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Abstract
We study the bin covering problem where a multiset of items from a fixed set S ⊆ (0, 1] must be
split into disjoint subsets while maximizing the number of subsets whose contents sum to at least 1.
We focus on the online discrete variant, where S is finite, and items arrive sequentially. In the purely
online setting, we show that the competitive ratios of best deterministic (and randomized) algorithms
converge to 1

2 for large S, similar to the continuous setting. Therefore, we consider the problem under
the prediction setting, where algorithms may access a vector of frequencies predicting the frequency
of items of each size in the instance. In this setting, we introduce a family of online algorithms that
perform near-optimally when the predictions are correct. Further, we introduce a second family
of more robust algorithms that presents a tradeoff between the performance guarantees when the
predictions are perfect and when predictions are adversarial. Finally, we consider a stochastic setting
where items are drawn independently from any fixed but unknown distribution of S. Using results
from the PAC-learnability of probabilities in discrete distributions, we introduce a purely online
algorithm whose average-case performance is near-optimal with high probability for all finite sets S

and all distributions of S.
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1 Introduction

Bin Covering is a classical NP-complete [5] optimization problem where the input is a
multiset of items, each with a size between 0 and 1. The objective is to split the items into
disjoint subsets, called bins, while maximizing the number of bins whose contents sum to at
least 1 [22]. The problem is often considered a dual to the bin packing problem, which asks
for minimizing the number of bins, subject to each bin having a sum of at most 1.

In the online setting [18, 14, 5], items arrive one by one, and whenever an item arrives,
an algorithm has to irrevocably place the item in an existing bin or open a new bin to place
the item in. The existing results mostly consider a continuous setting in which items take
any real value from (0, 1], and it is well known that a simple greedy strategy, Dual-Next-Fit
(dnf), achieves an optimal competitive ratio of 1

2 [5].
In this paper, we consider a discrete variant of Online Bin Covering, where item sizes

belong to a finite, known set S ⊆ (0, 1]. We abbreviate this problem by DBCS . The special
case when S = { i

k | i = 1, . . . , k} has been studied in the previous work. For example, Csirik,
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10:2 Online Bin Covering with Frequency Predictions

Johnson, and Kenyon [15] developed online algorithms with good average-case performance
based on the Sum of Squares algorithm for Online Discrete Bin Packing [17, 16]. In this
paper, we study a more general setting where S may be any finite subset of (0, 1].

For measuring and comparing the quality of online algorithms for the DBCS problem, we
rely on the classical competitive analysis framework [9, 23], where one measures the quality
of an online algorithm by comparing the performance of the algorithm to the performance of
an optimal offline algorithm optimizing for the best worst-case guarantee.

1.1 Previous Work

The possibilities for creating algorithms for Online Bin Covering are well-studied. In the
continuous setting, where items can take any size in (0, 1], Assmann et al. [5] proved that
dnf is 1

2 -competitive, and Csirik and Totik [18] presented an impossibility result showing
that this is best possible. Later, Epstein [20] proved that the same impossibility result holds
for randomized algorithms as well. Online Bin Covering has been studied under the advice
setting [10, 12], where algorithms can access an advice tape that has encoded information
about the input sequence. The aim is to determine how much additional information,
measured by the number of bits needed to encode the information, is necessary and sufficient
to achieve a certain competitive ratio and how well algorithms can perform when they are
given a certain amount of information. For example, it is known that Θ(log log n) bits of
advice are necessary and sufficient to achieve algorithms with a competitive ratio strictly
better than 1

2 [10], and that O(b + log(n)) bits is sufficient to create an asymptotically
2
3 -competitive algorithm [12], where b is the number of bits needed to encode a rational value.

In recent years, developments in machine learning have inspired questions about how
online algorithms may benefit from machine-learned advice [24, 25], commonly referred to as
predictions. Unlike the advice model, the predictions may be erroneous or even adversarial.
Online algorithms with predictions is a rapidly growing field (see, e.g., [1]) that aims at
deriving online algorithms that provide a tradeoff between consistency and robustness. The
consistency of an online algorithm refers to its competitive ratio when predictions are error-
free; ideally, the consistency of an algorithm is 1 or close to 1. On the other hand, robustness
refers to the competitive ratio assuming adversarial predictions; ideally, the robustness of
an algorithm is close to the competitive ratio of the best purely online algorithm (with no
prediction). These ideal cases, however, are not always realizable simultaneously, and one
often settle for a consistency/robustness trade-off [25, 2, 27, 11, 3], giving explicit bounds on
an algorithm’s consistency as a function of its robustness, and vice versa.

To the authors’ knowledge, no previous work on Bin Covering with predictions exists. The
related Bin Packing problem, however, is previously studied under the prediction setting [4, 2].

1.2 Contribution

Our contributions for DBCS can be summarized as follows. Throughout, we let k = |S|.
In the continuous setting, where items take any real value in (0, 1], no improvements in
the competitive ratio can be achieved via predictions that are of size independent of input
length, even if the predictions are error-free. This follows from a result of [10] that states
any algorithm with an advice of size o(log log n) is no better than 1

2 -competitive. Due to
this negative result, we relax the problem and assume items come from a fixed, finite set.
This relaxed setting is also studied for the related bin packing problem [4].
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Purely online setting. We establish the following result on purely online algorithms for
DBCFk

, where Fk = { i
k | i = 1, 2, . . . , k}, based on ideas from [18] and [20] (all missing

proofs can be found in the full paper [8]).

▶ Theorem 1. Let Alg be any deterministic or randomized online algorithm for DBCFk
,

with k ⩾ 5. Then, Alg’s competitive ratio is at most 1
2 + 1

Hk−1
, where Hk−1 =

∑k−1
i=1

1
i .

A consequence of Theorem 1 is the well-known fact [18, 20] that the competitive ratio of
any deterministic or randomized algorithm for Online Bin Covering is at most 1

2 . This shows
that Online Bin Covering is still a hard problem, even after discretization.

Prediction setting. We study DBCS , where predictions concerning the frequency of item
sizes are available. We start with an impossibility result that establishes a consistency/robust-
ness tradeoff for this prediction scheme (Theorem 2). We then present an online algorithm,
named Group Covering, which is near-optimal when the predictions are error-free, for all finite
sets S ⊆ (0, 1] (Theorem 5). Further, we create a family of hybrid algorithms that accepts a
parameter λ, quantifying one’s trust in the predictions. We establish a consistency/robustness
tradeoff that bounds the consistency and robustness of these hybrid algorithms as a function
of λ (Theorems 9 and 10).

Stochastic setting. Motivated by the work of Csirik, Johnson, and Kenyon [15], we study
the purely online problem under a stochastic setting, where item sizes follow an unknown
distribution. Unlike [15], which assumes items are of sizes i

k , for i = 1, 2, . . . , k, we do not
make any assumption about input set S. We use a PAC-learning bound [13, 26] to create a
family of online algorithms without predictions, whose expected performance ratio [15] is
near-optimal with high probability, for any finite set S, and any unknown distribution D of
S (Theorem 12).

2 Preliminaries

2.1 Online Discrete Bin Covering
Fix a finite set S = {s1, s2, . . . , sk} ⊆ (0, 1]. An instance for S-Discrete Bin Covering is a
sequence σ = ⟨a1, a2, . . . , an⟩ of items, where ai ∈ S, for i ∈ [n]. The task of an algorithm
Alg is to place the items in σ into bins B1, B2, . . . , Bt, maximizing the number of bins, B,
for which

∑
a∈B a ⩾ 1. For any bin, B, we call lev(B) =

∑
a′∈B a′ the level of B. We assume

that algorithms are aware of S. In the online setting, the items are presented one-by-one to
Alg, and upon receiving an item a, Alg has to place a in a bin. This decision is irrevocable.
We abbreviate Online S-Discrete Bin Covering by DBCS . Throughout, we assume that
k ⩾ 2, and we set Fk =

{
i
k | for i = 1, 2, . . . , k

}
, and abbreviate DBCFk

by DBCk.

2.2 Performance Measures
Given an online maximization problem, Π, an online algorithm, Alg, for Π, and an instance,
σ, of Π, we let Alg[σ] be Alg’s solution on instance σ and Alg(σ) be the profit of Alg[σ].
If Alg is deterministic, then the competitive ratio of Alg is

crAlg = sup{c ∈ (0, 1] | ∃b > 0: ∀σ : Alg(σ) ⩾ c ·Opt(σ)− b},

where Opt is an offline optimal algorithm for Π. Further, Alg is c-competitive if c ⩽ crAlg.

SWAT 2024



10:4 Online Bin Covering with Frequency Predictions

For a fixed finite set S = {s1, s2, . . . , sk} ⊆ (0, 1], and a fixed (unknown) distribution D

of S, the asymptotic expected ratio [19, 15] of an online algorithm, Alg, is

er∞
Alg(D) = lim inf

n→∞
ED

[
Alg(σn(D))
Opt(σn(D))

]
, (1)

where σn(D) is a sequence of n independent identically distributed random variables, σn(D) =
⟨X1, X2, . . . , Xn⟩1, where Xi ∼ D, for all i = 1, 2, . . . , n.

When an algorithm, Alg, has access to predictions, the consistency of Alg, and the
robustness of Alg, is Alg’s competitive ratio when the predictions are error-free and
adversarial, respectively. Throughout, we let [n] = {1, 2, . . . , n}.

3 Predictions Setting

In this section, we assume that algorithms are given a frequency prediction, which, for a fixed
instance σ, and each item si ∈ S, predicts what fraction of items in σ are of size si.

Formally, given a finite set S = {s1, s2, . . . , sk} ⊆ (0, 1], and an instance, σ, of DBCS , we
let nσ

i be the number of items of size si in σ, nσ be the number of items in σ, and fσ
i = nσ

i

nσ .
We call fσ

i the frequency of items of size si in σ, and set fσ = (fσ
1 , fσ

2 , . . . , fσ
k ). When there

can be no confusion, we abbreviate nσ
i , nσ, fσ

i , and fσ, by ni, n, fi, and f , respectively.
Throughout, we abbreviate Online S-Discrete Bin Covering with Frequency Predictions

by DBCF
S . An instance for DBCF

S is a tuple (σ, f̂) consisting of a sequence of items, σ, and
a vector of predicted frequencies f̂ =

(
f̂1, f̂2, . . . , f̂k

)
.

It is well-known that probabilities in discrete distributions are PAC-learnable, as shown
in [13]. That is, there exists a polynomial-time algorithm that learns the probabilities in
discrete distributions to arbitrary precision with a confidence that is arbitrarily close to 1,
given sufficiently many random samples (see [26] for a formal definition of PAC-learnability).
This makes frequency predictions easily attainable when historical data is available.

3.1 A Consistency-Robustness Trade-Off for DBCF
k

In the following, by a wasteful algorithm, we mean an algorithm that sometimes places an
item, a, in a bin, B, for which lev(B) ⩾ 1 before a was placed in B. Any wasteful algorithm
can be trivially converted to an equally good (possibly better) algorithm that avoids placing
items into already-covered bins. Therefore, in what follows, we assume that all algorithms,
including Opt, are non-wasteful.

▶ Theorem 2. Any (1−α)-consistent deterministic algorithm for DBCF
k is at most 2α-robust.

Proof. Let Alg be any deterministic online algorithm for DBCF
k . Consider the instance

(σn
1 , f̂), with f̂ = (f̂1, f̂2, . . . , f̂k), where

σn
1 =

〈〈
k − 1

k

〉n

,

〈
1
k

〉n〉
and f̂i =

{
1
2 , if si ∈

{ 1
k , k−1

k

}
0, otherwise.

Clearly, f̂ is a perfect prediction for σn
1 , and Opt(σn

1 ) = n. Hence, by the consistency of
Alg, there exists a constant b, such that

Alg(σn
1 , f̂) ⩾ (1− α) ·Opt(σn

1 )− b = (1− α) · n− b. (2)

1 The particular choice of notation for Xi’s is due to the items being random variables.
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Let Bi, for i = 1, 2, be the collection of bins that Alg places i items of size k−1
k in. Then,

Alg(σn
1 , f̂) ⩽ |B1|+ |B2|+ n−|B1|

k . Since Alg is non-wasteful, n = |B1|+ 2 · |B2|, and so, by
Equation (2), we have that (1− α) · (|B1|+ 2 · |B2|)− b ⩽ |B1|+ (k+2)·|B2|

k , which implies

n ·
(
1− 2 · α− 2

k

)
− 2 · b

1− 2
k

⩽ |B1| . (3)

Hence, since Alg is (1 − α)-consistent, it has created at least n·(1−2·α− 2
k )−2·b

1− 2
k

bins that
contain exactly one item of size k−1

k after processing the first n items.
Next, consider the instance (σn

2 , f̂), with imperfect predictions, where σn
2 =

〈
k−1

k

〉n
.

Since the first n requests of σn
1 and σn

2 are identical, Alg cannot distinguish the instances
(σn

1 , f̂) and (σn
2 , f̂) until it has seen the first n items. Hence, since Alg is deterministic, it

distributes the first n items identically on the two instances. Given that n = |B1|+ 2 · |B2|,
Equation (3) implies that

Alg(σn
2 , f̂) ⩽ |B2| =

n− |B1|
2 ⩽

1
2 ·
(

n−
n
(
1− 2 · α− 2

k

)
− 2 · b

1− 2
k

)
= 2 · n · α + 2 · b

2− 4
k

.

Since Opt(σn
2 ) = n

2 , then, for all n ∈ Z+, Alg(σn
2 ,f̂)

Opt(σn
2 ) ⩽

2·n·α+2·b

2− 4
k

n
2

= 4·n·α+4·b
n·(2− 4

k ) ⩽ 2 · α− 2·b
n , and

thus Alg is at most 2 · α-robust. ◀

Note that the impossibility result of Theorem 2 holds even for the special case of S = Fk.
In fact, since we only use items from { 1

k , k−1
k } in input sequences of the proof, Theorem 2

can be stated for all finite sets S ⊆ (0, 1], for which { 1
k , k−1

k } ⊆ S.

3.2 A Near-Optimally Consistent Algorithm for DBCF
S

In this section, inspired by the Profile Packing algorithm from [4], we present a family of
algorithms named Group Covering, parameterized by a parameter, ε, that receives frequency
predictions, and outputs a (1−ε)-approximation of the optimal solution, assuming predictions
are error-free. In other words, the algorithm achieves a consistency that is arbitrarily close to
optimal. For a fixed ε > 0, we let GCε be the Group Covering algorithm with parameter ε.

The Strategy of Group Covering

Fix a finite set S = {s1, s2, . . . , sk} ⊆ (0, 1]. A non-wasteful bin type is an ordered l-tuple
(a1, a2, . . . , al) of items, with l ⩾ 1 and ai ∈ S, for all i ∈ [l], such that a1 was placed in the
bin first, then a2, and so on, and such that

∑l−1
i=1 ai < 1. Observe that this definition implies

an ordering of the items in bin types, which is essential for our purpose. For example, the
bin type (1/2, 1/2, ε) is wasteful, as the bin is already covered after placing the second item
of size 1/2, but the bin type (1/2, ε, 1/2) is non-wasteful, as removing the top item will make
the bin no longer covered. Note that non-covered bins are also constitute a non-wasteful bin
type. We let TS denote the collection of all possible non-wasteful bin types given S, and set
τS = |TS | and tmax = maxt∈TS

{|t|}. For example, if S =
{ 1

k , k−1
k

}
then,

TS =


1

k
,

1
k

, . . . ,
1
k︸ ︷︷ ︸

i times

 | i ∈ [k]

 ∪

1

k
,

1
k

, . . . ,
1
k︸ ︷︷ ︸

i times

,
k − 1

k

 | i ∈ [k − 1]

 ∪
{(

k − 1
k

)
,

(
k − 1

k
,

1
k

)
,

(
k − 1

k
,

k − 1
k

)}
,

τS = 2k + 2, and tmax = k.

SWAT 2024



10:6 Online Bin Covering with Frequency Predictions

Given an instance of DBCF
S , (σ, f̂), GCε works as follows. In its initialization phase

(before any item is placed), it creates an optimal solution to the following multiset, σsub,
created based on S = {s1, s2, . . . , sk} ⊆ (0, 1] (which it knows) and the frequency prediction:

σsub = ⟨⌊f̂1 ·mk,ε⌋, ⌊f̂2 ·mk,ε⌋, . . . , ⌊f̂k ·mk,ε⌋⟩,

where mk,ε = mε + k, and mε = ⌈3 · τS · tmax · ε−1⌉. In this optimal solution, we maintain a
placeholder of size a for any item a ∈ σsub. A placeholder of size a is a virtual item of size a,
which reserves space for an item of size a. We let Pf̂ ,ε be the copy of Opt[σsub] containing
placeholders. To finish the initialization, GCε opens the first group, G1

f̂ ,ε
; a copy of Pf̂ ,ε.

When an item, a, arrives, GCε searches for a placeholder of size a in the open groups,
searching in G1

f̂ ,ε
first, then G2

f̂ ,ε
second, and so on. If such a placeholder exists, GCε replaces

the placeholder with a. If no such placeholder exists, GCε checks whether Pf̂ ,ε contains such
a placeholder, by checking whether a ∈ σsub. If so, then GCε opens a new group, G i

f̂ ,ε
, i.e. a

new copy of Pf̂ ,ε, and it replaces a newly created placeholder with a. Otherwise, GCε places
a in an extra-bin using dnf. Extra bins are reserved for items that GCε did not expect to
receive any of (items whose predicted frequency is 0 and thus are not in σsub). Pseudocode
for GCε are given in Algorithm 1.

Analysis of GCε

We say that a group, G i
f̂ ,ε

, is completed if all its placeholders have been replaced by items,
and let gε be the number of groups that GCε completes. Recall that, by construction, GCε

first completes G1
f̂ ,ε

, then G2
f̂ ,ε

, and so on.

▶ Lemma 3. Fix any finite set S = {s1, s2, . . . , sk} ⊆ (0, 1], any ε ∈ (0, 1), and any instance
(σ, f̂) for DBCF

S , with f̂ = f . Then,
⌊

n
mk,ε

⌋
⩽ gε ⩽

⌊
n

mε

⌋
.

Throughout, we let p(N) be the profit of a solution N for an input σ. Observe that
p
(

G1
f̂ ,ε

)
= p

(
G i

f̂ ,ε

)
, for all i ∈ [gε], i.e. all completed groups have the same profit.

▶ Lemma 4. Fix any set S = {s1, s2, . . . , sk} ⊆ (0, 1], any ε ∈ (0, 1), and any instance,
(σ, f̂), for DBCF

S , with f̂ = f and nσ > m2
k,ε + mk,ε. Then, gε ·p

(
G1

f̂ ,ε

)
⩾ (1− ε) ·Opt(σ).

Proof. We show this by creating a solution, N , based on Opt[σ], such that
(i) p(N) ⩾

(
1− ε

3
)
·Opt(σ), and

(ii) gε · p
(

G1
f̂ ,ε

)
⩾
(
1− 2·ε

3
)
· p(N).

Since ε ∈ (0, 1), it suffices to prove (i) and (ii), because (i) and (ii) imply that

gε · p
(

G1
f̂ ,ε

)
⩾

(
1− 2 · ε

3

)
·
(

1− ε

3

)
·Opt(σ) ⩾ (1− ε) ·Opt(σ).

Construction of N . Initially, let N be a copy of Opt[σ]. Since Opt is non-wasteful, all
bins in Opt[σ] are filled according to non-wasteful bin types. For each non-wasteful bin type
t ∈ TS , remove between 0 and gε − 1 bins of type t from N , such that the number of bins of
type t becomes divisible by gε.

Proof of (i). Since Opt(σ) ⩾ nσ

tmax
, Lemma 3 implies that

p(N) ⩾ Opt(σ)− (gε − 1) · τS ⩾ Opt(σ)− nσ

mε
· τS

⩾ Opt(σ)−Opt(σ) · τS · tmax

mε
⩾
(

1− ε

3

)
·Opt(σ).
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Algorithm 1 GCε.

1: Input: a DBCF
S -instance. (σ, f̂)

2: j, l← 1
3: Compute τS , tmax, and k = |S|
4: mε ← ⌈3 · τS · tmax · ε−1⌉
5: mk,ε ← mε + k

6: σsub ← ⟨⌊f̂1 ·mk,ε⌋, ⌊f̂2 ·mk,ε⌋, . . . , ⌊f̂k ·mk,ε⌋⟩
7: Pf̂ ,ε ← ∅
8: for all B ∈ Opt[σsub] do
9: B′ ← ∅ ▷ Create a new empty bin

10: for all a ∈ B do
11: B′ ← B′ ∪ {pa} ▷ Add a placeholder of size a to B′

12: Pf̂ ,ε ← Pf̂ ,ε ∪B′ ▷ Add a copy of B containing placeholders to Pf̂ ,ε

13: G1
f̂ ,ε
← Pf̂ ,ε ▷ Open the first group

14: while receiving items, a, do
15: not_placed← true ▷ Marks whether a still has to be placed
16: for i = 1, 2, . . . , l do ▷ Go through open groups chronologically
17: if not_placed then ▷ To avoid trying to place a multiple times
18: if ∃B ∈ G i

f̂ ,ε
: pa ∈ B then ▷ Search for pa in G i

f̂ ,ε

19: B ← B \ {pa} ∪ {a} ▷ Swap out placeholder, pa, for a

20: not_placed← false ▷ a has been placed in a bin
21: if not_placed then ▷ Checking whether a has been placed
22: if ⌊f̂a ·mk,ε⌋ ≠ 0 then ▷ Checking whether a ∈ σsub
23: l← l + 1
24: G l

f̂ ,ε
← Opt[σsub] ▷ Open a new group

25: Determine B ∈ G l
f̂ ,ε

such that pa ∈ B, and B ← B \ {pa} ∪ {a}
26: else ▷ a ̸∈ σsub
27: BE

j ← BE
j ∪ {a} ▷ Place a in a extra bin using dnf

28: if lev(BE
j ) ⩾ 1 then

29: j ← j + 1
30: BE

j ← ∅

Proof of (ii). Since the number of occurrences of each bin type in N is divisible by gε, we
may consider N as gε identical copies of a smaller covering N . Since we do not add any
items when creating N , and thus N , we have nN

i ⩽
⌊

nσ
i

gε

⌋
, for all i ∈ [k], where nN

i denotes
the number of items of size i in N . Then, for all i ∈ [k], we can write

nN
i ⩽

⌊
nσ

i

gε

⌋
⩽

 nσ
i⌊

nσ

mk,ε

⌋
 ⩽

⌊
nσ

i
nσ

mk,ε
− 1

⌋
=
⌊

nσ
i

nσ−mk,ε

mk,ε

⌋
=
⌊

nσ
i ·

mk,ε

nσ −mk,ε

⌋
.

Given that mk,ε

nσ−mk,ε
= mk,ε

nσ + m2
k,ε

nσ·(nσ−mk,ε) , and that nσ > m2
k,ε + mk,ε, we may conclude

nN
i ⩽

⌊
nσ

i ·mk,ε

nσ
+

m2
k,ε

nσ −mk,ε

⌋
⩽

⌊
nσ

i ·mk,ε

nσ

⌋
+ 1 = ⌊fi ·mk,ε⌋+ 1.

Hence, N contains at most one more item of size si than Gj

f̂ ,ε
, for all i ∈ [k], and all

j ∈ [gε]. Then, for all j ∈ [gε], the following holds:

SWAT 2024
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p
(

Gj

f̂ ,ε

)
⩾ p

(
N
)
− k. (4)

Next, we devise a lower bound for p
(
N
)
. Since Opt(σ) ⩾ nσ

tmax
,

p
(
N
)

= p(N)
gε

⩾

(
1− ε

3
)
·Opt(σ)
gε

⩾

(
1− ε

3
)
· nσ

tmax · gε
⩾

(
1− ε

3
)
· nσ

tmax · nσ

mε

=
(
1− ε

3
)
·mε

tmax
⩾

(
1− ε

3
)
· 3·τS ·tmax

ε

tmax
⩾

(
1− ε

3
)
· 3 · τS

ε
⩾

(
1− ε

3
)
· k

ε
3

.

Hence, k ⩽
ε
3 ·p(N)

1− ε
3

, and so, by Equation (4), p
(

Gj

f̂ ,ε

)
⩾ p

(
N
)
−

ε
3 ·p(N)

1− ε
3

⩾
(
1− 2·ε

3
)
·p
(
N
)
.

Since p(N) = gε · p
(
N
)

and p
(

Gj

f̂ ,ε

)
= p

(
G1

f̂ ,ε

)
, for all j ∈ [gε], we conclude

gε · p
(

G1
f̂ ,ε

)
⩾ gε ·

(
1− 2·ε

3
)
· p
(
N
)

=
(
1− 2·ε

3
)
· p(N), which establishes (ii). ◀

Given Lemma 4, it is straightforward to deduce the following theorem, which is the main
result of this section.

▶ Theorem 5. For any set S = {s1, s2, . . . , sk} ⊆ (0, 1], and any ε ∈ (0, 1), there exists
a constant, b, such that for all instances (σ, f̂), with f = f̂ , it holds that GCε(σ, f̂) ⩾
(1− ε) ·Opt(σ)− b. That is, GCε is a (1− ε)-consistent algorithm for DBCF

S .

While the above theorem shows that GCε is almost optimally consistent, the same cannot
be said about its robustness. Consider the instance (σn, f̂) where σn =

〈 1
k

〉n and f̂ predicts
that half of the items are of size 1

k , and half of the items are of size k−1
k , a wrong prediction

for σn. Based on the predictions f̂ , GCε creates
⌊mk,ε

2
⌋

bins that contain placeholders for
one item of size 1

k , and one item of size k−1
k . Since no item of size k−1

k appears in the input,
GCε never covers a bin, and since Opt(σn) =

⌊
n
k

⌋
, GCε is not robust. In the next section,

we introduce a strategy for improving the robustness of GCε.

3.3 Robustifying GCε

For each purely online algorithm, Alg (e.g. dnf), we create a family of hybrid algorithms
that combines GCε with Alg to improve the robustness of GCε. Formally, for any algorithm,
Alg, we create the family {Hybλ,ε

Alg}λ,ε, of hybrid algorithms, parametrized by ε ∈ (0, 1)
and a trust level, λ ∈ Q+. Throughout, we assume that λ is given as a fraction, λ = κ

ℓ , for
some κ ∈ N and ℓ ∈ Z+. For any item a ∈ S, Hybλ,ε

Alg maintains a counter for the number of
items of size a in the input observed so far. Upon receiving an item a, Hybλ,ε

Alg counts the
number of occurrences of a, denoted ca, and if ca (mod ℓ) ⩽ ℓ− κ− 1, it uses Alg to place
a in a bin that only Alg places items into, and otherwise, it uses GCε to place a in a bin
that only GCε places items into. The pseudo-code for Hybλ,ε

Alg is given in Algorithm 2.
For the analysis of Hybλ,ε

Alg, we associate, to any instance σ of DBCS , a (ℓ + 1)-tuple,
(σ1, σ2, . . . , σℓ, σe) called the ℓ-splitting of σ, which is created as follows. Process the items
one-by-one, in the order they appear in σ; when processing an item a, place it in σi+1
if ca (mod ℓ) ≡ i, where ca is the number of items of size a previously recorded. After
processing all items in σ, we compute the number of items of size si, for any si ∈ S, in each
σj , for all i ∈ [k] and all j ∈ [ℓ]. If there are equally many items of size si in all σj , we are
done. If, on the other hand, there exists some i ∈ [k] and some j ∈ [ℓ] such that σ1, σ2, . . . , σj

contains one more item of size si than σj+1, σj+2, . . . , σℓ, then we remove one item of size
si from all of σ1, σ2, . . . , σj , and place it in σe instead. The pseudo-code for this process is
given in the full paper [8].
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Algorithm 2 Hybλ,ε
Alg.

1: Input: An instance for DBCF
S , (σ, f̂)

2: Determine κ, ℓ ∈ Z+ such that λ = κ
ℓ

3: Run Lines 2-13 of GCε (see Algorithm 1), given the prediction f̂

4: Run initialization part of Alg, if such exists
5: for all i ∈ [k] do
6: csi

← 0
7: while receiving items, a, do
8: j ← ca (mod ℓ) ▷ a ∈ σj+1
9: if j ⩽ ℓ− κ− 1 then

10: Ask Alg to place a

11: else ▷ ℓ− κ ⩽ j ⩽ ℓ− 1
12: Ask GCε to place a ▷ See Lines 14-30 in Algorithm 1
13: ca ← ca + 1

By construction, the ℓ-splitting of σ decomposes σ into ℓ smaller instances, σi for i ∈ [ℓ],
that all contain the same multiset of items, but possibly in different orders, and an excess
instance σe, which contain the remaining items from σ. By construction, nσe ⩽ (ℓ− 1) · k.

Bounding the Performance of the Optimal Packing

In what follows, we present an upper bound for the number of bins covered by Opt.
Throughout, given ℓ instances, σ1, σ2, . . . , σℓ, we set

⋃ℓ
i=1 σi = ⟨σ1, σ2, . . . , σℓ⟩.

▶ Observation 6. Let σ1, σ2, . . . , σℓ be any instances for DBCS, then
∑ℓ

i=1 Opt(σi) ⩽

Opt
(⋃ℓ

i=1 σi

)
.

▶ Lemma 7. Let S = {s1, s2, . . . , sk} ⊆ (0, 1] be any finite set, let σ by any instance of
DBCS, and let (σ1, σ2, . . . , σℓ, σe) be the ℓ-splitting of σ. Then, Opt(σ) ⩽

∑ℓ
i=1 Opt(σi) +

(ℓ− 1) · (k + τS).

Proof. We split this proof into two parts, by showing that
(i) Opt

(⋃ℓ
i=1 σi

)
⩽
∑ℓ

i=1 Opt(σi) + (ℓ− 1) · τS , and

(ii) Opt(σ) ⩽ Opt
(⋃ℓ

i=1 σi

)
+ (ℓ− 1) · k.

Proof of (i). We use a similar strategy as in the proof of Theorem 5. To this end, let N be
the solution obtained by removing at most ℓ − 1 bins of each non-wasteful bin type from
a copy of Opt

[⋃ℓ
i=1 σi

]
(recall that Opt is non-wasteful) such that the number of each

bin type in N is divisible by ℓ. Then, p(N) ⩾ Opt
(⋃ℓ

i=1 σi

)
− (ℓ− 1) · τS . Therefore, it

suffices to compare the profit of
⋃ℓ

i=1 Opt[σi] to p(N). Since σ1, σ2, . . . , σℓ all contain the
same multiset of items (but possibly in a different order), it holds that Opt(σi) = Opt(σj),
for all i, j ∈ [ℓ]. Further, by construction, N is the union of ℓ identical smaller coverings, N ,
for which nN

i ⩽ nσi
i , for all i ∈ [k]. Therefore, Opt(σi) ⩾ p

(
N
)
, for all i ∈ [k], and we can

write
∑ℓ

i=1 Opt(σi) = ℓ ·Opt(σ1) ⩾ ℓ · p
(
N
)

= p(N), which completes the proof of (i).

Proof of (ii). Since nσe ⩽ (ℓ− 1) · k, we can write Opt
(⋃ℓ

i=1 σi

)
⩾ Opt(σ)− (ℓ− 1) · k.

Adding (ℓ− 1) · k to both sides establishes (ii) and thus completes the proof. ◀
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A Bound on the Performance of GCε

We compare the number of bins covered by GCε on a subset of the instances in the ℓ-splitting
of an instance, σ, to that of Opt on σ. To this end, observe that if σ is a DBCS-instance,
where S = {s1, s2, . . . , sk} ⊆ (0, 1], and (σ1, σ2, . . . , σℓ, σe) is the ℓ-splitting of σ, then
nσi

j =
⌊

nσ
j

ℓ

⌋
, for all j ∈ [k] and all i ∈ [ℓ].

▶ Lemma 8. Fix any set S = {s1, s2, . . . , sk} ⊆ (0, 1], any ε ∈ (0, 1), and any instance
(σ, f̂) of DBCS, for which f = f̂ , and let (σ1, σ2, . . . , σℓ, σe) be the ℓ-splitting of σ, for
some ℓ ∈ Z+. Then, for any j ∈ Z+, with j ⩽ ℓ, there exists a constant b such that
GCε

((⋃ℓ
i=ℓ−j+1 σi

)
, f̂
)
⩾ j·(1−ε)·Opt(σ)

ℓ − b.

Proof. Let σ̃j =
⋃ℓ

i=ℓ−j+1 σi, and set b = m2
k,ε + mk,ε + k · ℓ. If nσ ⩽ b, the right-hand side

is non-positive, and the left-hand side is non-negative, and the lemma’s statement follows.
Hence, assume that nσ > b. Let C = GCε[σ, f̂ ], and let gε be the number of groups, G i

f̂ ,ε
,

that GCε completes on instance (σ, f̂). By Lemma 4, we have gε ·p
(

G1
f̂ ,ε

)
⩾ (1−ε) ·Opt(σ).

Since G i
f̂ ,ε

is only dependent on ε, S, and f̂ , GCε creates the same groups, G i
f̂ ,ε

, on instance
(σ, f̂) as on instance (σ̃j , f̂). In the following, we prove a lower bound for the number of
groups that GCε completes on instance (σ̃j , f̂), as a function of gε.

Since C completely covers gε copies of G i
f̂ ,ε

, then nσ
i ⩾ gε · ⌊fσ

i ·mk,ε⌋ for all i ∈ [k].

Moreover, given that each σi contains exactly
⌊

nσ
i

ℓ

⌋
items of size si, we have

n
σ̃j

i ⩾ j ·
⌊

nσ
i

ℓ

⌋
⩾

j · nσ
i

ℓ
− j ⩾

j · gε

ℓ
· ⌊fσ

i ·mk,ε⌋ − j ⩾

⌊
j · gε

ℓ

⌋
· ⌊fσ

i ·mk,ε⌋ − j.

This implies that, GCε fills in all placeholders for items of size si in
⌊

j·gε

ℓ

⌋
groups, except at

most j, on instance (σ̃j , f̂), for all i ∈ [k]. Hence,

GCε(σ̃j , f̂) ⩾
⌊

j · gε

ℓ

⌋
· p
(

G i
f̂ ,ε

)
− k · j ⩾

(
j · gε

ℓ
− 1
)
· p
(

G i
f̂ ,ε

)
− k · j.

Since p
(

G i
f̂ ,ε

)
⩽ mk,ε, we conclude the following, which completes the proof:

GCε(σ̃j , f̂) ⩾ j · gε

ℓ
· p
(

G i
f̂ ,ε

)
− k · j −mk,ε ⩾

j · (1− ε) ·Opt(σ)
ℓ

− b. ◀

A Trust-Parametrized Family of Hybrid Algorithms

In what follows, we wrap up the analysis of Hybλ,ε
Alg by stating and proving the main results

of this section. By construction, Hybλ,ε
Alg (see Algorithm 2) distributes the items that arrive

between GCε and Alg in a way determined by λ. Whenever λ becomes close to 1, Hybλ,ε
Alg

assigns a larger fraction of items to GCε, and when λ gets close to 0, Hybλ,ε
Alg assigns more

items to Alg. In particular, Hyb1,ε
Alg = GCε, and Hyb0,ε

Alg = Alg. Clearly, Hybλ,ε
Alg cannot

create a perfect ℓ-splitting online, since it cannot correctly identify the items that are placed
in σe. It can, however, get sufficiently close.

▶ Theorem 9. For any finite set S = {s1, s2, . . . , sk} ⊆ (0, 1], any purely online DBCF
S -

algorithm, Alg, any c ⩽ crAlg, any ε ∈ (0, 1), and any λ ∈ Q+, there exists a constant
b ∈ Z+, such that for all instances (σ, f̂), the following holds, assuming f = f̂ :

Hybλ,ε
Alg(σ, f̂) ⩾ (λ · (1− ε) + (1− λ) · c) ·Opt(σ)− b.



M. Berg and S. Kamali 10:11

Proof. Let bAlg be the additive constant of Alg, bGCε = m2
k,ε + mk,ε + k · ℓ. Then, we set

b = bAlg + bGCε
+ (ℓ − 1) · (k + τS). If nσ ⩽ b, the result follows trivially. Hence, assume

that nσ > b.
Let (σ1, σ2, . . . , σℓ, σe) be the ℓ-splitting of σ, and let σAlg

e and σGCε
e be the collection of

instances from σe that Alg and GCε receive, respectively. Then, by definition of Hybλ,ε
Alg,

Hybλ,ε
Alg[σ, f̂ ] = Alg

[(
ℓ−κ⋃
i=1

σi

)
∪ σAlg

e

]
∪GCε

[(
ℓ⋃

i=ℓ−κ+1
σi

)
∪ σGCε

e , f̂

]

⩾ Alg
(

ℓ−κ⋃
i=1

σi

)
+ GCε

((
ℓ⋃

i=ℓ−κ+1
σi

)
, f̂

)
.

Set b′ = bAlg + bGCε
. Then, by c-competitiveness of Alg and Lemma 8, we can write

Hybλ,ε
Alg(σ, f̂) ⩾ c ·Opt

(
ℓ−κ⋃
i=1

σi

)
+ λ · (1− ε) ·Opt(σ)− b′.

Since Opt(σi) = Opt(σj) for all i, j ∈ [ℓ] then, by Observation 6, we have
∑ℓ−κ

i=1 Opt(σi) ⩽
Opt

(⋃ℓ−κ
i=1 σi

)
. Therefore, from the above inequality, we can conclude

Hybλ,ε
Alg(σ, f̂) ⩾ c ·

(
ℓ−κ∑
i=1

Opt(σi)
)

+ λ · (1− ε) ·Opt(σ)− b′

= (1− λ) · c ·
(

ℓ∑
i=1

Opt(σi)
)

+ λ · (1− ε) ·Opt(σ)− b′.

Combining Lemma 7 and the above bound for Hybλ,ε
Alg(σ, f̂), we can conclude the following,

which completes the proof:

Hybλ,ε
Alg(σ, f̂) ⩾ (1− λ) · c · (Opt(σ)− (ℓ− 1) · (k + τS)) + λ · (1− ε) ·Opt(σ)− b′

⩾ ((1− λ) · c + λ · (1− ε)) ·Opt(σ)− b. ◀

The above theorem gives an explicit formula for the consistency of Hybλ,ε
Alg as a function

of the trust-level, λ, ε ∈ (0, 1), and the performance guarantee of Alg. A similar proof can
be used to establish a guarantee on the robustness of Hybλ,ε

Alg.

▶ Theorem 10. For any finite set S = {s1, s2, . . . , sk} ⊆ (0, 1], any purely online algorithm,
Alg, for DBCS, any c ⩽ crAlg, and any ε, there exists a constant b ∈ Z+, such that for
all instances (σ, f̂), Hybλ,ε

Alg(σ, f̂) ⩾ (1− λ) · c ·Opt(σ)− b.

4 Stochastic Setting

In this section, we consider a setting for DBCS where item sizes are generated independently
at random from an unknown distribution. This setting has already been studied for the
more restricted DBCk problem, where Csirik, Johnson and Kenyon used variants of the Bin
Packing algorithm “Sum-of-Squares”, first introduced in [17, 16], to develop algorithms for
DBCk. Rather than designing algorithms that perform well in the worst case, they aimed
to design algorithms that perform well on average. Specifically, they develop an algorithm,
called SS∗, with er∞

SS∗(D) = 1 (see Equation (1) for the definition of er∞
SS∗(D)), for all

discrete distributions D of Fk, with rational probabilities.

SWAT 2024



10:12 Online Bin Covering with Frequency Predictions

In this section, we use a PAC-learning bound for learning frequencies in discrete distri-
butions to derive a family of algorithms called purely online group covering ({POGCδ

ε}ε,δ).
These algorithms are parametrized by two real numbers ε, δ ∈ (0, 1), satisfying that, for
all finite sets S = {s1, s2, . . . , sk} ⊆ (0, 1], there exists a constant b ∈ R+, such that for
all (unknown) distributions D = {p1, p2, . . . , pk} of S, allowing irrational probabilities, the
following holds:

P
(

POGCδ
ε(σn(D)) ⩾ (1− ε) ·Opt(σn(D))− b

)
⩾ 1− δ, (5)

where σn(D) is defined in the preliminaries. Observe that this guarantee is true, even for
adversarial S and D. Clearly, Equation (5) implies that

P (er∞
POGCδ

ε
(D) ⩾ 1− ε) ⩾ 1− δ. (6)

The guarantee from Equation (5) is, however, stronger than Equation (6), in that
the additive term in Equation (5) is constant, whereas the additive term for POGCδ

ε in
Equation (6) may be a function of n. As pointed out in [6], having only constant loss before
giving a multiplicative performance guarantee is a desirable property.

We formalize the strategy of POGCδ
ε in Algorithm 3. In words; the algorithm works

by defining a “sample size”, Φ, as a function of k, ε and δ. Intuitively, observing Φ items
from the input prefix is sufficient to make predictions about the frequency of items with
respect to D that are ε-accurate with confidence 1− δ. We formalize this in Proposition 11.
In the process of learning D, POGCδ

ε places the first Φ items using dnf while observing the
item frequencies. After placing the first Φ item, POGCδ

ε uses the observed frequencies to
make an estimate - prediction - about the item frequencies and applies GC ε

2
to place the

remaining items.

Algorithm 3 POGCδ
ε.

1: Input: A DBCS-instance, σ

2: ss← 0 ▷ Sample size
3: Compute τS , tmax, and k = |S|
4: m ε

2
← ⌈6 · τS · tmax · ε−1⌉

5: mk, ε
2
← m ε

2
+ k

6: Φ← max
{

16 · k · (mk, ε
2

+ 1)2, 32 · (mk, ε
2

+ 1)2 · ln
(

2
1−

√
1−δ

)}
7: for all i ∈ [k] do
8: csi

← 0 ▷ Number of items of size si

9: while receiving items, a, and ss < Φ do
10: ca ← ca + 1
11: Place a in a dnf-marked bin using dnf
12: ss← ss + 1
13: for i = 1, 2, . . . , k do
14: f̂Φ

i = csi

Φ

15: f̂Φ =
(

f̂Φ
1 , f̂Φ

2 , . . . , f̂Φ
k

)
16: Run Lines 2-13 of GC ε

2
(see Algorithm 1), given the prediction f̂Φ

17: while receiving items, a, do
18: Place a using GC ε

2
▷ See Lines 14-30 in Algorithm 1

Before formalizing and proving the claim from Equation (5), we review a PAC-learning
bound for learning frequencies in discrete distributions [13].
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Sampling Complexity of Learning Frequencies

We refer to [13] for a proof of the following well-known fact that establishes an upper bound
for the sampling complexity of PAC-learning frequencies:

▶ Proposition 11 ([13]). For any finite set S = {s1, s2, . . . , sk} ⊆ (0, 1], there exists an
algorithm, A, and a map ΦA : R+ × (0, 1)→ Z+, such that for any γ ∈ R+, any δ ∈ (0, 1),
any (unknown) discrete distribution D = {p1, p2, . . . , pk} of S, and any n ⩾ ΦA(γ, δ), letting
{Xi}n

i=1 be a sequence of independent identically distributed random variables, with Xi ∼ D,

P
(
L1(A(X1, X2, . . . , Xn), D) ⩽ γ

)
⩾ 1− δ,

where L1 is the usual L1-distance. For learning frequencies in discrete distributions, A is the
algorithm which outputs the predicted distribution:

A(X1, X2, . . . , Xn) =

p̂i

∣∣∣∣ i ∈ [k] and p̂i = 1
n
·

n∑
j=1

1{si}(Xj)

 ,

and, for any γ ∈ R+ and δ ∈ (0, 1), the map ΦA is given by

ΦA(γ, δ) = max
{

4 · k
γ2 ,

8
γ2 · ln

(
2
δ

)}
.

4.1 Analysis of POGCδ
ε

We formalize and prove the claim from Equation (5):

▶ Theorem 12. For all finite sets S = {s1, s2, . . . , sk} ⊂ (0, 1], and all ε, δ ∈ (0, 1), there
exists a constant b ∈ Z+, such that for all discrete distributions D = {p1, p2, . . . , pk} of S,
and all n ∈ Z+, the following holds:

P
(

POGCδ
ε(σn(D)) ⩾ (1− ε) ·Opt(σn(D))− b

)
⩾ 1− δ,

where σn(D) = ⟨X1, X2, . . . , Xn⟩, and {Xi}n
i=1 is a sequence of independent identically

distributed random variables with Xi ∼ D, for all i ∈ [n].

Proof. Set Φ = max
{

16 · k · (mk, ε
2

+ 1)2, 32 · (mk, ε
2

+ 1)2 · ln
(

2
1−

√
1−δ

)}
, and b = max{2 ·

Φ, m2
k, ε

2
+ mk, ε

2
+ Φ}, and observe that b is independent of the input length n. By similar

arguments as in the proof of Lemma 8, we assume that n ⩾ b. For ease of notation, we set
ε̃ = ε

2 .
Throughout this proof, we split σn(D) into two subsequences, σa and σs. Formally, we

set σa = ⟨X1, X2, . . . , XΦ⟩, and σs = ⟨XΦ+1, XΦ+2, . . . , Xn⟩. By construction, POGCδ
ε uses

dnf on the first Φ items while counting the number of items of each size. After observing the
first Φ items, it creates the predicted distribution f̂Φ = A(X1, X2, . . . , XΦ), by Lines 13-15
in Algorithm 3. By construction of Φ and Proposition 11, we can write

P

(
L1(f̂Φ, D) ⩽ 1

2 · (mk,ε̃ + 1)

)
⩾
√

1− δ.

Therefore, by construction of f̂Φ and the definition of L1, the following holds:

P

(
k∑

i=1

∣∣∣f̂Φ
i − pi

∣∣∣ ⩽ 1
2 · (mk,ε̃ + 1)

)
⩾
√

1− δ.
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Denote by fσs the true frequencies of σs = ⟨XΦ+1, XΦ+2, . . . , Xn⟩. Since n ⩾ 2 ·Φ, we know
that |σs| ⩾ Φ, and so, by similar arguments as above,

P

(
k∑

i=1
|fσs

i − pi| ⩽
1

2 · (mk,ε̃ + 1)

)
⩾
√

1− δ.

Let Ef̂Φ be the event
∑k

i=1

∣∣∣f̂Φ
i − pi

∣∣∣ ⩽ 1
2·(mk,ε̃+1) , and Efσs be the event

∑k
i=1 |f

σs
i − pi| ⩽

1
2·(mk,ε̃+1) . Since Ef̂Φ and Efσs are independent, we have P

(
Ef̂Φ and Efσs

)
⩾ 1 − δ

Therefore, with probability at least 1− δ, we have

L1(f̂Φ, fσs) =
k∑

i=1

∣∣∣f̂Φ
i − fσs

i

∣∣∣ ⩽ k∑
i=1

∣∣∣f̂Φ
i − pi

∣∣∣+
k∑

i=1
|fσs

i − pi| <
1

mk,ε̃
. (7)

This means that the predictions POGCδ
ε creates are very close to the true frequencies of the

remainder of the instance, σs, with high probability.
Next, by construction of POGCδ

ε, we deduce that POGCδ
ε(σn(D)) ⩾ GCε̃(σs, f̂Φ).

Then, as long as we can verify that the inequality

GCε̃(σs, f̂Φ) ⩾ (1− ε) ·Opt(σs), (8)

holds whenever L1(f̂Φ, fσs) < 1
mk,ε̃

, we deduce that

POGCδ
ε(σn(D)) ⩾ GCε̃(σs, f̂Φ)

⩾ (1− ε) ·Opt(σs)
⩾ (1− ε) ·Opt(σn(D))− 2 · Φ.

Since P (L1(f̂Φ, fσs) < 1
mk,ε̃

) ⩾ 1− δ, by Equality 7, we can write

P
(

POGCδ
ε(σn(D)) ⩾ (1− ε) ·Opt(σn(D))− 2 · Φ

)
⩾ 1− δ,

which completes the proof.
It remains to prove that Equation (8) holds whenever L1(f̂Φ, fσs) < 1

mk,ε̃
. To this

end, assume that L1(f̂Φ, fσs) < 1
mk,ε̃

. Let gε̃ be the number of groups that GCε̃ would
complete on instance (σs, fσs), that is, with perfect predictions. Moreover, let Pσs,ε̃ =
Opt[⟨⌊fσs

1 ·mk,ε̃⌋, . . . , ⌊fσs

k ·mk,ε̃⌋⟩], and PΦ,ε̃ = Opt[⟨⌊f̂Φ
1 ·mk,ε̃⌋, . . . , ⌊f̂Φ

k ·mk,ε̃⌋⟩], where
items have been replaced with placeholders.

First, we compare the number of items of size si in Pσs,ε̃ compared to PΦ,ε̃. To this end,
for all i ∈ [k], set µi =

∣∣∣⌊f̂Φ
i ·mk,ε̃⌋ − ⌊fσs

i ·mk,ε̃⌋
∣∣∣. Then,

µi ⩽
∣∣∣f̂Φ

i ·mk,ε̃ − fσs
i ·mk,ε̃

∣∣∣+ 1 =
∣∣∣f̂Φ

i − fσs
i

∣∣∣ ·mk,ε̃ + 1.

Since L1(f̂Φ, fσs) < 1
mk,ε̃

, we get that
∑k

i=1

∣∣∣f̂Φ
i − fσs

i

∣∣∣ < 1
mk,ε̃

, which implies that∣∣∣f̂Φ
i − fσs

i

∣∣∣ < 1
mk,ε̃

, for all i ∈ [k]. Therefore, we have µi < 2 for all i ∈ [k], and since
µi ∈ N, we get that µi ∈ {0, 1}, for all i ∈ [k].

Next, we lower bound GCε̃(σs, f̂Φ), as a function of p(PΦ,ε̃) and gε̃. Since GCε̃ would
complete gε̃ groups on instance (σs, fσs), then, for all i ∈ [k], σs contains at least gε̃ · ⌊fσs

i ·
mk,ε̃⌋ items of size si. Since µi ∈ {0, 1} for all i ∈ [k], then, on instance (σs, f̂Φ), GCε̃ fills
all placeholders of size si in gε̃ groups, except at most gε̃. Hence,

GCε̃(σs, f̂Φ) ⩾ gε̃ · p(PΦ,ε̃)− gε̃ · k.
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For the rest of this proof, we use an argument as in the proof of Theorem 5. To this end, let
N be the covering obtained by creating a copy of Opt[σs], from which we have removed a
number of bins of type t ∈ TS , such that the number of bins of type t is divisible by gε̃, for
all t ∈ TS . By similar arguments as in Lemma 4, we get that p(N) ⩾ (1− ε̃

3 ) ·Opt(σs).
Next, observe that N is comprised of gε̃ identical coverings N . Since n ⩾ b, we can write

|σs| ⩾ m2
k,ε̃ + mk,ε̃. Hence, by a similar argument as in the proof of Lemma 4, we have

nN
i ⩽ n

Pσs,ε̃

i + 1 ⩽ n
PΦ,ε̃

i + 2, for all i ∈ [k], and thus p(PΦ,ε̃) ⩾ p
(
N
)
− 2 · k. Moreover, as in

Lemma 4, it holds that k ⩽
ε̃
3 ·p(N)

1− ε̃
3

, and we can write

p(PΦ,ε̃) ⩾ p
(
N
)
− 2 ·

ε̃
3 · p

(
N
)

1− ε̃
3

⩾ (1− ε̃) · p
(
N
)

.

Conclusively, from the above-established inequalities, we can conclude the following, which
completes the proof:

GCε̃(σs, f̂Φ) ⩾ gε̃ · (p(PΦ,ε̃)− k) ⩾ gε̃ ·

(
(1− ε̃) · p

(
N
)
−

ε̃
3 · p

(
N
)

1− ε̃
3

)

⩾ gε̃ ·
(

1− 5
3 · ε̃

)
· p
(
N
)
⩾

(
1− 5

3 · ε̃
)
·
(

1− ε̃

3

)
·Opt(σs)

= (1− 2 · ε̃) ·Opt(σs) = (1− ε) ·Opt(σs). ◀

5 Concluding Remarks

We studied the power of frequency predictions in improving the performance of online
algorithms for the discrete bin cover problem. In particular, we showed that when input
is adversarially generated, frequency predictions (from historical data) can help design
algorithms with adjustable trade-offs between consistency and robustness. Specifically, one
can achieve near-optimal solutions, assuming predictions are error-free. On the other hand,
when input is generated stochastically, we showed that frequencies could be learned from an
input prefix of constant length to achieve solutions that are arbitrarily close to optimal with
arbitrarily high confidence. An interesting variant of the problem concerns inputs generated
adversarially but permuted randomly. This setting is in line with recent work on the analysis
of algorithms with random order input (see, e.g., [21, 7]). We expect that our algorithm for
the stochastic setting can still be applied to this setting to achieve close to optimal solutions
with high confidence, although a different analysis is needed.
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