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Abstract
The sliding cubes model is a well-established theoretical framework that supports the analysis
of reconfiguration algorithms for modular robots consisting of face-connected cubes. This note
accompanies a video that explains our in-place algorithm for reconfiguration in the sliding cubes
model. Specifically, our algorithm [2] reconfigures any n-cube configuration into a compact canonical
shape using a number of moves proportional to the sum of coordinates of the input cubes. As is
common in the literature, we can then reconfigure between two arbitrary shapes via their canonical
configurations. The number of moves performed by our algorithm is asymptotically worst-case
optimal and strictly improves upon the current state-of-the-art.
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1 Introduction

Modular robots consist of a large number of comparatively simple robotic units. These units
can attach to and detach from each other, move relative to each other, and in this way
form different shapes or configurations. This shape-shifting ability allows modular robots to
robustly adapt to previously unknown environments and tasks. In our video, we illustrate an
algorithm in the sliding cubes model, a well-established theoretical framework that supports
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the analysis of reconfiguration algorithms for modular robots consisting of face-connected
cubes. In this model, a configuration C consists of a set of face-connected cubes. The model
allows two types of moves: slides and convex transitions (see Figure 1). A move that operates
on a cube c is valid only if C \ {c} is connected.

Figure 1 Moves in the sliding cube model. Left: Before the moves. Right: After the moves.

Until recently, the most efficient algorithm for the reconfiguration problem in 3D was
the algorithm by Abel and Kominers [1], which uses O(n3) moves to transform any n-cube
configuration into any other n-cube configuration. As is common in the literature, this
algorithm reconfigures the input into an intermediate canonical shape. Stock et al. [5]
recently announced a worst-case bound of O(n2) moves for the Abel and Kominers algorithm.
Furthermore, their paper presents an in-place reconfiguration algorithm, which runs in
time proportional to a measure of the size of the bounding box times the number of cubes.
Specifically, their algorithm requires O(n(wd + h)) moves in the worst-case, where w, d,
and h are the width, depth, and height of the bounding box, respectively.

In our video, we illustrate our novel in-place algorithm that reconfigures any n-cube
configuration into a compact canonical shape using a number of moves proportional to
the sum of coordinates of the input cubes [2, 3]. This number of moves is asymptotically
worst-case optimal. Furthermore, our algorithm directly extends to squares in two dimensions
and to hypercube reconfiguration in dimensions higher than three.

Video. Reconfiguration algorithms for squares or cubes involve many (literally) moving
pieces. As such, text and static images are not sufficient to convey an intuitive sense of their
inner workings. Furthermore, checking the correctness of such algorithms on paper only
is a challenging task which often fails to detect crucial edge cases. For these reasons, we
implemented our algorithm in SquareSlider [4] after extending the tool with 3D capabilities.

Our implementation simply checks for every cube it if allows one of the operations of the
algorithm in order (according to their alphabetical name, see the full version of the paper [2]).
SquareSlider computes a complete move sequence to compact a starting configuration; this
move sequence can be exported. Most animations in our video have been created by importing
the move sequences from SquareSlider into the open-source 3D software package Blender.1

The video provides a high-level overview of the various operations and definitions used
in our algorithm. Furthermore, it explains how these operations together ensure that every
configuration can be compacted and it sketches the analysis of the necessary number of
moves. The video roughly follows the outline of our algorithm given in Section 2 below.

1 https://blender.org

https://blender.org
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Figure 2 Example of a cube reducing ZC : the bottom red cube moved down.

2 Algorithm

The aim of our algorithm is to compact a configuration C. Call a cube c = (x, y, z) finished if
the cuboid spanned by the origin and c is completely in C, that is, if {0, . . . , x} × {0, . . . , y} ×
{0, . . . , z} ⊆ C. We call C finished if all cubes in C are finished. For a set of cubes S ⊆ C,
let (XS , YS , ZS) denote its coordinate vector sum

∑
(x,y,z)∈S(x, y, z). We aim to minimize

a potential function ΠC, which is defined in such a way that ΠC = O(XC + YC + ZC). We
call a configuration C non-negative if every cube c ∈ C has non-negative coordinates, and
we say that a sequence of m moves is safe if the result is a non-negative instance C′, such
that ΠC′ < ΠC and m = O(ΠC − ΠC′). This means that the move sequence reduces the
potential by at least some constant fraction of m by going from C to C′. We show that if C is
unfinished, it always admits a safe move sequence.

We define four different operations, that each individually reduce the z-coordinates of
cubes using at most three moves (see Figure 2). Next, we consider a longer move sequence
that moves a complete set of vertically connected cubes to a different x- or y-coordinate,
which we call a pillar shove (see Figure 3, left). Lastly, we define an operation that performs
any move of C that reduces the potential, and results in a non-negative instance. For a
complete definition of these operations, see the full version of this paper.

Low and high components. Suppose the previous operations do not apply. We define low
components as connected components on the ground layer, and high components as connected
components in the rest of the configuration (see Figure 3, right). We call a low component L

clear if C \ L is connected, and L contains no cube c = (0, 0, 0) at the origin. A clear low
component L is always connected to a high component via a vertically connected set of cubes,
which we call its clearing pillar. The full version proves that such a clear low component
always exists.

Let L be a clear low component, and assume that L is too small (has too few cubes) to
reach the origin. We would like to perform a pillar shove on the clearing pillar P . However,
it could be that moving P would disconnect L. For this specific case we define one last
operation. This operation gathers cubes from L towards P to preserve connectivity with the
low component while performing a pillar shove on P .

This last operation moves cubes that are not part of the clearing pillar. However, the
move is still safe, since it is only performed on low components that are too small to reach
the origin. This algorithm terminates when no high component remains, or there is at most
one high component, which consists entirely of finished cubes.

SoCG 2024
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Figure 3 Left: a pillar shove in progress. Right: a low component (dark blue) connected to a
high component (light blue).

All of the operations work not only in 3D, but also in 2D where instead of prioritizing
reducing the z-coordinate, we prioritize reducing the y-coordinate without increasing the
z-coordinate. Moreover, these moves never move the origin. Therefore, we can now run the
exact same moves on the bottom layer in 2D, until the bottom layer is finished. If there is still
a high component, it stays connected via the origin. We end up with a finished configuration.

Since each of the operations used in our algorithm is safe, the total number of moves
performed is O(ΠC) = O(XC + YC + ZC).
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