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Abstract
We re-examine the 1987 paper by Joan Lucas[2], who showed that the edge-flip graph of convex
polygon triangulations is Hamiltonian. We focus specifically on the first part of her paper on
Hamiltonian paths, and we provide a simplified algorithm for that case which elucidates how to
assemble a recursive subdivision that she refers to as “stacks.” Finally, we provide an interactive
web-based visualization of Hamiltonian paths through the stacks.
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1 Convex Flip Graphs

A flip graph for the triangulation of a particular polygon has a vertex for each possible
triangulation, and an edge between two vertices if their corresponding triangulations differ
by a single quadrilateral edge flip. In the special case of convex polygon with n + 2
vertices and a designated top edge, the flip graph can be realized as the 1-skeleton of a convex
polytope known as the associahedron Kn (Figure 1). This polytope has “Catalan number”
Cn = 1

n+1
(2n

n

)
vertices, each of whose ith coordinate in Rn+2 is the total area of all triangles

adjacent to vertex i 1. Since there is a bijection between the triangulations and all possible
rooted binary search trees with n internal nodes and n + 1 leaf nodes, the flip graph is also
called the “rotation graph” [2]. In this context, an edge in Kn corresponds to a single tree
rotation (Figure 2). Among many other “Catalan bijections” [3], there is also a bijection
with all balanced parentheses on n + 1 items, where an edge is a single re-association.

2 Enumerating And Visualizing A Hamiltonian Path

Remarkably, as Joan Lucas shows in her 1987 paper [2], the flip graph is Hamiltonian. To
show this, she uses codeword encodings of triangulations introduced by Zerling [4] to
design an O(Cn) time algorithm for enumerating Hamiltonian paths and cycles. Specifically,
the ith entry of a codeword w counts the number of internal edges incident on vertex i that

1 Though this is in n + 2 dimensions, the geometry can be isometrically embedded in n − 1 dimensions.
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90:2 Visualizing Lucas’s Hamiltonian Associahedron

Figure 1 The flip graph is the 1-skeleton of the associahedron. Edges are between triangulations
that differ by a single edge flip. In the above, a Hamiltonian path (pink) is shown through all hexagon
triangulations in K4, a 3D polytope. We superimpose Lucas’s codewords on each triangulation.
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Figure 2 Vertices of the flip graph correspond to triangulations of n + 2-gons, but also to binary
trees with n internal nodes and balanced parentheses on n + 1 items. Edges are between convex
polygons with a quad edge flip, trees with a rotation between them, or parentheses with a single
re-association, respectively.
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Figure 3 Construct a triangulation from a valid codeword starting at the end and working back
in a counter-clockwise fashion, adding w[i] edges to the closest visible vertices at j > i + 1. Upon
completion, extract the corresponding binary tree by putting an internal node in each triangle and
connecting nodes belonging to adjacent triangles. Leaf nodes are on the boundary edges of the
polygon. An edge flip in a quad decrements one entry of w and increments another.

connect to a vertex with a greater index, where w[0] corresponds to the left of the top edge.
As such, each internal edge contributes to exactly one entry. As Lucas proves [2], a codeword
is a valid codeword of a convex polygon triangulation if and only if:

n−1∑
i=0

w[i] = n − 1 (1)

and

w[i] ≤ n − i −
n−1∑

k=i+1
w[k], 0 < i < n (2)

The first condition follows since triangulations of polygons with n+2 vertices have exactly
n − 1 internal edges, and the second condition prevents internal edge crossings. Given a valid
codeword, one can construct the corresponding triangulation by starting at vertex i − 1 and
moving backwards one vertex at a time to vertex 0, adding w[i] internal edges at each step
to the closest visible vertices with indices > i + 1 (Figure 3).

A necessary condition for a single edge flip between codewords w1 and w2 is

w1[a] = w2[b] ± 1, w2[b] = w1[a] ∓ 1, a < b, and w1[k] = w2[k], k /∈ {a, b} (3)

Intuitively, the vertices at indices a, b are the base of a quadrilateral where an edge flip
happens, and they exchange exactly one edge. However, this is not sufficient; the quad
should also be free of other internal edges, and the polygonal region below ab should be fully
triangulated. Formally, the following two additional conditions are sufficient ([2] Lemma 2):

b−1∑
ℓ=k

w1[ℓ] < b − k, a < k < b (4)

b−1∑
ℓ=a

w1[ℓ] ≥ (b − a) + δw1[a]+1,w2[a] − δa,0, where δx,y =
{

1 x = y

0 x ̸= y

}
(5)

The first Kronecker δ case accounts for an edge flip moving a diagonal out of a, and the
second δ accounts for the top boundary edge which may be edge ad of the quad abcd.
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Figure 4 All of the above examples increment one entry and decrement a different entry to move
from w1 to w2, but not all describe a single valid edge flip in a quadrilateral.

w[3]w[3]w[4] w[4]

Figure 5 A d-extreme codeword remains d-extreme after an edge flip involving index d + 1.

A codeword w is in d-extreme, 1 ≤ d ≤ n − 1, if w[i] = 0 or w[i] = n − i −
∑n−1

k=i+1 w[k]
for all 1 ≤ i ≤ d. Lucas proves that if an edge flip is possible using index d + 1 in a d-extreme
codeword w1, then the resulting codeword w2 is also d-extreme (Figure 5, Lemma 3 in [2]).

Finally, Lucas defines a d-dimensional stack as the set of valid codewords that share
the last n − d − 1 entries. “Dimension” is apt here, as such a codeword has d degrees of
freedom; there are d + 1 unspecified entries, but w[0] is linearly dependent on the rest given
Equation 1. Furthermore, define the height h of a stack as the number of possible entries
w[d] can take on in a particular d-dimensional stack S. Based on Equation 2, this is

h =
(

n − d −
n−1∑

k=d+1
w[k]

)
+ 1 (6)

Lucas shows by induction that, given a d-extreme codeword w in a stack S of height h,
it’s possible to find a Hamiltonian path through S that starts on w and ends on another
d-extreme codeword (Theorem 1 in [2]). The base case d = 1 is trivial, as it is a simple
1D path. For d > 1, one can partition S into h substacks {S(i) = {w ∈ S|w[d] = i}}h−1

i=0 .
Assuming by induction that each substack begins and ends on a d − 1-extreme codeword,
arrange the substacks in either ascending or descending order by i to assemble them into a
Hamiltonian path through all of S. To ensure that the boundary of adjacent substacks differ
by a single edge flip, assemble adjacent substacks in reverse order of each other.
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def make_stack_rec (w, d, stack_index , wsum):
n = len(w)
h = n-d-wsum+1 # where wsum = sum(w[d+1:])
vals = list(range (h)) # Entry in w[d] for each substack
if stack_index [d]%2 == 1: # Reverse every other d-dim substack

vals = reversed (vals)
stack_index [d] += 1
for val in vals:

w[d] = val
if d == 1: ## Base case

w[0] = n-1-(w[d]+wsum) # Equation 1 re - arranged
print (w) # This will print the codewords in Hamiltonian order

else:
make_stack_rec (w, d-1, stack_index , wsum+val)

def print_hamiltonian (n): # Print a Hamiltonian traversal of Kn
make_stack_rec ([0]*n, n-1, [0]*n, 0) # Start on an (n-1)-extreme node

Figure 6 A simplified O(Cn) algorithm to enumerate a Hamiltonian path through Kn.

The above can be used to construct a Hamiltonian path through the entire edge flip graph,
which is an n − 1 dimensional stack of height 2, starting on the codeword w = [n − 1, 0, ..., 0].
We show a complete implementation as recursive python code in Figure 6, which is slightly
simpler than Lucas’s provided code. Figure 7 shows this assembly visually for n = 2, 3, 4,
where substacks that are presented in reverse order by i are highlighted in gray. We believe
it is easier to visualize the Hamiltonian path unraveled in this way than it is to superimpose
it on the associahedron itself (as in Figure 1), particularly in higher dimensions. To help
make this even clearer, we also provide a Javascript web app using d3 [1] to animate the
Hamiltonian path one step at a time, which we trace through the substacks.
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Figure 7 All stacks for n = 2, 3, 4 laid out vertically in Hamiltonian order by the algorithm in
Figure 6. Flipped edges from adjacent polygons in order are depicted as dashed lines, with changed
codeword indices circled. Every other substack is presented in the reverse order (gray) so they fit
together at adjacent extreme codewords.
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