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Abstract
Given a convex region P and a set of irregular polygons with associated profits, the Maximum
Polygon Packing Problem seeks a non-overlapping packing of a subset of the polygons (without
rotations) into P maximizing the profit of the packed polygons. Depending on the size of an instance,
we use different algorithmic solutions: integer linear programs for small instances, genetic algorithms
for medium-sized instances and a best-fit approach for large instances. For packing rectilinear
polygons we provide a dedicated best-fit algorithm.
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1 Introduction

Packing problems ask to pack a set of items into a larger container such that no items overlap
each other. Packing is a classic and extensively-studied geometric optimization problem. In
the Maximum Polygon Packing Problem (MPPP), the input is a convex region P in the plane
and a set of simple polygons Qi, . . . , Qn that has associated profit πi with each polygon Qi.
The objective is to find a non-overlapping packing of a subset of the polygons into P such
that the sum of the profits of the packed items is maximized.

Most existing practical algorithms for packing simple polygons have been developed for
the strip-packing problem, in which all polygons have to be packed into a strip of a certain
width, and the objective is to minimize the height [13]. We adapt several of these algorithms
to the MPPP and experimentally evaluate them on the instances of the 2024 Computational
Geometry Challenge (CG:SHOP 2024).1 For more details on the MPPP, see the survey paper
by Fekete et al. [7] and for other proposed solutions for this challenge we refer to [6, 10, 15].

1 https://cgshop.ibr.cs.tu-bs.de
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2 Algorithmic methods

2.1 Best-Fit Algorithm
A simple heuristic for packing problems is the bottom-left method [1], which takes a sequence
of items and iteratively packs the items into the bottom-left corner of the remaining space.
This approach can be combined with a best-fit strategy [3], which aims to pack the item next
that best fits into a given corner. This strategy has in particular been successfully used for
rectilinear items [12].

We adapt these approaches to our setting. A specific challenge is the trade-off between
items that fit well and items with large profit. As measure for how well an item fits into the
bottom-left corner, we use the distance d between the bottom-left corner of the bounding box
of the item and the bottom-left corner of the container, with a smaller distance corresponding
to a better fit. By dmin and dmax we denote the minimum and maximum such distance
among all unplaced items. As measure for how profitable an item is we simply use the
area-to-value ratio v with a smaller ratio being preferable. By vmin and vmax we denote the
minimum and maximum area-to-value ratio among all unplaced items. A crucial component
of our scoring system is the introduction of a parameter p (between 0 and 2) that allows for
the adjustment of the weight assigned to the area-to-value ratio. Thus, from the remaining
items we place the one with the lowest score s, where

s = p × v − vmin

vmax − vmin
+ d − dmin

dmax − dmin
, (1)

assuming the denominators are non-zero. If vmax − vmin or dmax − dmin equals 0, we simply
choose the item with smallest d or largest v, respectively.

The sequential arrangement of items requires a meticulous evaluation of each item within
the given problem instance. To further refine the packing configuration, we introduce a
preprocessing step wherein we sort the items according to their area-to-value ratio and
selectively remove a proportion of the least valuable items. This strategic elimination
ensured a greater utilization of more valuable items during the packing process. To adjust the
proportion of items removed, we introduced a parameter, which was optimized experimentally.

For problem instances with rectilinear items only, specifically the atris instances, we avoid
utilizing Minkowski sums, commonly used for calculating nofit polygons (NFPs) [2], which are
crucial for determining feasible placements for each item. For these instances we simplified
the computation by determining NFPs for rectangles and subsequently combining these.
This simplification proved effective in improving the running time without compromising
the quality of our packing solutions. In order to also simplify updating a general polygon’s
feasible placement positions, we first generate a decomposition into convex parts for each
polygon. This speeds up the calculation of the NFPs for two given polygons by taking the
union of the Minkowski sums of their convex parts.

2.2 Genetic Algorithm
When iteratively packing items, the sequence in which polygons are inserted plays a crucial
role in the overall quality of the solution. Finding a good insertion sequence is computationally
challenging due to the large number of possible permutations to consider. Consequently,
metaheuristics are employed to navigate the complex solution space efficiently. In particular
genetic algorithms (GAs) have been used successfully for packing rectangular shapes [9] as
well as strip-packing of general polygons [11]. Since the genetic algorithm is only used to
determine the order in which the objects are considered, it is easily adapted to our setting.
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A genetic algorithm requires defining individuals, an initial population, a fitness function
for the selection procedure, a crossover and a mutation method. The individuals in our
GA’s population are the permutations of all polygons of a given problem instance. The
permutation is used as insertion order. Given such an order, our simple model then uses a
bottom-left strategy to pack the items. Since the bottom-left strategy may give suboptimal
solutions independent of the insertion order, we extended the solution space by assigning
a packing strategy to every single item individually. The additional packing strategies are
the bottom-right, top-left, and top-right strategies, which are analogous to the bottom-left
strategy. We refer to this strategy as corner strategy.

For the initial population we use the following permutations: Firstly, the items sorted
according to their values as well as their area in ascending and descending order; secondly, the
permutation obtained by running a modified best-fit algorithm from Section 2.1, where the
score function minimizes the vertical position of the bottom-left corner of the bounding boxes;
thirdly, random permutations. If the corner strategy is used we additionally randomize the
placement strategy per item, except for the individual from the modified best-fit algorithm.
As fitness function we simply use the final packing score. After each generation’s fitness is
evaluated, tournament selection is performed to populate the following generation.

We use two standard crossover methods, namely Order Crossover (OX) and Partially
Mapped Crossover (PMX). As mutation of an individual, either the positions of two of its
items in the insertion order are swapped or the current packing strategy changes for example
from bottom-left to top-right. We conducted experiments with different probability values
for mutation ranging from 1% to 40%, and for crossover ranging from 50% to 100%.

For instances with less than 50 items we observed that providing an initial solution
by a best-fit algorithm does not guarantee a better overall fitness, even within the initial
population. Results varied for different instances regarding crossover and mutation. For
instances with more than 50 items, however, providing better initial solutions leads to better
overall results with generally better values achieved by higher mutation probabilities.

2.3 Integer Linear Program

For very small instances we use a integer linear programming (ILP) formulation based on
similar models for the strip-packing problem by Cherri et al. [4], Rodrigues et al. [16] and
Díaz & Ortuño [14]. More specifically, we use non-overlapping constraints based on NFPs,
see [4, Constraints (16)-(20)] for details. These models require a convex decomposition of the
region outside of a NFP, and the main difference between the models is how this is achieved.
The NFP covering model (NFP-CM) [4] has overlapping regions, resulting in symmetrical
solutions. To address this, its improved version I-NFP-CM [16] adds an additional constraint
for each region to make them disjoint. In contrast, NFP-CM-VS [14] divides the regions into
vertical slices, which are also disjoint but require fewer constraints.

We adapted all of these models to our setting. Compared to the strip-packing formulation,
we firstly need to incorporate the convex container and secondly need binary variables pi with
pi = 1 representing that we pack the item i. Our objective is then to maximize

n∑
i=1

valuei · pi.

We use the big-M method to disable constraints for items i when pi = 0 [5]. As the instances
used were too large to be solved optimally by our formulation, in Section 3 we report on
the best feasible solutions obtained after a certain amount of time. We also used our ILP to
complete partial solutions (Figure 1).

SoCG 2024
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(a) No initial partial solution, obtaining a
score of 1446.

(b) Initial partial solution (dark grey
items), obtaining a score of 1518.

Figure 1 Two solutions obtained by the ILP for jigsaw_rcf4_45bf920f_31. In the second
solution, the dark grey items were packed manually, the ILP was used to select the remaining items.

3 Practical computation

3.1 System Specification
The best-fit algorithm for rectilinear items is written in Java, whereas the genetic and best-fit
algorithms for arbitrary items are written in C++ using the CGAL 5.62 [17, 18] and Clipper23

libraries, in particular for computing Minkowski sums. Moreover, the ILP models were solved
using Gurobi 11 [8]. The computations presented were performed on a set of 8 similarly
equipped computers, all with an 8-core AMD 7 3700X processor running at 4.4 GHz.

3.2 Benchmark Data
We tested our implementations using the instances provided for CG:SHOP 2024. We divide
the instances into rectilinear instances and arbitrary instances sorted by size. We denote
small instances as having less than 100 items, medium instances as having 100 up to but not
including 500 items, and large instances as having 500 items or more.

3.3 Experimental Results
The findings presented in this section are the result of systematic experiments and, hence,
can slightly vary from the results presented in the official CG Challenge 2024 rankings, which
were obtained through exploratory experimentation.

As explained in Section 2.1, the best-fit algorithm utilizes two different means of calculating
NFPs depending on the specific instances. As can be seen in Figure 2, the algorithm for
rectilinear polygons outperforms the best-fit algorithm in terms of run-time. Furthermore,
our algorithm for the rectilinear instances performed especially well, as demonstrated by the
fact that this algorithm found the best solution for 21 out of 29 rectilinear instances in the
contest, including the example from Figure 3.

2 https://www.cgal.org/
3 https://angusj.com/clipper2

https://www.cgal.org/
https://angusj.com/clipper2
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Figure 2 Running times of the best-fit algorithm (here PR stands for percentage removed as
described in Section 2.1).

Figure 3 Example solution for atris2812 (rotated 90 degrees).
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Figure 4 Evolution of maximum score using the genetic algorithms. Red lines indicate a 60%
crossover value with swapping items in the mutation phase, green a 100% crossover value with
changing placement strategies, and blue a 100% crossover value without mutation (see Section 2.2).

The algorithm we considered next is the genetic algorithm as described in Section 2.2.
Figure 4 shows how the maximum score evolves over the number of generations, the graphs
indicate that after roughly 100 generations we only obtain diminishing returns. However, due
to slower running times, we applied this algorithm only to small and medium-sized instances.

The final algorithm presented in this paper (Section 2.3) is the ILP model. Due to long
running times, this model could only be executed on small instances. Even then, exact
solutions were not found and the best solution was returned after a computation time of
4 hours, in which for most instances between 106 and 5 · 106 branch-and-cut nodes were
explored by the ILP solver. Furthermore, as can be seen in Figure 5, there seems to be no
significant difference between the results for the different ILP variants.

Finally, we provide a brief comparison between the various methods in Figure 6, where we
see that the ILP outperforms the genetic algorithm, which outperforms the best-fit algorithm.
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4 Conclusion

We presented three different approaches to solving the Maximum Polygon Packing Problem
(MPPP): an ILP solver, a genetic algorithm, and a best-fit algorithm. We evaluated our
approaches on the datasets of the CG Challenge 2024. Solving the ILP resulted in the highest
scores for small instances but is the least scalable. Also small instances we did not solve
optimally. Finding more scalable ILP formulations for MPPP is a challenging open problem.

For instances too large for the ILP, we used a genetic algorithm. This approach yields good
results for medium-sized instances. However, since to compute the fitness of an individual we
need to actually pack the items, this approach slows down considerably for large instances.
To remedy this situation, an alternative fitness function or a method for quickly estimating
the score would be required.

Finally, for the remaining instances, the best-fit algorithm can be used, as it is the most
scalable and can find a solution for all instances. In particular for instances with rectilinear
polygons, our best-fit algorithm outperformed other approaches in the contest. An interesting
direction for further research is to combine the various approaches. For example, an ILP
could be used within the best-fit algorithm to solve smaller subproblems optimally.
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