,β)=0

µ(OH
β ) −

∑
β∈Z3

2: p(α,β)=1

µ(OH
β )

=
(
µ(OH

+++) + µ(OH
++−) + µ(OH

−−+) + µ(OH
−−−)

)
−

(
µ(OH

−++) + µ(OH
−+−) + µ(OH

+−+) + µ(OH
+−−)

)
= µ(H+

1 ∩ H+
2 ) + µ(H−

1 ∩ H−
2 ) − µ(H−

1 ∩ H+
2 ) − µ(H+

1 ∩ H−
2 ).

When µ is clear from context, we write Fα(H) instead of Fα(H, µ). The definitions of
alternating sums for a pair of planes or a single plane are analogous.

The alternating sums have the following properties which will play an important role in
the proof below; for a proof, see the full version [2, Observation 2.1].

▶ Observation 2.1. Let µ be a mass distribution and fix k = 2, 3.
(i) Let α ∈ Zk−1

2 \ {+} and let H = (H1, . . . , Hk) be a k-tuple of planes, then F+α(H) =
Fα((H2, . . . , Hk)) (the equivalent statement holds for any other entry of a k-tuple
α1 · · · αk instead of just for α1).

(ii) A k-tuple H of planes 2k-partitions if and only if Fα(H) = 0 for every α ∈ Zk
2 \ {+}.

2.2 The Main Topological Result
Our goal is to prove the following result – a more precise statement of Theorem 1.3:

▶ Theorem 2.2. Given a mass distribution µ and a direction p ∈ S2, there exists a triple
H = (H1, H2, H3) of oriented planes that eight-partition µ so that the oriented direction of
the intersection H1 ∩ H2 is p.

As mentioned before, it is sufficient to prove Theorem 2.2 for mass distributions with
connected support. We require a technical lemma about partitioning a mass distribution on
R2, due to Blagojević and Karasev [5]; see the full version [2, Appendix C] for a proof.

▶ Lemma 2.3 (Four-partitioning a mass distribution in R2 [5]). Let µ# be a mass distribution
(with connected support) on R2 and v ∈ S1. Then there exists a pair (ℓ1, ℓ2) of lines in R2

that four-partitions µ# and such that v bisects the angle between ℓ1 and ℓ2.
Moreover, if we orient ℓ1 and ℓ2 so that ℓ1 is in the first direction clockwise from v, and

ℓ2 is in the first direction counterclockwise, the oriented pair is unique and the lines depend
continuously on v.

SoCG 2024



8:6 Eight-Partitioning Points in 3D

ℓ2(v)

ℓ1(v)

v

µ#

g1·

ℓ1(g1 · v)

ℓ2(g1 · v)

µ#

g1 · v

Figure 1 Example of the action of g1.

Proof of Theorem 2.2. Without loss of generality, let v = (0, 0, 1). Our proof proceeds
in two steps. In the first step, we construct a map Φ: S1 × S3 → R4 whose zeros codify
equipartitions of µ; then we prove that Φ is equivariant with respect to a suitable choice of
actions of G := Z4 × Z2 on the two spaces. In the second step we show that any continuous
G-equivariant map Ψ: S1 × S3 → R4 has to have a zero.

Step 1. The key step in constructing the map Φ is to show that we can parameterize pairs
of planes that have intersection direction p and four-sect µ, by a vector in S1.

We project µ to the xy-plane to obtain a mass distribution µ# on R2. Lemma 2.3
guarantees that, once we fix a direction v ∈ S1 ↪→ S2 (inclusion as the horizontal equator
in S2) there are two lines in the xy-plane ℓ1 = Rℓ⃗1(v) + a0(v) and ℓ2 = Rℓ⃗2(v) + a2(v) that
four-sect the projected measure µ#. Define Hi(v) := (hi(v), ai(v)) to be the (oriented) span
of ℓi(v) and v; the two planes now four-sect µ and have the desired intersection direction.

Now let g1 be a generator of Z4×{+} ⊆ G and define its action on S1 by a counterclockwise
rotation by π

2 . We use g1 · v to denote the action of g1 on v. Then, by the uniqueness in
Lemma 2.3, we have that

ℓ⃗1(g1 · v) = ℓ⃗2(v) and ℓ⃗2(g1 · v) = −ℓ⃗1(v). (1)

Intuitively, if we consider the planar problem with the bisecting vector v rotated by π
2 , by

uniqueness the affine lines that split the measure are the same. However, while the direction
chosen as ℓ⃗1 in the rotated problem is the direction ℓ⃗2 in the previous configuration, the
“rotated” ℓ⃗2 is −ℓ⃗1 in the original problem (see Figure 1).

Using this construction, we can define a function S1 → S3 × S3 by v 7→ (H1(v), H2(v)).
It follows from eq. (1) that g1 · v is mapped to (H2(v), −H1(v)), therefore, if we fix the
corresponding action1 of Z4 on S3 × S3, the map is Z4-equivariant.

The group {e} × Z2 acts by antipodality on S3; therefore, if G acts on
(
S3 × S3)

× S3

component-wise, the map Φ: S1×S3 →
(
S3 × S3)

×S3 defined as Φ(v, w) := (H1(v), H2(v), w)
is G-equivariant.

1 Formally, for any (x, y) ∈ S3 × S3 the generator g1 of Z4 × {+} ⊆ G acts by g1 · (x, y) = (y, −x).
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By construction, the first two planes are always a four-partition of the mass distribution,
therefore by Observation 2.1, a configuration Φ(v, w) is an eight-partition if and only if the
four alternating sums with α3 = − (i.e., α = + + −, − + −, + − − and − − −) are 0.

To compute the action of G on the alternating sums, it is enough to specify what happens
on g1 (a generator of Z4 × {e}) and g2 (a generator of {e} ×Z2). If we act with g1, we obtain

F++−(g1 · Φ(v, w)) = F++−(Φ(v, w)),
F+−−(g1 · Φ(v, w)) = −F−+−(Φ(v, w)),
F−+−(g1 · Φ(v, w)) = F+−−(Φ(v, w)), and
F−−−(g1 · Φ(v, w)) = −F−−−(Φ(v, w)),

while acting with g2 produces

F++−(g2 · Φ(v, w)) = −F++−(Φ(v, w)),
F+−−(g2 · Φ(v, w)) = −F−+−(Φ(v, w)),
F−+−(g2 · Φ(v, w)) = −F+−−(Φ(v, w)), and
F−−−(g2 · Φ(v, w)) = −F−−−(Φ(v, w)),

for every (v, w) ∈ S1 × S3.
Finally, we can choose a linear G-action on R4 that is consistent with the previous

equations. In particular, if we define

g1 · (x, y, z, u) = (x, −z, y, −u) and g2 · (x, y, z, u) = (−x, −y, −z, −u),

then the map Ψ: S1 × S3 → R4, given by

(v, w) 7→ (F++−(v, w), F+−−(v, w), F−+−(v, w), F−−−(v, w))

is G-equivariant. By Observation 2.1, the zeros of Ψ are exactly the configurations of planes
that eight-partition the measure and have the desired intersection property.

Step 2. Suppose now, for a contradiction, that Ψ does not have a zero. This means that it
is possible to define a G-equivariant map Ψ: S1 × S3 → S3 by Ψ(v, w) := Ψ(v,w)

∥Ψ(v,w)∥ .
Denote by Ψa, for a ∈ S1, the map Ψa : S3 → S3, Ψa(p) = Ψ(a, p); this function has two

key properties:
(i) for any a ∈ S1, Ψa is antipodal;
(ii) for any a, b ∈ S1, Ψa and Ψb are homotopic.

However, the map induced by g1 on the sphere is antipodal, and, hence, has degree −1.
Thus we have [Ψa] = [Ψg1·a] = [g1 · Ψa] = −[Ψa]. It follows that Ψa is null-homotopic,
contradicting the Borsuk-Ulam theorem. For technical details, see the full version [2,
Propositions B.1 and B.2]. ◀

Theorem 2.2, along with a standard limit argument, implies the following.

▶ Theorem 2.4. Let P ⊆ R3 be a finite set of points and p ∈ S2 a fixed direction. Then
there exists a triple H = (H1, H2, H3) of oriented planes that eight-partitions P , so that the
oriented direction of the intersection H1 ∩ H2 is p.

SoCG 2024



8:8 Eight-Partitioning Points in 3D

3 The Algorithm

We can deduce the existence of eight-partitions of a finite point set P ⊂ R3 of a certain
advantageous form from Theorem 1.1.

▶ Observation 3.1. Let k > 0 be an integer and P ⊆ R3 be a set of n = 8k + 7 points in
general position2. Then, there exists a triple of planes (H1, H2, H3) that eight-partitions P

with the following properties:
(i) H1 is horizontal (i.e., parallel to the xy-plane) and passes through the z-median point

of P . From here on, we refer to the 4k + 3 points that lie below (resp., above) H1 as
red (resp., blue) points and denote the sets R (resp. B).

(ii) H2 and H3 each contain exactly three points, and each open octant contains exactly k

points.
(iii) H2, H3 each bisect R and B, and the pair (H2, H3) four-partitions both R and B.

Furthermore, H2 and H3 contain at least one point of each color.

Proof. Since the set X := {(H1, H2, H3) | H1 is horizontal} ⊂ (S3)3 is compact, by Theo-
rem 1.1 and standard limiting arguments, there exists a configuration H∞ = (H1, H2, H3)
that eight-partitions the point set with H1 horizontal; moreover, any plane Hi bisects and
any pair (Hi, Hj) four-partitions the set P . For details, see the full version [2, Corollary A.2].

Furthermore, note that any eight-partition has at most k points of P in each of the
eight open octants, one point in H1, and at most three points in each of H2 and H3, by
general position, for a total of at most 8k + 1 + 2 · 3 = 8k + 7 = n points. So, in fact, all the
inequalities are equalities: there must be exactly k points in each open quadrant and exactly
three points of R ∪ B in each of H2 and H3.

The assertions are straightforward to verify from the above discussion. ◀

▶ Theorem 3.2 (Computation of an eight-partition). Let P ⊆ R3 be a set of n > 0 points in
general position and v ∈ S2. An eight-partition (H1, H2, H3) of P with v being the normal
vector of H1 can be computed in time O∗(n + m), where m is the maximum complexity of
the intersection of the median levels of two sets of n/2 planes.

▶ Remark. Since m = O(h3(n)) = O(n5/2) (see the full version [2, Section 3]), we can
compute an eight-partition in time O∗(n5/2).
The rest of this section is devoted to the proof of Theorem 3.2. We assume, without loss of
generality, that v = e3 = (0, 0, 1) is the vertical vector, so H1 is required to be horizontal.
If n ≤ 7, the statement holds trivially – set H1 to be the horizontal plane containing any
point of P , and H2, H3 to contain at most three distinct points each, so that the octants do
not contain any points. From here on, we will assume that n = 8k + 7, for an integer k > 0.
Otherwise, we add dummy points to P (in general position) until the number of points is of
the required form and run the algorithm. Once the algorithm terminates, we discard the
dummy points, resulting in an eight-partition with at most k points in each octant.

We now describe the algorithm to construct an eight-partition of P satisfying the properties
in Observation 3.1. Let H1 be the horizontal plane containing the z-median point of P ,
and, without loss of generality, identify H1 with the xy-plane. Consider the sets R and B

of 4k + 3 points each lying below and above, respectively, H1. We assume, without loss of
generality, that B is contained in the half-space x < 0 and R is contained in the half-space

2 No four points in a plane, no three points in a vertical plane, and no two points in a horizontal plane.
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x > 0. Otherwise, since no point in R ∪ B has z = 0, there exists a plane H containing the
y-axis and with sufficiently small negative slope in the x direction such that all red points
are below H and all blue points are above H. Applying a generic sheer transformation (so
as not to violate the general position assumption) that fixes the xy-plane and maps H to the
plane x = 0, we obtain point sets with the required properties.

It will be convenient to work in the dual space, where a point p = (p1, p2, p3) ∈ R3 is
mapped to the non-vertical plane p∗ : z = p1x + p2y − p3 in R3, and vice versa (see [11,
Chapter 25.2] for standard properties of the duality transform). Let R∗ = {p∗ : p ∈ R} be the
set of red planes dual to points in R and set A(R) := A(R∗) to be the arrangement formed by
the set R∗. The set of blue planes B∗ and the blue arrangement A(B) are defined analogously.
We will write A := A(R ∪ B) for the arrangement formed by the planes in R∗ ∪ B∗. For a
(dual) point p ∈ R3, we set R+

p , R−
p ⊆ R∗ to be the set of red planes lying strictly above and

below p, respectively. For a pair p, q of (dual) points, put

X(p, q) := |R+
p ∩ R+

q | − |R+
p ∩ R−

q | − |R−
p ∩ R+

q | + |R−
p ∩ R−

q |.

The sets B+
p , B−

p ⊆ B∗ and the function Y (p, q) are defined analogously for B∗.
Let L be the intersection of the median levels3 of A(B) and A(R). It is not hard to check

that L is a connected y-monotone polygonal curve and, moreover, can be computed in time
O ∗ (n + m) using standard tools [1, 6]; see the full version [2, Lemmas 4.3 and 4.4] for details.

We now return to the computation of the eight-partition (H1, H2, H3). By the general
position assumption, H2 and H3 cannot be vertical, so H2 and H3 correspond to vertices in A,
by Observation 3.1. With the above setup, we can reformulate the problem of computing H2
and H3 as follows.

▷ Claim 3.3 (The dual alternating sign functions). Computing H2 and H3 is equivalent to
identifying a pair of vertices p, q ∈ L such that Y (p, q) = X(p, q) = 0.

Proof. By Observation 3.1(ii), the eight-partition (H1, H2, H3) has exactly k points in each
of the eight open octants. Setting p := H∗

2 and q := H∗
3 , we obtain that |R±

p ∩ R±
q | =

|B±
p ∩ B±

q | = k for all combinations of signs. Therefore Y (p, q) = X(p, q) = 0, as claimed.
We now argue the other direction. Let p, q ∈ L be vertices such that X(p, q) = Y (p, q) = 0.

Since p and q lie on L, H2 := p∗ and H3 := q∗ bisect both R and B and contain exactly
three points each, at least one of each color. Hence, it suffices to show that (H2, H3) is
a four-partition of both R and B, i.e., |R±

p ∩ R±
q |, |B±

p ∩ B±
q | ≤ k for all combinations of

signs. Indeed, this implies that each octant formed by (H1, H2, H3), contains exactly k points
completing the proof.

Let ar := |R+
p ∩ R+

q |, br := |R+
p ∩ R−

q |, cr := |R−
p ∩ R+

q |, and dr := |R−
p ∩ R−

q |. Define
ab, bb, cb, db analogously for the blue planes. Without loss of generality, for a contradiction,
suppose ar > k.

We first consider the case ar ≥ k + 2. Since p lies on the median level of A(R), we have
ar + br ≤ |R+

p | = 2k + 1, implying br ≤ k − 1. Similarly, since q lies on the median level
of A(R), we have cr ≤ k − 1. Recall that, by assumption, X(p, q) = ar + dr − br − cr = 0,
implying dr = br + cr − ar ≤ k − 4. Hence, ar + br + cr + dr ≤ 4k − 4, so p and q together are
contained in 4k + 3 − (ar + br + cr + dr) ≥ 7 red planes, contradicting the general position
assumption.

3 The median level in an arrangement of 2k + 1 non-vertical planes in R3 is defined as the closure of the
set of all points which lie on a unique plane of the arrangement and have exactly k planes below it.
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8:10 Eight-Partitioning Points in 3D

We may now assume ar = k + 1. Following the same reasoning we obtain br ≤ k, cr ≤ k,
and dr = br + cr − ar ≤ k − 1. This implies ar + br + cr + dr ≤ 4k, and, in particular, that p

and q together are contained in at least 3 red planes. Now consider the blue planes and note
that ab + bb + cb + db ≤ 4k – this is clear if each of sets B±

p ∩ B±
q contains at most k blue

planes, otherwise it follows by the same argument as above. Hence, p and q together are
contained in 4k + 3 − (ab + bb + cb + db) ≥ 3 blue planes.

By Observation 3.1(ii), p and q are contained in at most 6 planes of R∗ ∪ B∗. Combined
with the argument above, this implies p and q together are contained in exactly 3 planes of
each color. It follows that ar + br + cr + dr = ab + bb + cb + db = 4k, which, by the assumption
ar = k + 1, implies br = cr = k and dr = k − 1. Since |R−

p | = 2k + 1 and br + dr = 2k − 1,
there are exactly 2 red planes containing q below p. Similarly, since |R−

q | = 2k + 1 and
br + dr = 2k − 1, there are exactly 2 red planes containing p below q. But then p and q are
contained in a total of 4 red planes, a contradiction.

This exhausts all possibilities and, hence, |R±
p ∩ R±

q |, |B±
p ∩ B±

q | ≤ k for all combinations
of signs, completing the proof. ◁

To summarize, once we construct L in time O∗(n + m), to compute an eight-partition, it
is sufficient, by Claim 3.3, to find two vertices p, q ∈ L satisfying X(p, q) = Y (p, q) = 0. In
particular, it is possible to construct an eight-partition by enumerating all the Θ(m2) pairs
of vertices in L; the exact running time depends on how efficiently one can check candidate
pairs. Below, we describe how to reduce the amount of remaining work to O((m + n) log m).

Speed up. Recall that L is connected and y-monotone. We orient L in the y-direction
and view it as an alternating sequence of edges and vertices denoted by x1, x2, . . . , xm, with
x1, xm being edges.

We extend the definition of X, Y as follows. If xi, xj are both edges, we pick arbitrary
points p and q in the open edges xi and xj , respectively, and set X(xi, xj) := X(p, q) and
Y (xi, xj) := Y (p, q); the cases where xi is an edge or xj is an edge, but not both, are
handled analogously. Note that specifying the (open) edges containing p and q is sufficient
to determine X and Y , hence the definition is unambiguous. Define π : [m]2 → Z2 by
π(i, j) := (X(xi, xj), Y (xi, xj)). With this setup, our goal is to identify a point (i, j) ∈ [m]2
(corresponding to a pair of vertices on L) such that π(i, j) = 0.

We define a grid curve C to be a sequence of points (i1, j1), . . . , (it, jt) in Z2 such that
(iℓ+1, jℓ+1) ∈ {(iℓ, jℓ), (iℓ±1, jℓ)(iℓ, jℓ±1)} for each ℓ ∈ [t−1]. In words, a grid curve is a walk in
Z2 which, at each step, does not move at all or moves by exactly one unit up/down/left/right.
A curve is closed if (i1, j1) = (it, jt). A grid curve is simple if non-consecutive points are
distinct (we think of the start and end points as consecutive) – so the curve does not revisit
a point after it moves away from the point.

To each grid curve C, we associate a piecewise linear curve C in R2, consisting of line
segments connecting consecutive points (iℓ, jℓ), (iℓ+1, jℓ+1) of C for each ℓ ∈ [t − 1]. For a
curve C not passing through the origin 0, the winding number w(C) about 0 is defined in
the standard way. In particular, provided C misses the origin,

w(C) = w(C) =


0 if C does not wind around 0,
n > 0 if C winds around 0 n times counterclockwise,
n < 0 if C winds around 0 −n times clockwise.

For a rigorous definition of the winding number, see [13, Chapter 4.4.4]. Slightly abusing
notation, we set w(C) := w(C).



B. Aronov, A. Basit, I. Ramesh, G. Tasinato, and U. Wagner 8:11

Our algorithm proceeds as follows:
Step 1 Set C := T (see Definition 3.4). If π(C) meets 0, then stop – we have found a point

that maps to 0 (see Lemma 3.6). Otherwise w(π(C)) is odd, by Lemma 3.7.
Step 2 Construct two simple closed curves C1, C2 so that (a) C = C1 + C2, (b) at least

one of π(C1), π(C2) has odd winding number (unless they meet 0), (c) the regions
enclosed by C1 and C2 partition the region enclosed by C, and (d) the area enclosed
by each of C1, C2 is a fraction of that enclosed by C (see Lemma 3.9).

Step 3 If π(C1) or π(C2) meets 0, then stop – we found a point that maps to 0, by Lemma 3.6.
Step 4 Compute w(π(C1)) and w(π(C2)), and replace C with the one with the odd winding

number. Goto Step 2.

We now proceed to fill in the details, starting with the definition of the initial curve T .

▶ Definition 3.4 (The triangular grid curve T ). The simple closed grid curve T traverses a
triangular path defined as follows:

Starting with the bottom horizontal side of the grid [m]2, T traverses the points

(x1, x1), (x2, x1), . . . , (xm, x1),

continuing along the right vertical side of the grid [m]2 along the points

(xm, x1), (xm, x2), . . . , (xm, xm),

finally, traversing back diagonally along

(xm, xm), (xm−1, xm), (xm−1, xm−1), (xm−2, xm−1), . . . , (x1, x2), (x1, x1).

Along the diagonal side of T , we are really only interested in points of the form (xℓ, xℓ)
with ℓ ∈ [m]. However, since this doesn’t give a grid curve, we “patch” it up by introducing
intermediate points. Fortunately, this does not change the desired properties of T .

▶ Lemma 3.5. If C is a grid curve, then π(C) is a grid curve. Moreover, if L has already
been computed, π(C) can be computed in time O(n + |C|).

Proof. Consider a step in C from (xi, xj) to (xi+1, xj), where xi is an edge of L and xi+1 is
a vertex. Then xi+1 is contained in the planes that contain xi and one additional plane H.
Suppose, without loss of generality, that H is red. This means that the cardinality of one of
the sets R±

p changes by one. Hence, the cardinality of R±
p ∩ R±

q , for each combination of
signs, changes by at most one – if H contains q, nothing changes. It follows that the function
X changes by at most one, and the function Y remains unchanged.

Note that, up to symmetry, only one such transition or its reverse occurs in a single step
of C. We’ve shown that each step causes either X or Y (but not both) to change by at most
one, and, hence, π(C) is a grid curve.

The computation can be carried out in constant time per incident edge-vertex pair of C,
since L has been already computed, after a O(n)-time initialization that computes X, Y at
an arbitrary starting point of C by brute force. ◀

Lemma 3.5 immediately implies the following.

▶ Lemma 3.6. If π(C) meets 0, then some point of C is mapped to 0.

A key property of the triangular grid curve T is the following.

▶ Lemma 3.7. If 0 ̸∈ π(T ), then w(T ) is odd.
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8:12 Eight-Partitioning Points in 3D

Proof. Let N := 4k + 2, and let H, V, D be the images (under π) of the horizontal, vertical,
diagonal sides of T , respectively. Note that π(T ) is the concatenation of H, V, and D in that
order.

Observe that if p = q = xi with i ∈ [m], then |R+
p ∩ R−

q | = |R−
p ∩ R+

q | = 0. Hence,
X(xi, xi) ∈ {4k + 1, 4k + 2} depending on whether xi is contained in one or two red planes.
Similarly, Y (xi, xi) ∈ {4k + 1, 4k + 2}. Hence π(xi, xi) ∈ {(N, N), (N − 1, N − 1)} and, in
particular, π(xi, xi) = (N, N) if xi is an edge. Along with Lemma 3.5, this implies that the
grid curve D is a closed walk on the points in {N − 2, N − 1, N, N + 1}2 \ {0} starting and
ending at the point (N, N).

Noting that x1 and xm are half-lines contained in the same red plane, and that every
red plane that lies above x1 lies below xm and vice versa, we obtain π(xm, x1) = (−N, −N).
Hence, H is a grid curve from the point (N, N) to (−N, −N) and V is a grid curve from the
point (−N, −N) to (N, N).

The discussion above implies that w(T ) is equal to the winding number of the concatena-
tion of V and H. We argue below that V is the image of H under a rotation by 180° around
the origin, i.e., the map (x, y) 7→ (−x, −y). Since, by assumption, neither H nor V contain 0,
the concatenation of H and V has odd winding number as claimed.

Specifically, we show that π(xi, x1) = −π(xm, xi). Since π is symmetric in the two
arguments, this follows from π(x1, xi) = −π(xm, xi). As mentioned before, every plane
that lies above x1 lies below xm and vice versa. That is, R+

x1
= R−

xm
and R−

x1
= R+

xm
, and

similarly B+
x1

= B−
xm

and B−
x1

= B+
xm

. The assertion is now straightforward to verify. ◀

▶ Lemma 3.8. If w(π(C)) is odd, then there is a point (i, j) ∈ Z2 enclosed by C with
π(i, j) = 0.

Proof. A grid square S is a simple closed grid curve of the form

(i, j), (i + 1, j), (i + 1, j + 1), (i, j + 1), (i, j)

with (i, j) ∈ Z2. A square is S for some grid square S. If there is a grid square S enclosed
by C such that π(S) meets 0, then we are done by Lemma 3.6. Otherwise, note that π(C) is
the sum of the images of the corresponding squares. Hence, there is a grid square S with
w(π(S)) odd. By Lemma 3.5, π(S) is a grid curve. By enumerating all possibilities (see
Fig. 2), we conclude that w(π(S)) cannot be odd. ◀

Next, we show how to decompose a curve C. We restrict our attention to “trapezoidal”
curves: Such a curve is the boundary of the intersection of the region bounded by the initial
triangle T with a grid-aligned rectangle. This property is maintained inductively.

▶ Lemma 3.9. Given a trapezoidal curve C whose image misses 0, with w(π(C)) odd, we
can construct two trapezoidal curves C1 and C2 so that

(i) the region R surrounded by C is partitioned into region R1 surrounded by C1 and region
R2 surrounded by C2.

(ii) area(R1), area(R2) ≤ c · area(R), for an absolute constant c < 1.
(iii) either 0 is in the image of C1 and C2 or w(π(C)) = w(π(C1)) + w(π(C2)).

Proof. Note that the image of a grid square cannot have odd winding number, therefore R

is not a grid square. As long as R is at least two units high, divide it by a horizontal grid
chord into pieces with heights as equal as possible producing two regions R1 and R2. The
curves C1 and C2 are the boundaries of the regions (refer to Fig. 3). If the height of R is
one, perform a similar partition by a vertical chord into to near-equal-width pieces.
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π(i, j) π(i+ 1, j)

π(i+ 1, j + 1)π(i, j + 1)

π(i, j) π(i+ 1, j + 1)

π(i, j + 1)

π(i+ 1, j)
π(i+ 1, j)π(i+ 1, j + 1)

π(i, j)

π(i, j + 1)

π(i, j) π(i+ 1, j)

π(i+ 1, j + 1)

π(i, j + 1)

(i+ 1, j)

(i+ 1, j + 1)

(i, j)

(i, j + 1)

π(i, j) π(i+ 1, j)

π(i+ 1, j + 1)π(i, j + 1)

Figure 2 Up to symmetries, the different possibilities for the image under π of a grid square S,
which is always always a grid curve in Z2, by Lemma 3.5.

C

C1

C2

T

(x1, x1)

(xm, xm)

Figure 3 Curve C; the blue region is bounded by C1, and the red by C2, with the horizontal
dividing chord drawn dashed.
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Property (i) is satisfied by construction. If the image of the new chord misses 0, then
both C1 and C2 avoid 0 and property (iii) follows from the properties of the winding number
on the plane. Finally, an easy calculation shows that, if the split height is even, then each
part contains at most 3/4 of the original area; this fraction can rise to 5/6 if R has odd
height (the extreme case is achieved at height of three), which proves property (ii). ◀

▶ Lemma 3.10. Given a simple closed grid curve C in [m]2 we can determine whether π(C)
contains a zero. If not, we can compute w(π(C)), all in time O(|C| + n).

Proof. By Lemma 3.5, we can trace π(C) step by step and, in particular, detect whether
0 ∈ π(C). So suppose this is not the case.

Consider the (open) ray ρ from the origin directed to the right in Z2. To determine the
winding number of the curve π(C) not containing the origin, it is sufficient to count the
number of times π(C) crosses the ray ρ. We may compute this by computing π for every
vertex of C in order and counting the number of times (X, 0) occurs along it, with X > 0.

As π(C) may partially overlap ρ, we need to check whether π(C) arrives at (X, 0) with
X > 0 from below the X-axis and (possibly after staying on the axis for a while) departs
into the region above X-axis, or vice versa. That would count as a signed crossing. Arriving
from below and returning below, or arriving from above and returning above, does not count
as a crossing.

All of the above calculations can be done in time O(1) per step of π(C), after proper
initialization, by Lemma 3.5. ◀

Running time. We now analyze the running time of the algorithm we described. We can
traverse a length-O(m) closed grid curve C, compute its image π(C), and check whether it
passes through the origin in time O(m + n) by Lemma 3.5. One can check whether π(C)
winds around the origin an odd number of times by Lemma 3.10, also in time O(m + n).

The number of rounds of the main loop of the algorithm is O(log m), as the starting
curve cannot enclose an area larger than O(m2) and areas shrink by a constant factor in
every iteration, by Lemma 3.9. Combining everything together, we conclude that L can
be computed in O∗(n + m) time, and the algorithm can then identify the pair of vertices
of L corresponding to an eight-partition in at most O(log m) rounds, each costing at most
O(m + n). This concludes the proof of Theorem 3.2.
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