
A General Heuristic Approach for Maximum
Polygon Packing
Canhui Luo #

Huazhong University of Science and Technology, Wuhan, China

Zhouxing Su1 #

Huazhong University of Science and Technology, Wuhan, China

Zhipeng Lü #

Huazhong University of Science and Technology, Wuhan, China

Abstract
This work proposes a general heuristic packing approach to address the Maximum Polygon Packing
Problem introduced by the CG:SHOP 2024 Challenge. Our solver primarily consists of two steps:
(1) Partitioning the container and polygons to form a series of small-scale subproblems; (2) For each
subproblem, sequentially placing polygons into the container and attempting to eliminate overlaps.
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1 Introduction

The recent CG:SHOP 2024 Challenge introduced a variant of irregular packing problems
known as the Maximum Polygon Packing (MPP) problem. The MPP problem involves a
convex polygonal container C and a polygon set P = {p1, p2, ..., pN }, where polygon pi is
associated with a value vi. It seeks for a non-overlapping packing with the maximum total
value. The challenge presents a total of 180 instances whose number of polygons ranges from
28 to 50,000. The official document [4] gives a detailed description of the challenge.

Our proposed algorithm employs a general process to solve these instances indiscriminately,
and the overall framework is presented in Figure 1. We first partition a large-scale problem
into multiple small-scale subproblems (Section 2) and then solve each subproblem using
upper-level polygon ordering (Section 3.1) and lower-level packing optimization techniques
(Section 3.2). Section 4 presents our experimental results, followed by conclusions.
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Figure 1 The framework of our proposed algorithm.

2 Partitioning

In this section, we present the decomposition of the original large-scale problem into a series
of smaller MPP subproblems. It involves two components: partitioning the container C into
multiple regions and assigning polygons to each region.

2.1 Container Partitioning

The container partitioning process consists of two steps, as shown in Figure 2. Initially, we
arrange two-dimensional square grids starting from the bottom-left corner of the bounding
box until the entire container is covered. The subregions formed by the intersection of the
container with all the grids constitute its partition C = C1 ∪ C2 ∪ ... ∪ Cm. Subsequently,
we merge the small subregions with adjacent grids, which are difficult to be used effectively.
The grid is dimensioned to keep the scale of each subproblem at approximately 300 polygons,
making a trade-off between effectiveness and efficiency of lower-level packing optimization.

2.2 Polygon Assignment

We adopt a simple approach of randomly assigning polygons to each subregion. Specifically, for

each subregion Ci, we randomly select a polygon pj from P until
∑

j
area(pj)

area(Ci) ≥
∑N

i=0
area(pi)

area(C) .
The advantage of random assignment lies in ensuring that the overall characteristics of each
subproblem align with the original problem.
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Figure 2 The partitioning process for the instance jigsaw_cf1_4fd4c46e. Step 1 (left): Cover the
container with squares; Step 2: Intersect and merge small regions (from the middle to the right).

minimum translation

minimum translation

IFP

Container

Figure 3 Examples of NFP between two polygons and IFP between container and polygon.

3 Packing

3.1 Upper-Level Polygon Ordering

We define a priority for each polygon. We repeatedly select one remaining polygon with the
highest priority (ties are broken by value) and try to insert it into the current solution. If the
insertion with lower-level packing optimization fails, we skip the current polygon and turn to
the next one. For the majority of instances, the priority is defined as the value-to-area ratio
of a polygon (we also call it unit value). Polygons with higher unit values are prioritized
for putting in the container, which is called the Unit Value First (UVF) strategy. For
small-scale instances (N < 100), we employ the αβ-random strategy. It randomly selects
α% and β% of the polygons and reassigns their UVF-based priority to the highest and the
lowest, respectively. These instances are run for multiple times to ensure comprehensive
optimization, with α and β set to 10 in our implementation.

3.2 Lower-Level Packing Optimization

The position of a polygon can be represented by the coordinates l = (x, y) of a reference point,
such as the bottom-left corner of the boundary. Then, the translation of a polygon can be
represented by a vector pointing from its original position to its new position. Given a feasible
packing S and a polygon p to be placed, it is impossible to find a non-overlapping position
for p without moving other polygons in most cases. This section introduces the algorithm for
eliminating overlaps for an invalid packing, which involves solving an unconstrained nonlinear
problem and heuristic polygon movement.

SoCG 2024
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3.2.1 Overlap Minimization
To determine the appropriate translation for the polygons, we utilized the no-fit polygon
(NFP) and inner-fit polygon (IFP), which are fundamental in algorithmic approaches to
geometric design and optimization challenges. For a fixed polygon pi and a movable polygon
pj , NFP(pi, pj) describes their non-overlapping positions with boundaries in contact precisely,
which can be utilized to determine the minimum translation for pj to avoid overlap. Similarly,
IFP(pi, pj) is employed to determine the minimum translation to place pj inside pi. Figure 3
illustrates the polygon translations determined using NFP (left) and IFP (right). The readers
may refer to Burke et al. [2] for a more detailed description.

For a packing S, based on NFP and IFP, we define the overlap between polygons pi

and pj as fij(S), representing the minimum translation to separate them, and f0i(S) as the
minimum translation for moving pi to fit into the container. Subsequently, we employ the
separation algorithm proposed by Imamichi et al. [7] to minimize the overlap, which involves
solving an unconstrained nonlinear programming problem as follows:

min
S

F (S) =
∑

0≤i<j≤N

f2
ij(S) (1)

The model relaxes the non-overlapping constraint but introduces repulsion forces between
any two overlapped polygons. We use the classic L-BFGS (limited memory BFGS) method
to solve this problem. It makes the packing S converge to a local optimum but strongly
depends on the initial layout. The final floating-point computation results will be rounded
to integer grids, as the challenge only allows integer coordinates for polygons.

3.2.2 Polygon Move and Swap
The movement of polygons plays an important role in the heuristic strategy of jumping out
of local optimum traps, which involves two aspects: inserting a new polygon into the current
solution and moving an existing polygon to the position with minimal overlap. We employ
Differential Evolution (DE) to optimize the placement of a single polygon. This population-
based optimization algorithm iteratively evolves a population of candidate solutions by
combining individual differences. It employs a systematic mutation and crossover strategy to
explore the solution space efficiently, and the solving framework is depicted in Figure 4.

For a polygon p, we first generate a population πt = {lt
1, lt

2, ..., lt
Nπ

}|t=0 of size Nπ, where
each individual lt

i = (xt
i, yt

i) denotes a random position within IFP(C, p). At each iteration, we
adopt the “rand/1” [9] mutation operation: randomly select three distinct individuals, lt

r1
, lt

r2
,

and lt
r3

, and use the difference between lt
r2

and lt
r3

to perturb lt
r1

, obtaining lm
i , ∀i ∈ [1, ..., Nπ].

The differential variation is scaled by a parameter Mf (see the mutation operation in Figure 4).
Subsequently, the mutated population undergoes a one-to-one crossover operation with the
parent population. The crossover(lm

i , lt
i , Cr) operation randomly preserves the variable value

of one dimension from the mutated individual lm
i (ensuring the offspring to be different from

lt
i), while the other dimension is chosen with a probability of Cr, and gets the crossover result

lc
i , ∀i ∈ [1, ..., Nπ]. Finally, the selection operation retains the better one from each pair of lc

i

and lt
i to form the next generation. The criterion for “better” here is the sum of the squares

of overlaps between p and all other polygons (smaller means better). Note that the overlap
between p and its original position will also be considered to prevent p from being placed
back when trapped into a local optimum. When the maximum iteration number iterde is
reached, or a non-overlapping position is found, the algorithm returns the best individual
(i.e., the position of polygon p) from the population. The key parameters Nπ, Mf , Cr, and
iterde in the DE process are set to 20, 1.0, 0.9, and 50, respectively. Additional operation
variants and parameter configuration analysis can be found in reference [10].
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Figure 4 The iterative framework of Differential Evolution: evolution from generation t to
generation t + 1 through mutation, crossover, and selection operations.

1.remove polygon

2.the first move

3.the second move
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Figure 5 Polygon swap operation, followed by a separation process. Meanwhile, the right
subfigure shows the best results for instance jigsaw_cf1_7b534d0f, with 18 polygons placed.

Let move(S, pi, S′) be a movement/insertion of polygon pi, resulting in S′. We fur-
ther define swap(S, pi, pj , S′), the swap of polygons pi and pj , as a single move usually
results in poor packing. It consists of two moves: (1) move(S \ {pi}, pj , Stemp), and (2)
move(Stemp, pi, Sswap). The first move releases space by ignoring pi so that pj will be moved
near pi with a high probability. Similarly, pi will be placed near the original position of pj in
the second move. Following the move/swap, the separation algorithm can be applied to the
new layout, converging it to another local optimum, as illustrated in Figure 5.

3.2.3 Swap-based Local Search
Evaluating all polygon pairs to perform the best swap is time-consuming. It entails N ·(N−1)

2
evaluations, each involving two moves with a time complexity of O(Nπ · iterde · Elap), where
O(Elap) for computing overlap between a single polygon and others, along with one separation
with a time complexity quadratic in N . Hence, we adopt a random swap-based local search.
Two polygons are randomly chosen at each iteration, and the swap operation, followed by
separation, is performed. It is accepted and substitutes the current packing upon obtaining
a better solution. The maximum number of iterations is controlled by parameter iter ls.

3.2.4 Move-based Tabu Search
In contrast to the swap operation, evaluating the best move of polygons has lower complexity.
After the local search reaches a local optimum, we employ a move-based tabu search to
explore the solution space comprehensively. Tabu search is a famous metaheuristic algorithm

SoCG 2024
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Figure 6 The comparison between αβ-Random strategy and UVF strategy on small instances.

introduced by Glover [5] and can be used for solving combinatorial optimization problems.
We adopt a tabu strategy incorporating a recency-based tabu list to prohibit reverting recent
operations to escape from the local optimum. In detail, if a polygon is moved at iteration
i, it is forbidden to be moved again until iteration i + T , where T is the tabu tenure, a
uniformly distributed random integer between ⌈0.2 · N⌉ and ⌈0.5 · N⌉. At each iteration, all
the non-tabu overlapped polygons are evaluated by move operation and separation, and the
best move that minimizes F (S) in Equation (1) is performed. Note that the polygons in
tabu status can still be moved when applying the separation algorithm. This procedure is
repeated until the maximum number of iterations iter ts is reached.

4 Results

We implement our algorithm in C++ programming language and compile it with Visual
Studio 2022. During the CG:SHOP 2024 competition, all instances are sequentially tested
on a 2.50GHz Intel Xeon Gold 6133 CPU and 128GB of RAM, and up to 16 threads are
employed for parallel optimization of subproblems for a single instance. We use the 2D
Minkowski sums package [11] in CGAL for the generation of the NFP and the IFP between
polygons, and the L-BFGS library [8] for the implementation of the separation algorithm.

Overall, our proposed algorithm demonstrates advantages on instances with significant
variations in polygonal unit values, which aligns with our upper-level UVF strategy. Moreover,
we matched the best solution on most small-scale instances (N < 100), as shown in Figure 6.
It is attributed to the αβ-random sequential strategy and multiple runs, which confirms the
deficiency of the UVF strategy that does not consider the impact of the shape of a polygon.

Figure 7 illustrates that in the lower-level packing optimization, move-based tabu search
(TS) plays a major role, and swap-based local search (LS) can provide better initial solutions
for TS. Nonetheless, LS also yields satisfactory results in a short running time. The primary
time consumption in the optimization arises from the attempts to insert each polygon into
the current solution in the late stage, while the improvement to the objective value is mainly
obtained in the first tens of seconds, as shown in Figure 8.



C. Luo, Z. Su, and Z. Lü 86:7

jig
saw

_c
f3_

c8
_1

30

jig
saw

_c
f1_

21
_1

59

ran
do

m_c
f1_

e1
_2

00

jig
saw

_rc
f1_

71
_3

27

ran
do

m_c
f1_

66
_5

00

jig
saw

_c
f2_

20
_6

70

ran
do

m_c
f1_

6b
_1

00
0

jig
saw

_rc
f4_

b7
_1

36
3

ran
do

m_c
f1_

28
_2

00
0

jig
saw

_rc
f1_

42
_3

31
8

ran
do

m_c
f2_

a2
_5

00
0

jig
saw

_c
f1_

6b
_6

59
8

Instance

0.0

0.2

0.4

0.6

0.8

1.0

1.2
R

el
at

iv
e 

Va
lu

e
Relative value using LS only
Relative value using TS only
Relative value using both LS and TS

0

5000

10000

15000

20000

25000

R
un

ni
ng

 T
im

e 
(S

ec
)

Running time using LS only
Running time using TS only
Running time using both LS and TS

Figure 7 The comparison of relative value and running time of instances under different search
strategies, where the relative value refers to the ratio of the value of our solution to the best one.

Figure 8 The relative value over time for the instances with hundreds of polygons, while large-scale
instances will be partitioned into multiple parallelizable sub-problems with similar scales.

The maximum number of iterations of local search and tabu search, iter ls and iter ts,
are critical parameters affecting the solution quality, with a higher number of iterations
potentially resulting in higher-quality solutions but also requiring a longer time. In our
implementation, both parameters are set to 100. We also conducted experiments under the
configuration of iter ls = iter ts = 10. Figure 9 compares the results of the two configurations
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Figure 9 The performance of the proposed algorithm under different parameters of iter ls and
iterts. Each instance is identified by the lexicographic order of its name among all instances.

on all the tested instances. The overall advantage of iter ls = iter ts = 100 is about 3.49%.

5 Conclusion

This work introduces a heuristic algorithm with local search and tabu search for solving
the maximum polygon packing problem and got the second place in the CG:SHOP 2024
Challenge. The proposed algorithm is versatile in different instance categories without
consideration or utilization of the specific characteristics of a polygon. Other challenge
participants also proposed various solving frameworks and strategies [3, 6, 1], such as slate
preprocessing, integer linear programming, and diverse priority strategies. Integrating these
inspiring techniques may improve our algorithm further.
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