
Faster Approximation Scheme for Euclidean k-TSP
Ernest van Wijland #

École Normale Supérieure Paris, France

Hang Zhou # Ñ

École Polytechnique, Institut Polytechnique de Paris, France

Abstract
In the Euclidean k-traveling salesman problem (k-TSP), we are given n points in the d-dimensional
Euclidean space, for some fixed constant d ≥ 2, and a positive integer k. The goal is to find a
shortest tour visiting at least k points.

We give an approximation scheme for the Euclidean k-TSP in time n · 2O(1/εd−1) · (log n)2d2·2d

.
This improves Arora’s approximation scheme of running time n ·k ·(log n)(O(√

d/ε))d−1
[J. ACM 1998].

Our algorithm is Gap-ETH tight and can be derandomized by increasing the running time by a
factor O(nd).

2012 ACM Subject Classification Mathematics of computing → Combinatorial optimization

Keywords and phrases approximation algorithms, optimization, traveling salesman problem

Digital Object Identifier 10.4230/LIPIcs.SoCG.2024.81

Funding This research work is supported by the Hi! PARIS Center.

Acknowledgements We thank Tobias Mömke, Noé Weeks, and Antoine Stark for discussions.

1 Introduction

In the Euclidean k-traveling salesman problem (k-TSP), we are given n points in Rd, for
some fixed constant d ≥ 2, and a positive integer k ≤ n. The goal is to find a shortest tour
visiting at least k points out of the n points.

The Euclidean k-TSP is NP-hard [4], so researchers turned to approximation algorithms,
e.g., [1, 2, 8, 9].1 The best-to-date approximation for the Euclidean k-TSP is due to
the approximation scheme2 of Arora [1], which is among the most prominent results in
combinatorial optimization. The randomized version of Arora’s approximation scheme has a
running time of

n · k · (log n)(O(√
d/ε))d−1

.

In this work, we give a faster approximation scheme for the Euclidean k-TSP; see
Theorem 1. Compared with Arora [1], our running time sheds the factor k and, in addition,
achieves an asymptotically optimal dependence on ε.

▶ Theorem 1. Let d ≥ 2 be a fixed constant. For any ε > 0, there is a randomized
(1 + ε)-approximation algorithm for the Euclidean k-TSP that runs in time

n · 2O(1/εd−1) · (log n)2d2·2d

.

The dependence on ε in the running time is asymptotically optimal under the Gap-Exponential
Time Hypothesis (Gap-ETH). The algorithm can be derandomized by increasing the running
time by a factor O(nd).

1 k-TSP has also been referred as “quota TSP” in the literature.
2 An approximation scheme is a (1 + ε)-approximation algorithm for any ε > 0.

© Ernest van Wijland and Hang Zhou;
licensed under Creative Commons License CC-BY 4.0

40th International Symposium on Computational Geometry (SoCG 2024).
Editors: Wolfgang Mulzer and Jeff M. Phillips; Article No. 81; pp. 81:1–81:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ernest.van.wijland@ens.fr
mailto:zhouhang32@gmail.com
http://www.normalesup.org/~zhou/
https://doi.org/10.4230/LIPIcs.SoCG.2024.81
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

81:2 Faster Approximation Scheme for Euclidean k-TSP

In the rest of the section, we outline the proof of Theorem 1.
First, in a preprocessing step, the instance is partitioned into well-rounded subinstances.

The partition algorithm in [1] takes O(n · k · log n) time. We improve the running time of
the partition algorithm to O(n); see the partition theorem (Theorem 3). To that end, we use
a result on the enclosing circles due to Har-Peled and Raiche [5]. See Section 3.

Next, each subinstance is solved independently using a dynamic program based on the
quadtree [1]. The dynamic program in [1] takes n · k · (log n)(O(√

d/ε))d−1
time. We improve

the running time of the dynamic program to n · 2O(1/εd−1) · (log n)2d2·2d ; see the dynamic
programming theorem (Theorem 7). In order to improve the dependence in ε in the running
time in [1], we exploit a structure theorem (Theorem 11) that is a corollary of the approaches
of Arora [1] and Kisfaludi-Bak, Nederlof, and Węgrzycki [6]; see Section 4.1. In order to
remove the factor k in the running time in [1], we discretize the possible lengths of a tour into
values called budgets; see Section 4.2. This is inspired by Kolliopoulos and Rao in the context
of k-median [7]. The combination of the structure theorem and the budgets is non-trivial and
is the key to the improved running time of the dynamic program, see Sections 4.3 and 4.4.

The overall running time and the derandomization in Theorem 1 follow from the partition
theorem (Theorem 3) and the dynamic programming theorem (Theorem 7). The Gap-ETH
tightness in Theorem 1 is a corollary of the Gap-ETH lower bound for the Euclidean TSP [6,
Theorem I.1].

2 Notations

Let P denote a set of n points in Nd for some fixed constant d ≥ 2. Let k be an integer in
[1, n]. A path π in Nd is a k-salesman tour if π is a closed path visiting at least k points
from P . Let w(π) denote the length of π. In the Euclidean k-traveling salesman problem
(k-TSP), we look for a k-salesman tour π that minimizes w(π). Let opt denote the minimum
length of a k-salesman tour. For notational convenience, let ω denote 2d.

▶ Definition 2 (well-rounded instance, [1, Section 3.2]). Consider an instance for the Euclidean
k-TSP. Let L ∈ N denote the side length of the bounding box for the instance. We say that
the instance is well-rounded if L = O(k2), all points in the instance have integral coordinates
in {0, . . . , L}d, and the minimum nonzero internode distance is at least 8.

3 Partitioning Into Subinstances

▶ Theorem 3 (partition theorem). Let I be an instance for the Euclidean k-TSP. There is
a randomized algorithm that computes in expected O(n) time a partition of I into a family
of well-rounded subinstances I1, . . . , Iℓ for some ℓ ≥ 1, such that with probability at least
1−2/ log k, an optimal solution to I is completely within Ij for some j ∈ [1, ℓ]. The algorithm
can be derandomized by increasing the running time by a factor n.

In the rest of the section, we prove Theorem 3.
Recall that, in the approach of Arora [1], an important step is to compute a good

approximation for the optimal cost. Fact 4 relates the optimal cost with the side length of
the smallest d-dimensional hypercube containing k points.

▶ Fact 4 ([1, Section 3.2]). The cost of the optimal solution to the Euclidean k-TSP is at
most dk1−(1/d) times larger than the side length of the smallest d-dimensional hypercube
containing k points.

E. van Wijland and H. Zhou 81:3

Estimating the smallest d-dimensional hypercube containing k points takes O(nk log n)
time in [1]. We improve this running time to O(n) in Lemma 6. This is achieved using
a result of Har-Peled and Raiche [5] on the estimation of the smallest d-dimensional ball
(Lemma 5).

▶ Lemma 5 ([5, Corollary 4.18]). Let λ > 0. For a set of n points in Rd and a positive
integer k, one can (1 + λ)-approximate, in expected O(n/λd) time, the radius of the smallest
d-dimensional ball containing k points.

▶ Lemma 6. For a set of n points in Rd and a positive integer k, one can 2
√

d-approximate,
in expected O(n) time, the side length of the smallest d-dimensional hypercube containing k

points.

Proof. Let R∗ denote the radius of the smallest d-dimensional ball containing k points.
Applying Lemma 5 with λ = 1, one can compute in expected O(n) time an estimate R such
that R∗ ≤ R ≤ 2R∗. On the one hand, there exists a d-dimensional hypercube of side length
2R∗ ≤ 2R that contains at least k points. On the other hand, since the longest diagonal
of a d-dimensional hypercube is equal to

√
d times the side length of that hypercube, any

d-dimensional hypercube of side length 2R∗/
√

d ≥ R/
√

d contains at most k points. So the
side length of the smallest d-dimensional hypercube containing k points is in [R/

√
d, 2R].

The claim follows. ◀

Proof of the partition theorem (Theorem 3). From Fact 4 and Lemma 6, there is a ran-
domized algorithm that computes in expected O(n) time an estimate A for the cost of the
optimal solution such that

opt ≤ A ≤ 2d3/2k1−(1/d) · opt.

The first part of the claim follows from arguments that are almost identical to [1], except by
modifying the definition of the parameter ρ to

ρ := Aε

16d3/2k2−(1/d) .

Now we prove the second part of the claim. We only need to derandomize the algorithm
in Lemma 6. This requires derandomizing the algorithm in Lemma 5, which is called ndpAlg
in [5, Figure 3.1]. To that end, we remove Line 1 of the algorithm ndpAlg in [5], which
randomly picks a point p from the set Wi−1. Instead, we enumerate all points p from Wi−1.
For each such point p, we compute a set W p

i using Lines 2–7 of the algorithm ndpAlg in [5].
Finally, we let Wi be the set W p

i with minimum cardinality for all points p ∈ Wi−1. This
completes the description of the derandomized algorithm, see Algorithm 1.

Algorithm 1 Derandomization for ndpAlg. W ⊆ Rd denotes a set of n input points.

1 W0 ←W

2 i← 1
3 while Wi−1 ̸= ∅ do
4 forall p ∈Wi−1 do
5 Compute W p

i ▷ Lines 2-7 of algorithm ndpAlg in [5]
6 Let Wi be the set W p

i with minimum cardinality for all p ∈Wi−1
7 i← i + 1

SoCG 2024

81:4 Faster Approximation Scheme for Euclidean k-TSP

It remains to show that the running time of the derandomized algorithm (Algorithm 1)
is O(n2). Let z denote the number of iterations in the while loop in Algorithm 1. Consider
any integer i ∈ [1, z]. From the analysis in [5, Lemma 3.12], for each p ∈Wi−1, the set W p

i

in Algorithm 1 can be computed in O(|Wi−1|) time. So the overall time to compute W p
i over

all p ∈Wi−1 is O(|Wi−1|2). Using an analysis similar to [5, Lemma 3.12], there exists some
p ∈ Wi−1 such that |W p

i | ≤ (15/16)|Wi−1|, thus |Wi| ≤ (15/16)|Wi−1| by the definition of
Wi. Therefore, the overall running time of Algorithm 1 is

z∑
i=1

O(|Wi−1|2) ≤
z∑

i=1
(15/16)i−1 ·O(|W0|2) = O(|W0|2) = O(n2).

This completes the proof of the second part of the claim. ◀

4 Dynamic Programming

▶ Theorem 7 (dynamic programming theorem). Consider a well-rounded instance for the Eu-
clidean k-TSP. There is a randomized algorithm with running time n ·2O(1/εd−1) · (log n)2d2·2d

such that, with probability at least 1/2, the algorithm outputs a (1 + ε)-approximate solution.
The algorithm can be derandomized by increasing the running time by a factor O(nd).

In the rest of the section, we prove Theorem 7.

4.1 Preliminaries: Notations, Quadtree, and Structure Properties
Let L denote the side length of the bounding box of the instance. Since the instance is
well-rounded (Definition 2), we may assume that P ⊆ {0, . . . , L}d and L = O(k2).

We review the quadtree [1] as well as its structural properties established by Arora [1]
and Kisfaludi-Bak, Nederlof, and Węgrzycki [6].

We follow the notations in [6]. We pick a1, . . . , ad ∈ {1, . . . , L} independently and
uniformly at random and define a := (a1, . . . , ad) ∈ {0, . . . , L}d. Consider the hypercube

C(a) :=
d×

i=1
[−ai + 1/2, 2L− ai + 1/2].

Note that C(a) has side length 2L and each point from P is contained in C(a).
We define the dissection of C(a) to be a tree constructed recursively, where each vertex

is associated with a hypercube in Rd. The root of the tree is associated with C(a). Each
non-leaf vertex of the tree that is associated with a hypercube×d

i=1[li, ui] has ω children with
which we associate hypercubes×d

i=1 Ii, where Ii is either [li, (li + ui)/2] or [(li + ui)/2, ui].
Each leaf vertex of the tree is associated with a hypercube of unit length.

A quadtree is defined similarly as the dissection of C(a), except we stop the recursive
partitioning as soon as the associated hypercube of a vertex contains at most one point from
P . Each hypercube associated with a vertex in the quadtree is called a cell in the quadtree.

For each cell C in the quadtree, let ∂C denote the union of all facets of C.

▶ Definition 8 (grid, [6, Definition II.4]). Let F be a (d− 1)-dimensional hypercube. Let t be
a positive integer. We define grid(F, t)⊆ Rd−1 to be an orthogonal lattice of t points in F .
Thus, if the hypercube has side length l, the minimum distance between any pair of points of
grid(F, t) is l/t1/(d−1).

E. van Wijland and H. Zhou 81:5

▶ Definition 9 (fine multiset, adaptation from [6, Section 5.1 in the full version]). Let m and r

be positive integers. Let C be a cell in the quadtree. Let B be a multiset of points in ∂C. For
each facet F of C, let bF denote the number of points in B that are in F . We say that B is
(m, r)-fine if, for all facets F of C, either one of the two following cases holds:
1. bF ≤ 1 and B ∩ F ⊆ grid(F, m);
2. bF ≥ 2 and B ∩ F ⊆ grid(F, g(bF)), where g(·) is an integer-valued function such that

g(bF) ≤ r2d−2/bF . Moreover, each point in grid(F, g(bF)) occurs at most twice in B ∩ F .
The parameters (m, r) are omitted when clear from the context.

▶ Definition 10 ((m, r)-simple paths, adaptation from [1, Definition 1] and [6, Definition III.2]).
Let m and r be positive integers. A collection Q of paths in Rd is (m, r)-simple if, for every
cell C, the intersection between Q and ∂C is (m, r)-fine.

▶ Theorem 11 (structure theorem, corollary of [1] and [6]). Let a be a random vector in
{1, . . . , L}d. Let m = (O((

√
d/ε) log L))d−1 and r = O(d2/ε). With probability at least 1/2,

there is a k-salesman tour π such that both of the following properties hold:
the path collection {π} is (m, r)-simple;
w(π) ≤ (1 + ε) · opt.

Proof. From Theorem 5 and Theorem 10 in [1], for some m = (O((
√

d/ε) log L))d−1, the
quadtree defined by a has an associated k-salesman tour π0 such that3

E[w(π0)] ≤ (1 + ε/6) · opt, (1)

and π0 crosses each facet F of each cell of the quadtree only at points from grid(F, m).
We then apply Theorem III.3 from [6] on π0 for some parameter r ∈ R. This results in

an (m, r)-simple tour π visiting the same set of points as π0, such that

E[w(π)] ≤ (1 + O(d2/r)) · w(π0) ≤ (1 + ε/6) · w(π0), (2)

where the second inequality holds for some r = O(d2/ε) that is well-chosen.
If π crosses a facet F of a cell of the quadtree only once, letting q denote that crossing,

then q belongs to π0. Since π0 crosses each facet F only at points from grid(F, m), the above
crossing q belongs to grid(F, m).

From (1) and (2), we have

E[w(π)] ≤ (1 + ε/6)2 · opt < (1 + ε/2) · opt.

Markov’s inequality implies that, with probability at least 1/2, we have w(π0) ≤ (1 + ε) · opt.
This completes the proof of the claim. ◀

4.2 Budget Multipath Problem
▶ Definition 12 (budgets). Let Φ = dk1−1/dL. We say that s ∈ R is a budget if either

s = 0; or
s ∈ [1/(r2 + m1/(d−1)), (1 + ε)2 · Φ] and there exists i ∈ N such that

(1 + ε/(2d · rd−1 + 3 log2 n))i = s.

Let S be the set of all budgets.

3 The bound in expectation is obtained in the proofs in [1].

SoCG 2024

81:6 Faster Approximation Scheme for Euclidean k-TSP

▶ Definition 13 (budget multipath problem). We are given
a cell C in the quadtree,
a fine multiset B ⊆ ∂C,
a perfect matching M on B,
a budget s ∈ S.

We look for a collection Q of paths in C satisfying all of the following properties:
Q is (m, r)-simple;
Q has total length at most s;
the intersection between Q and ∂C is B;
there is a one-to-one correspondence between the paths in Q and the edges in M , where
we say that a path q ∈ Q corresponds to an edge (u, v) ∈ M if and only if u and v are
the two endpoints of q.

The goal is to maximize the number of points in P visited by Q.

The Euclidean k-TSP can be reduced to the budget multipath problem. To see the
reduction, consider the budget multipath problem for the root cell C0 in the quadtree, the
multiset B := ∅, the set M := ∅, and every budget s ∈ S. Let s∗ ∈ S be the minimum s such
that the solution Q to the above budget multipath problem on (C0, ∅, ∅, s) visits at least
k points. We will show in Section 4.4 that s∗ is a near-optimal solution to the Euclidean
k-TSP.

4.3 First Algorithm: Dynamic Program with Budgets
To simplify the presentation, we start by presenting in this section a first algorithm for the
budget multipath problem that conveys the main ideas in the algorithmic design, although
its running time is not as good as claimed in Theorem 7.

The algorithm is a dynamic program parameterized by the budget; see Section 4.3.1. The
analysis of the algorithm contains the main technical novelty of the paper; see Section 4.3.2.

Later in Section 4.4, we improve the running time of the algorithm so as to achieve the
claimed running time in Theorem 7.

4.3.1 Construction
Consider a fixed cell C, a fixed budget s ∈ S, and a fixed fine multiset B ⊆ ∂C. We construct
a set MC

s [B] of pairs (M, κ), where M is a perfect matching on B and κ is an integer.
Intuitively, κ indicates the number of points that can be visited by a collection of paths Q
such that there is a one-to-one correspondence between the paths in Q and the edges in M

and Q has total cost at most s.
For notional convenience, we denote

MC
s :=

⋃
fine multiset B⊆∂C

MC
s [B].

We construct MC
s [B] in the bottom up order of the cell C in the quadtree; for a fixed

cell C, in increasing order of the budget s ∈ S; and for a fixed budget s, in non-decreasing
order of cardinality of the fine multiset B ⊆ ∂C.

Leaf Cells

Consider a leaf cell C. We construct MC
s [B] in non-decreasing order of |B|.

Case 1: |B| = 0. MC
s [B] := {(∅, 0)}.

E. van Wijland and H. Zhou 81:7

Case 2: |B| = 2. Let u and v be the two elements in B. Since C is a leaf cell, there are
two subcases.
Subcase 2.1: C ∩ P = ∅. Let

MC
s [{u, v}] :=

{
{({(u, v)}, 0)} if dist(u, v) ≤ s

∅ if dist(u, v) > s

Subcase 2.2: C ∩ P = {p} for some point p, letting np ∈ N denote the multiplicity of p

in P . Let

MC
s [{u, v}] :=

{({(u, v)}, np)} if dist(u, p) + dist(p, v) ≤ s

{({(u, v)}, 0)} if dist(u, v) ≤ s < dist(u, p) + dist(p, v)
∅ if dist(u, v) > s

Case 3: |B| > 2. We construct MC
s [B] using the following formula:

MC
s [B] :=

⋃
s1+s2≤s
s1,s2∈S

 ⋃
u,v∈B

u̸=v

{
(M ∪ {(u, v)}, κ)|(M, κ) ∈MC

s1
[B \ {u, v}], dist(u, v) ≤ s2

} .

(3)

Non-Leaf Cells

Consider a non-leaf cell C. Let C1, . . . , Cω be the ω children of C in the quadtree. First,
we enumerate all possible budgets s1, . . . , sω for the ω children, such that

∑
i si ≤ s. Next,

we enumerate all possible pairs (M1, κ1) ∈ MC1
s1

, . . . , (Mω, κω) ∈ MCω
sω

. As in [6], we say
that the matchings M1, . . . , Mω are compatible if (1) for any pair of neighboring cells C ′

and C ′′, the endpoints of the matchings on a shared facet are the same; and (2) combining
M1, . . . , Mω results in a set of paths with endpoints in ∂C. If the matchings M1, . . . , Mω are
compatible, we let M denote the matching that is the result of Join(M1, . . . , Mω), where
the Join operation is defined in [6]. If B equals the multiset consisting of the endpoints of
the edges in M , we insert the pair (M,

∑
i κi) into MC

s [B].

4.3.2 Analysis
The following lemma shows that discretizing the possible lengths of a path into budgets in
the construction of Section 4.3.1 preserves the near-optimality of the cost of the solution. Its
proof is delicate.

▶ Lemma 14. Let C be any cell. Let Q be an (m, r)-simple path collection in C of length at
most (1 + ε) · Φ. Let κ denote the number of points visited by Q. Let multiset B consist of
the intersection points between Q and ∂C. Let M denote a perfect matching on the points in
B such that there is a one-to-one correspondence between the paths in Q and the edges in M .
Then there exist κ′ ≥ κ and s ∈ S such that (M, κ′) ∈MC

s [B] and s is at most (1 + ε) times
the total length of the paths in Q.

In the rest of Section 4.3.2, we prove Lemma 14.
Let τ denote the total length of the paths in Q. We prove the claim in two cases,

depending on whether τ is smaller or greater than 1/(r2 + m1/(d−1)).

SoCG 2024

81:8 Faster Approximation Scheme for Euclidean k-TSP

Case 1: τ < 1/(r2 + m1/(d−1))

We show that for any (u, v) ∈M , u = v. If B = ∅, this is trivial. Assume that B ̸= ∅, and
let p1 and p2 be two points in B.

▶ Fact 15. Either dist(p1, p2) ≥ 1/(r2 + m1/(d−1)) or p1 = p2.

Proof. Let l be the side length of C. By Section 4.1, l ≥ 1.

Case (a): There exists a facet F of C that contains both p1 and p2. Since Q is an
(m, r)-simple collection of paths, by the definition of B in the claim and by the definition
of (m, r)-simple paths (Definition 10), B is fine. Let bF denote the number of points of
B that are in F . By the definition of a fine multiset (Definition 9), either p1 = p2 or
p1, p2 ∈ grid(F, g(bF)), where g(·) is an integer-valued function such that g(bF) ≤ r2d−2/bF .
Hence either p1 = p2 or, by Definition 8, dist(p1, p2) ≥ l/(r2d−2)1/(d−1) ≥ 1/(r2 + m1/(d−1)).

Case (b): There there exists no facet of C that contains both p1 and p2. Let F1 and F2
be two facets of C, such that F1 contains p1 and F2 contains p2. The non-trivial case is when
F1 and F2 are neighboring faces. In this case, neither p1 nor p2 can lie on the intersection,
because we are in the case where no facet of C contains both p1 and p2. Since B is a fine
multiset, there are two cases according to Definition 9. In the first case, by Definition 8, for
every facet F of C, the minimum distance between two points in grid(F, m) is l/m1/(d−1).
Therefore, for both i ∈ {1, 2}, we have dist(pi, F1∩F2) ≥ l/m1/(d−1). Similarly, in the second
case, we have dist(pi, F1 ∩ F2) ≥ l/(r2d−2)1/(d−1). Furthermore, F1 and F2 are orthogonal.
Therefore,

dist(p1, p2) ≥
√

d min{l/m1/(d−1), l/(r2d−2)1/(d−1)} ≥ 1/(r2 + m1/(d−1)).

This completes the proof of the claim. ◀

Hence for any (u, v) ∈ M , either u = v or dist(u, v) ≥ 1/(r2 + m1/(d−1)). Since
1/(r2 + m1/(d−1)) > τ ≥

∑
(u,v)∈M dist(u, v), it is impossible that there exists (u, v) ∈ M

such that dist(u, v) ≥ 1/(r2 + m1/(d−1)). Thus, for any (u, v) ∈M , u = v.
By the definition of the quadtree in Section 4.1, the distance from any point in P to

∂C is at least 1/2, so Q does not visit any point from P . Hence κ = 0. By induction on
the size of M ′, for any perfect matching M ′ on B such that ∀(u, v) ∈ M ′, u = v, we have
(M ′, 0) ∈ MC

0 [B]. Thus, (M, κ′) ∈ MC
s [B], where s = 0 ≤ (1 + ε) · τ and κ′ = 0 ≥ κ. The

lemma holds when τ < 1/(r2 + m1/(d−1)).

Case 2: τ ≥ 1/(r2 + m1/(d−1))

▶ Fact 16. Let C be a cell in the quadtree. Let B be a fine multiset of points in ∂C. We
have |B| ≤ 2d · 2rd−1.

Proof. Let F be a facet of C and bF denote the number of points of B that are on F . By
Definition 9, either one of the following two cases holds: (i) bF ≤ 1 and B ∩ F ⊆ grid(F, m);
(ii) bF ≥ 2 and B ∩ F ⊆ grid(F, g(bF)) for some g(bF) ≤ r2d−2/bF . Moreover, each point in
grid(F, g(bF)) occurs at most twice in B ∩ F .

We show that bF ≤ 2rd−1. In case (i), this is trivial. In case (ii), since each point from
grid(F, g(bF)) is contained at most twice in B ∩ F , we have bF ≤ 2g(bF). Together with
g(bF) ≤ r2d−2/bF , we have bF ≤ 2rd−1. Furthermore, since C is a d-dimensional hypercube,
C has 2d facets. The claim follows. ◀

E. van Wijland and H. Zhou 81:9

▶ Lemma 17. Let C be any cell. Let h denote the height of the subtree rooted at C. Let Q be
an (m, r)-simple path collection in C of length at most (1 + ε) ·Φ. Let τ denote the length of
Q. Let κ denote the number of points visited by Q. Let multiset B consist of the intersection
points between Q and ∂C. Let M denote a perfect matching on the points in B such that
there is a one-to-one correspondence between the paths in Q and the edges in M . Then there
exist κ′ ≥ κ and s ∈ {

(
1 + ε/(2d · rd−1 + 3 log2 n)

)i
, i ∈ Z} such that (M, κ′) ∈MC

s [B] and
s ≤ τ · (1 + ε/(2d · rd−1 + 3 log2 n))2d·rd−1+h.

Proof. We proceed by induction in the bottom-up order of the cell C in the quadtree.

Case (a): C is a leaf cell. Observe that B is obtained by |B|/2 inclusion operations of pairs
of points in the construction in Section 4.3.1. By Definition 10, B is a fine multiset. Therefore,
by Fact 16, we have |B| ≤ 2d · 2rd−1. Since the cost inside C is obtained after at most
|B|/2 ≤ 2d·rd−1 rounding operations, there exists s ∈ {

(
1 + ε/(2d · rd−1 + 3 log2 n)

)i
, i ∈ Z}

such that s ≤ τ · (1 + ε/(2d · rd−1 + 3 log2 n))2d·rd−1 such that (M, κ′) ∈ MC
s [B] for some

κ′ ≥ κ.

Case (b): C is a non-leaf cell. Let C1, . . . , Cω be the children of C in the decomposition.
Let κi denote the number of points visited by Q inside of Ci. Let τi denote the cost of
Q inside of Ci. Let hi denote the height of the subtree rooted at Ci. By induction, for
each i ∈ [1, ω], there exist κ′

i ≥ κi and si ∈ {
(
1 + ε/(2d · rd−1 + 3 log2 n)

)i
, i ∈ Z} such that

(Mi, κ′
i) ∈MCi

si
[Bi] and si ≤ τi · (1 + ε/(2d · rd−1 + 3 log2 n))2d·rd−1+hi .

Let κ′ :=
∑

i κ′
i and let s be the smallest budget in S that is at least

∑
i si.

Combining the solutions in all Ci and noting that h ≥ hi + 1 for all i, we have

(M, κ′) ∈MC
s [B]

and

κ′ =
∑

i

κ′
i ≥

∑
i

κi = κ

and

s ≤ (1 + ε/(2d · rd−1 + 3 log2 n)) ·
∑

i

si

≤ (1 + ε/(2d · rd−1 + 3 log2 n)) ·
∑

i

τi · (1 + ε/(2d · rd−1 + 3 log2 n))2d·rd−1+hi

≤ (1 + ε/(2d · rd−1 + 3 log2 n))2d·rd−1+h
∑

i

τi

= (1 + ε/(2d · rd−1 + 3 log2 n))2d·rd−1+h · τ.

This completes the proof of the claim. ◀

Finally, let us bound 2d · rd−1 + h. Since the instance is well-rounded, there exists an
absolute constant D such that the size of the bounding box is at most Dk2 (Definition 2).
Therefore, the height of the quadtree is at most ⌈log2(Dk2)⌉ ≤ log2(Dn2) + 1 ≤ log2 D +
2 log2 n + 1 ≤ 3 log2 n. Thus, 2d · rd−1 + h ≤ 2d · rd−1 + 3 log2 n for n large enough. Hence

τ · (1 + ε/(2d · rd−1 + 3 log2 n))2d·rd−1+h ≤ τ · (1 + ε/(2d · rd−1 + 3 log2 n))2d·rd−1+3 log2 n

≤ τ · (1 + ε).

SoCG 2024

81:10 Faster Approximation Scheme for Euclidean k-TSP

By Lemma 17, there exists s ∈ {
(
1 + ε/(2d · rd−1 + 3 log2 n)

)i
, i ∈ Z} and κ′ ≥ κ such that

(M, κ′) ∈MC
s [B] and s ≤ (1 + ε/(2d · rd−1 + 3 log2 n)2d·rd−1+h · τ . We have s ≤ (1 + ε) · τ ≤

(1 + ε)2 · Φ. Therefore, s ∈ S. This completes the proof of Lemma 14.

4.4 Improved Algorithm and Proof of Theorem 7
4.4.1 Construction
In order to achieve the claimed running time in Theorem 7, we combine the algorithm in
Section 4.3 with the rank-based approach from [6].

Let ΓB denote the set of all perfect matchings on B. We say that M1 and M2 in ΓB fit if
their union is a Hamiltonian Cycle on B.

▶ Definition 18 (representation, [6]). Let B be a set. Let A and A′ be two subsets of ΓB ×N.
We say that A′ represents A if for all M ∈ ΓB we have

max{κ|(M ′, κ) ∈ A′ and M fits M ′} = max{κ|(M ′, κ) ∈ A and M fits M ′}.

▶ Lemma 19 (reduce, [3, Theorem 3.7], see also [6, Lemma 5.2 in the full version]). There
exists an algorithm, called reduce, that given a set B and A ⊆ ΓB × N, computes in time
|A| · 2O(|B|) a set A′ ⊆ A such that A′ represents A and |A′| ≤ 2|B|−1.

Let C be a cell in the quadtree and let s ∈ S. We define the family {RC
s [B]}B and the

set RC
s in the same way as we define the family {MC

s [B]}B and the set MC
s in Section 4.3,

except that we use reduce so as to keep the number of elements in RC
s [B] bounded.

▶ Remark 20. It is standard to enrich the dynamic program so that we obtain a collection of
paths instead of the total length of that collection. Indeed, once the dynamic programming
table is computed, one can recursively reconstruct the corresponding path.

4.4.2 Analysis
▶ Lemma 21 (adaptation from [6, Lemma 5.3 in the full version]). For any cell C in the
quadtree, any budget s ∈ S, and any fine multiset B ⊆ ∂C, the set RC

s [B] represents MC
s [B].

Lemma 22 is an adaptation from [6].

▶ Lemma 22 (adaptation from [6, Lemma 5.4 and Claim 5.5 in the full version]). The running
time of the algorithm for all cells C in the quadtree, for all budgets s ∈ S, and for all fine
multisets B ⊆ ∂C is n · 2O(rd−1) · log2d2·2d

n.

Proof of Theorem 7. From the structure theorem (Theorem 11), with probability at least
1/2, there exists a k-salesman tour π that is (m, r)-simple and such that

w(π) ≤ (1 + ε) · opt. (4)

We condition on the above event in the rest of the analysis.
According to [1],

opt ≤ dk1−1/dL = Φ,

where the equality follows by the definition of Φ (Definition 12). Therefore,

w(π) ≤ (1 + ε) · Φ.

E. van Wijland and H. Zhou 81:11

Let C0 be the root cell of the quadtree. Since π is a closed path strictly contained in C0, the
set of points of ∂C0 is B := ∅, and the only matching on B is M := ∅. Let κ be the number
of points visited by π. Since π is a k-salesman tour, κ ≥ k. Since w(π) ≤ (1 + ε) ·Φ, we may
apply Lemma 14 on C0 and {π} and obtain an integer κ′ ≥ κ and a budget s ∈ S such that
(∅, κ′) ∈MC0

s and

s ≤ (1 + ε) · w(π). (5)

Lemma 21 ensures that RC0
s [∅] represents MC0

s [∅], hence

max{κ′′|(M ′, κ′′) ∈MC0
s [∅] and ∅ fits M ′} = max{κ′′|(M ′, κ′′) ∈ RC0

s [∅] and ∅ fits M ′}.

Since ∅ fits ∅ and (∅, κ′) ∈ MC0
s [∅], we have κ′ ≤ max{κ′′|(M ′, κ′′) ∈

MC0
s [∅] and ∅ fits M ′}. Therefore, there exists (M ′, κ′′) ∈ RC0

s [∅] such that M ′ fits ∅
and κ′′ ≥ κ′. The only matching M ′ on ∅ that fits ∅ is ∅, hence M ′ = ∅. Thus, (∅, κ′′) ∈ RC0

s ,
for some κ′′ ≥ κ′ ≥ k.

Let s∗ be the output of the algorithm, which is the minimum budget such that (∅, κ′′) ∈
RC0

s∗ for some κ′′ ≥ k. From (4) and (5), we have

s∗ ≤ (1 + 3ε) · opt.

Replacing ε by ε′ := ε/3 leads to the approximation ratio in the claim.
The running time in the claim follows from Lemma 22.
For the derandomization, observe that the only step using randomness is the random

shift to construct the quadtree. Since there are O(nd) possible shifts, the algorithm can be
derandomized by increasing the running time by a factor O(nd).

This completes the proof of Theorem 7. ◀

▶ Remark 23. The spanner techniques introduced by Rao and Smith [10] lead to a better
running time for TSP, but those techniques do not seem to apply to k-TSP. Indeed, a key
property for TSP is the existence of a near-optimal solution using the spanner only (see
Lemma 5.1 of [6]). However, this property does not hold for k-TSP, since the solution to
k-TSP might be much less expensive compared with the spanner of the entire graph.

References
1 Sanjeev Arora. Polynomial time approximation schemes for Euclidean traveling salesman and

other geometric problems. Journal of the ACM (JACM), 45(5):753–782, 1998.
2 Baruch Awerbuch, Yossi Azar, Avrim Blum, and Santosh Vempala. Improved approximation

guarantees for minimum-weight k-trees and prize-collecting salesmen. In Proceedings of the
twenty-seventh annual ACM symposium on Theory of Computing (STOC), pages 277–283,
1995.

3 Hans L. Bodlaender, Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Deterministic
single exponential time algorithms for connectivity problems parameterized by treewidth.
Information and Computation, 243:86–111, 2015.

4 Michael R. Garey, Ronald L. Graham, and David S. Johnson. Some NP-complete geometric
problems. In Proceedings of the eighth annual ACM Symposium on Theory of Computing
(STOC), pages 10–22, 1976.

5 Sariel Har-Peled and Benjamin Raichel. Net and prune: A linear time algorithm for Euclidean
distance problems. Journal of the ACM (JACM), 62(6):1–35, 2015.

6 Sándor Kisfaludi-Bak, Jesper Nederlof, and Karol Węgrzycki. A Gap-ETH-tight approximation
scheme for Euclidean TSP. In IEEE 62nd Annual Symposium on Foundations of Computer
Science (FOCS), pages 351–362, 2021. Full version at arXiv:2011.03778.

SoCG 2024

https://arxiv.org/abs/2011.03778

81:12 Faster Approximation Scheme for Euclidean k-TSP

7 Stavros G. Kolliopoulos and Satish Rao. A nearly linear-time approximation scheme for the
Euclidean k-median problem. SIAM Journal on Computing, 37(3):757–782, 2007.

8 Cristian S. Mata and Joseph S. B. Mitchell. Approximation algorithms for geometric tour and
network design problems. In Proceedings of the eleventh annual Symposium on Computational
Geometry (SoCG), pages 360–369, 1995.

9 Joseph SB Mitchell, Avrim Blum, Prasad Chalasani, and Santosh Vempala. A constant-factor
approximation algorithm for the geometric k-mst problem in the plane. SIAM Journal on
Computing, 28(3):771–781, 1998.

10 Satish B Rao and Warren D Smith. Approximating geometrical graphs via “spanners” and
“banyans”. In Proceedings of the thirtieth annual ACM symposium on Theory of computing,
pages 540–550, 1998.

	1 Introduction
	2 Notations
	3 Partitioning Into Subinstances
	4 Dynamic Programming
	4.1 Preliminaries: Notations, Quadtree, and Structure Properties
	4.2 Budget Multipath Problem
	4.3 First Algorithm: Dynamic Program with Budgets
	4.3.1 Construction
	4.3.2 Analysis

	4.4 Improved Algorithm and Proof of Theorem 7
	4.4.1 Construction
	4.4.2 Analysis

