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Abstract
We investigate the existence in geometric graph classes of subexponential parameterized algorithms
for cycle-hitting problems like Triangle Hitting (TH), Feedback Vertex Set (FVS) or Odd
Cycle Transversal (OCT). These problems respectively ask for the existence in a graph G of a
set X of at most k vertices such that G − X is triangle-free, acyclic, or bipartite. It is know that
subexponential FPT algorithms of the form 2o(k)nO(1) exist in planar and even H-minor free graphs
from bidimensionality theory [Demaine et al. 2005], and there is a recent line of work lifting these
results to geometric graph classes consisting of intersection of similarly sized “fat” objects ([Fomin
et al. 2012], [Grigoriev et al. 2014], or disk graphs [Lokshtanov et al. 2022], [An et al. 2023]).

In this paper we first identify sufficient conditions, for any graph class C included in string
graphs, to admit subexponential FPT algorithms for any problem in P, a family of bidimensional
problems where one has to find a set of size at most k hitting a fixed family of graphs, containing
in particular FVS. Informally, these conditions boil down to the fact that for any G ∈ C, the local
radius of G (a new parameter introduced in [Lokshtanov et al. 2023]) is polynomial in the clique
number of G and in the maximum matching in the neighborhood of a vertex. To demonstrate the
applicability of this generic result, we bound the local radius for two special classes: intersection
graphs of axis-parallel squares and of contact graphs of segments in the plane. This implies that any
problem Π ∈ P (in particular, FVS) can be solved in:

2O(k3/4 log k)nO(1)-time in contact segment graphs,
2O(k9/10 log k)nO(1) in intersection graphs of axis-parallel squares

On the positive side, we also provide positive results for TH by solving it in:
2O(k3/4 log k)nO(1)-time in contact segment graphs,
2O(

√
dt2(log t)k2/3 log k)nO(1)-time in Kt,t-free d-DIR graphs (intersection of segments with d slopes)

On the negative side, assuming the ETH we rule out the existence of algorithms solving:
TH and OCT in time 2o(n) in 2-DIR graphs and more generally in time 2o(

√
∆n) in 2-DIR graphs

with maximum degree ∆, and
TH, FVS, and OCT in time 2o(

√
n) in K2,2-free contact-2-DIR graphs of maximum degree 6.

Observe that together, these results show that the absence of large Kt,t is a necessary and sufficient
condition for the existence of subexponential FPT algorithms for TH in 2-DIR.
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11:2 Subexponential Algorithms in Geometric Graphs via SQGM

1 Introduction

In this paper we consider fundamental NP-hard cycle-hitting problems like Triangle
Hitting (TH), Feedback Vertex Set (FVS), and Odd Cycle Transversal (OCT)
where, given a graph G and an integer k, the goal is to decide whether G has a set of at most
k vertices hitting all its triangles (resp. cycles for FVS, and odd cycles for OCT). We consider
these problems from the perspective of parameterized complexity, where the objective is to
answer in time f(k)nO(1) for some computable function f , and with n denoting the order
of G. It is known (see for instance [12]) that these three problems can be solved on general
graphs in time cO(k)nO(1) (for some constant c) and that, under the Exponential Time
Hypothesis (ETH), the contribution of k cannot be improved to a subexponential function
(i.e., there are no algorithms with running times of the form co(k)nO(1) for these problems).
However, it was discovered that some problems admit subexponential time algorithms in
certain classes of graphs, and there is now a well established set of techniques to design such
algorithms. Let us now review these techniques and explain why they do not apply on the
problems we consider here.

Subexponential FPT algorithms in sparse graphs. Let us start with the bidimensionality
theory, which gives an explanation on the so-called square root phenomenon arising for planar
and H-minor free graphs [14] for bidimensional1 problems, where a lot of graph problems
admit ETH-tight 2O(

√
k)nO(1) algorithms. What we call a graph parameter here is a function

p mapping any (simple) graph to a natural number and that is invariant under isomorphism.
The classical win-win strategy to decide if p(G) ≤ k for a minor-bidimensional2 parameter
(like p = fvs, the size of a minimum feedback vertex set of G) is to first reduce to the case
where ⊞(G) = O(

√
k) (where ⊞(G) denotes the maximum k such that the (k, k)-grid is

contained as a minor in G), and then use an inequality of the form tw(G) ≤ f(⊞(G)) to
bound the treewidth obtained through the following property.

▶ Definition 1 ([4]). Given c < 2, a graph class G has the subquadratic grid minor property
for c (SQGM for short), denoted G ∈ SQGM(c), if tw(G) = O(⊞(G)c) for all G ∈ G. We
write G ∈ SQGM if there exists c < 2 such that G ∈ SQGM(c).

While in general every graph G satisfies the inequality tw(G) ≤ ⊞(G)c for some c < 10 [11],
the SQGM property additionally require that c < 2. Thus, for any G ∈ SQGM(c) and G ∈ G
such that ⊞(G) = O(

√
k), we get tw(G) ≤ ⊞(G)c = O

(
kc/2)

= o(k). For instance planar
graphs and more generally H-minor free graph [15] are known to have a treewidth linearly
bounded from above by the size of their largest grid minor. In other words, these classes
belong to SQGM(1). The conclusion is that the SQGM property allows subexponential
parameterized algorithms for minor-bidimensional problems (if the considered problem has a
2O(tw(G))nO(1)-time algorithm) on sparse graph classes. Notice that these techniques have
been extended to contraction-bidimensional problems [4].

Extension to geometric graphs. Consider now a geometric graph class G, meaning that any
G ∈ G represents the interactions of some specified geometric objects. We consider here (Unit)
Disk Graphs which correspond to intersection of (unit) disks in the plane, d-DIR graphs
(where the vertices correspond to segments with d possible slopes in R2), and contact-segment

1 Informally: yes-instances are minor-closed and a solution on the (r, r)-grid has size Ω(r2).
2 See definition in [20].
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graphs (where each vertex corresponds to a segment in R2, and any intersection point between
two segments must be an endpoint of one of them). We refer to Subsection 2.2 for formal
definitions. Classes of geometric graphs represented in the plane form an appealing source
of candidates to obtain subexponential parameterized algorithms as there is an underlying
planarity in the representation. However these graphs are no longer sparse as they may
contain large cliques, and thus cannot have the SQGM property. Indeed, if G is a clique
of size a, then tw(G) = a − 1 but ⊞(G) ≤

√
|G| =

√
a. To overcome this, let us introduce

the following notion where the bound on treewidth is allowed to depend on an additional
parameter besides ⊞(G).

▶ Definition 2. Given a graph parameter p and a real c < 2, a graph class G has the almost
subquadratic grid minor property (ASQGM for short) for p and c if there exists a function
f such that tw(G) = O(f(p(G))⊞(G)c). The class G has ASQGM(p) if there exists c < 2
such that G has the ASQGM property for p and c. The notation is naturally extended to
more than one parameter.

This notion was used implicitly in earlier work (e.g., [20]) but we chose to define it
explicitly in order to highlight the contribution f of the parameter p to the treewidth, which
is particularly relevant when it can be shown to be small (typically, polynomial). Let us now
explain how ASQGM can be used to obtain subexponential parameterized algorithms on
geometric graphs.

It was shown in [19] that FVS can be solved in time 2O(k3/4 log k)nO(1) in map graphs, a
superclass of planar graphs where arbitrary large cliques may exist, as follows. Let ω(G)
denote the order of the largest clique in a graph G. The first ingredient is to prove that
map graphs have ASQGM(ω), and more precisely that tw(G) = O(ω(G)⊞(G)). Then,
if ω(G) ≥ kϵ for some ϵ, the presence of such large clique allows to have subexponential
branchings (as a solution of FVS must take almost all vertices of a clique). When ω(G) < kϵ,
then the ASQGM property gives that tw(G) ≤ kϵ ⊞(G) ≤ k

1
2 +ϵ (as before we can immediately

answer no if ⊞(G) > O(
√

k)). By appropriately choosing ϵ the authors of [19] obtain the
mentioned running time. The same approach also applies to unit disk graphs and has since
been improved to 2

√
k log knO(1) in [17] using a different technique, and finally improved to

an optimal 2
√

k(n + m) in [2] for similarly sized fat objets (which typically includes unit
squares, but not disks, squares, nor segments).

There is also a line of work aiming at establishing ASQGM property for different classes
of graphs and parameters, with for example [20] proving that (1) string graphs have ASQGM
when the parameter p is the number of times a string is intersected (assuming at most two
strings intersect at the same point), and that (2) intersection graphs of “fat” and convex
objects have ASQGM when the parameter p(G) is the minimal order of a graph H not
subgraph of G (generalizing the degree when H is a star).

When ASQGM(ω) does not hold. A natural next step for FVS and TH is to consider
classes that are not ASQGM(ω). Observe (see Figure 1) that neither disk graphs, nor
contact-2-DIR graphs are in ASQGM(ω), and thus constitute natural candidates.

New ideas allowed the authors of [23] to obtain subexponential parameterized algorithms
on disk graphs, in particular for TH and FVS. The first idea is a preliminary branching
step (working on general graphs) which given an input (G, k) first reduces to the case where
we are given a set M of size O(k1+ϵ) such that G − M is a forest and, for any v ∈ M ,
N(v) \ M is an independent set (corresponding to Corollary 7, but where we consider a
generic problem instead of FVS). The second idea is related to neighborhood complexity. If
for a graph class G there is a constant c such that for every G ∈ G and every X ⊆ V (G),
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11:4 Subexponential Algorithms in Geometric Graphs via SQGM

Figure 1 Left: a representation of a disk graph. Right: a contact 2-DIR graph and the
corresponding graph. In these graphs (where the left one is from [19]), ω(G) is constant, tw(G) ≥ t

(where t = 3 here) as it contains Kt,t as a minor, and ⊞(G) = O(
√

t) as they have a feedback vertex
set of size at most t.

|{N(v) ∩ X : v ∈ V (G)}| ≤ c|X|, then we say that G has linear neighborhood complexity with
ratio c. The following theorem was originally formulated using ply (the maximum number of
disks containing a fixed point) instead of clique number, but it is known [7] that these two
values are linearly related in disk graphs.

▶ Theorem 3 (Theorem 1.1 in [23]). Disk graphs with bounded clique number have linear
neighborhood complexity.

For TH, these two ideas are sufficient to obtain a subexponential parameterized algorithm.
For FVS, [23] provides the following corollary.

▶ Corollary 4 (Corollary 1.1 in [23] restricted to FVS). Let G be a disk graph with a (non-
necessarily minimal) feedback vertex set M ⊆ V (G) such that for all v ∈ M , N(v) \ M is
an independent set, and such that for all v ∈ V (G) \ M , N(v) \ M is non-empty. Then, the
treewidth of G is O(

√
|M |ω(G)2.5).

As they use this corollary after a branching process reducing the clique number to kϵ and
as their (approximated) feedback vertex set M has size |M | = k1+ϵ′ , they obtain a sublinear
treewidth and thus a subexponential parameterized algorithm for FVS (and several variants
of FVS) running in time 2O(k13/14 log k)nO(1). Recently this running time has been improved
to 2O(k7/8 log k)nO(1) when the representation is given and 2O(k9/10 log k)nO(1) otherwise [1].
We point out that it is likely that the algorithms of [23] and [1] solving FVS in disk graphs
with the respective running times 2O(k13/14 log k)nO(1) and 2O(k9/10 log k)nO(1), can be adapted3

to the setting of square graphs, the later matching our bound.

Subexponential FPT algorithms via kernels. Another approach to obtain 2o(k)nO(1) al-
gorithms is to obtain small kernels (meaning computing in polynomial time an equivalent
instance (G′, k′) with |G′| typically in O(k)), and then use a 2o(n) time algorithm. For FVS
such a 2o(n)-time algorithm is known in string graphs from [9] or [25], and was recently
generalized to induced-minor-free graph classes [22]. However, as far as we are aware, the
existence of a subquadratic kernel in this graph class is currently open.

1.1 Our contribution
Our objective is to study the existence of subexponential parameterized algorithms for hitting
problems like FVS and TH in different types of intersection graphs. Our algorithmic results
are summarized in Table 1.

3 Regarding the algorithm of [1], it would be true if their lemma to bound the number of what they call
“deep vertices” can be extended to square graphs.
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Table 1 Summary of our results. All algorithms are robust, i.e., they do not need a representation.

Upper bounds
Restriction of class Problem Time complexity Section

none square graphs
Π ∈ P

2O(k9/10 log k)nO(1) Section 3

contact segment graphs
2O(k7/8 log k)nO(1)

Full version
TH

2O(k3/4 log k)nO(1)

Kt,t-free
d-DIR graphs 2O(k2/3(log k)

√
dt2 log t)nO(1)

string graphs 2Ot(k2/3 log k)nO(1)

Lower bounds (under ETH)
Restriction of class Problem Lower bound Section

none
2-DIR

TH, OCT
2o(n) Section 4

Maximum degree ∆, for ∆ ≥ 6 2o(√
∆n)

Full version
K2,2-free contact, max degree 6 TH, FVS, OCT 2o(√

n)

Positive results via ASQGM. In Section 3 we explain how the local radius (hereafter
denoted lr), introduced recently in [24] in the context of approximation, can be used to get
subexponential FPT algorithms for any problem in P, a family of bidimensional problems
where one has to find a set of size at most k hitting a fixed family of graphs. This class
contains in particular FVS, and Pseudo Forest Del (resp. Pt-Hitting) where given a
graph G, the goal is to remove a set S of at most k vertices of G such that each connected
component of G − S contains at most one cycle (resp. does not contain a path on t vertices
as a subgraph). We point out that these three problems are also in the list of problems
mentioned in [24] that admit EPTAS in disk graphs. We first provide sufficient conditions
for graph class to admit subexponential FPT algorithms for any problem in P, after the
preprocessing step of Corollary 7 (introduced for disk graphs in [23]) has been performed.
These conditions mainly boil down to having ASQGM(ω, µN⋆), where µN⋆ is, informally, the
maximum size of matching in the neighborhood of a vertex. Then, we use the framework
of [4] to show that string graphs have ASQGM(ω, lr). Thus, the message of Section 3 is
that in order to obtain a subexponential FPT algorithm for a problem Π ∈ P in a given
subclass of string graphs, the only challenge is to bound lr by a polynomial of ω and µN⋆.
Finally, we provide such bounds for square graphs (intersection of axis-parallel squares) and
contact-segment graphs.

We point out that in our companion paper [5] we prove that FVS admits an algorithm
running in time 2O(k10/11 log k)nO(1) for pseudo-disk graphs. As square and segment graphs
are in particular pseudo-disk graphs, this generalizes the graph class where subexponential
parameterized algorithms exist, but to the price of a worst running time. Moreover, our
result in [5] is obtained via kernelization techniques which require a representation of the
input graph (i.e., this algorithm is not robust), and the reduction rules behind the kernel are
tailored for FVS and not applicable for any problem Π ∈ P.

Negative results. An interesting difference between disk graphs and d-DIR graphs is that
Theorem 3 (about the linear neighborhood complexity) no longer holds for d-DIR graphs,
because of the presence of large bicliques. Thus, it seems that Kt,t is an important subgraph
differentiating the two settings and this fact is confirmed by the two following results. First
we show (see sketch in Section 4 and full proof in the full version of the paper) in that

SWAT 2024



11:6 Subexponential Algorithms in Geometric Graphs via SQGM

assuming the ETH, there is no algorithm solving TH and OCT in time 2o(n) on n-vertex
2-DIR graphs and more generally in time 2o(

√
∆n) in 2-DIR graphs with maximum degree ∆.

We note that the result for OCT was already proved in [26] as a consequence of algorithmic
lower bounds for homomorphisms problems in string graphs. In our second negative result,
we prove that assuming the ETH, the problems TH, OCT, and FVS cannot be solved in time
2o(√

n) on n-vertex K2,2-free contact-2-DIR graphs. Notice that that our 2o(√
n) lower-bounds

match those known for the same problems in planar graphs [10].

Positive results for TH. In the full version of the paper we observe that, for any hered-
itary graph class with sublinear separators, the preliminary branching step in Corollary 7
of [23] directly leads to a subexponential parameterized algorithm for TH. This implies the
2ctk2/3 log knO(1) algorithm for Kt,t-free string graphs. Recall that according to our negative
result in the full version of the paper, the Kt,t-free assumption is necessary. To improve the
constant ct in special cases, we provide in the full version of the paper bounds on the neigh-
borhood complexity of two subclasses that may be of independent interest: Kt,t-free d-DIR
graphs have linear neighborhood complexity with ratio O(dt3 log t), and contact-segment
graphs have linear neighborhood complexity. These bounds lead to improved running times
for TH in the corresponding graph classes (see Table 1).

Due to space constraints, the proofs of the statements marked with the Q symbol have
been deferred to the full version [6].

2 Preliminaries

2.1 Basics
In this paper logarithms are binary and all graphs are simple, loopless and undirected. Unless
otherwise specified we use standard graph theory terminology, as in [16] for instance. Given
a graph G, we denote by ω(G) the maximum order of a clique in G. We denote by dG(v) the
degree of v ∈ V (G), or simply d(v) when G is clear from the context. The distance between
two vertices of a graph is the minimum length (in number of edges) of a path linking them,
and the diameter of a graph is the maximum distance between two of its vertices. The radius
of a graph is the smallest integer r ≥ 0 such that there exists a vertex v such that every
vertex in the graph is at a distance at most r from v. A t-bundle [24] is a matching of size t

plus a vertex connected to the 2t vertices of the matching. We say that B is a t-bundle of a
graph G if G[B] is a t-bundle plus possibly some extra edges. A set S ⊆ V (G) is a t-bundle
hitting set of G if S ∩ B ̸= ∅ for any t-bundle B of G. We denote by ⊞(G) the maximum k

such that the (k, k)-grid is contained as a minor in G. We denote by tw(G) the treewidth of
G, and µ(G) the size of a maximum matching of G.

In Section 3 we provide subexponential parameterized algorithms for a class of problems
P that we will now define. We restrict our attention to hitting problems, where for a fixed
graph family F , the input is a graph G and an integer k, and the goal is to decide if there
exists S ⊆ V (G) with |S| ≤ k such that G − S ∈ F . A general setting where our results hold
is described by the class P defined below and inspired by the problems tackled in [24] .

▶ Definition 5. We denote by P the class of all hitting problems Π such that:
1. Π is bidimensional ;
2. there is an integer cΠ > 0 such that for any solution S in a graph G, and any cΠ-bundle

B of G, S ∩ B ̸= ∅; and
3. Π can be solved on a graph G in time tw(G)O(tw(G)).
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▷ Claim 6. FVS, Pseudo Forest Del and Pt-Hitting for t ≤ 5 belong to P.

Proof. It is well known that these three problems are bidimensional. For the second condition,
one can check that cΠ is equal to 1 for FVS (as a 1-bundle is a triangle) and equal to
2 for Pseudo Forest Del and Pt-Hitting when t ≤ 5. For the last condition, as
FVS corresponds to hit all K3 as minor and Pseudo Forest Del correspond to hit all
{H0, H1, H2} as a minor (with Hi is formed by two triangles sharing i vertices), these two
problems can be solved in tw(G)O(tw(G)) by [3]. For Pt-Hitting the result holds by [13].

◁

2.2 Graph classes
A summary of graph classes considered in this article is presented in Figure 2.

String

d-DIR

Pseudo-disk

Square

Contact-segment

Segment

Kt,t-free d-DIR 2-DIR

Contact string

Disk

Figure 2 Left: inclusion between graph classes. Right: from left to right, four representations of
contact string graphs, then a representation of 3-DIR contact-segment graph, and finally on the right
an example of an intersection between segments not allowed in a representation of a contact-segment
graph.

In this article, we are mainly concerned with geometric graphs described by the intersection
or contact of objects in the Euclidean plane. The most general class we consider are string
graphs, which are intersection graphs of strings (a.k.a. Jordan arcs). Intersection graphs
of segments in R2 are called segment graphs. If a segment graph can be represented with
at most d different slopes, we call it a d-DIR graph.4 These classes of intersection graphs
admit contact subclasses, where the representations should not contain crossings. That is,
two strings either intersect tangentially, or they intersect at an endpoint of one of them. In a
segment contact representation, any point belonging to two segments must be an endpoint
of at least one of these segments. If a point belongs to several strings or segments, the above
property must hold for any pair of them. This defines contact string graphs, contact-segment
graphs and contact d-DIR graphs.

2.3 Preliminary branching steps
Our algorithms make use of the following preprocessing branching which was formulated
in [23] for FVS for disk graphs. Here we restate it for any problem in P and for any graph
class where the maximum clique can be approximated in polynomial time. A proof of this
statement (included in the full version of the paper for completeness) can be obtained by
closely following that in [23].

▶ Corollary 7 (Q). Let Π ∈ P. Let G be a hereditary graph class where the maximum
clique can be α-approximated for some constant factor α ≥ 1 in polynomial time. There
exists a 2O( k

p log k)nO(1)-time algorithm that, given an instance (G, k) of Π and an integer
p ∈ [6αcΠ, k], where G ∈ G, returns a collection C of size 2O( k

p log k) of tuples (G′, M, k′)
such that:

4 In general two d-DIR graphs may require different sets of slopes in their representation but in the case
d = 2 it is known that the segments can be assumed to be axis-parallel, which we will do.
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11:8 Subexponential Algorithms in Geometric Graphs via SQGM

1. For any (G′, M, k′) ∈ C, (G′, k′) is an instance of Π where G′ is an induced subgraph of
G, ω(G′) ≤ p, and k′ ≤ k;

2. M is a cΠ-bundle hitting set of G′ with |M | = O(pk), and for any v ∈ M , µ(G′[N(v) \
M ]) < cΠ; and

3. (G, k) is a yes-instance of Π if and only if there exists (G′, M, k′) ∈ C such that (G′, k′)
is a yes-instance of Π.

3 Positive results via ASQGM

3.1 From ASQGM(ω, µN⋆) to subexponential algorithms
In this section we provide subexponential paramterized algorithms for problems of P in any
class that has the ASQGM(ω, µN⋆) property.

▶ Definition 8. Given a graph G, a subneighborhood function of G is any function N⋆ :
V (G) → 2V (G) such that for any v ∈ V (G), N⋆(v) ⊆ N(v). Moreover, if for any u ∈ V (G),
|{v ∈ V (G), u ∈ N⋆(v)}| ≤ c for some c ∈ N then we say that N⋆ has c-bounded occurrences.

Given a subneighborhood function N⋆, we define µN⋆(v) as the maximum number of edges
of a matching in G[N⋆(v)]. We denote by µN⋆(G) the maximum of µN⋆ over V (G).
For example in square graphs, we will fix a representation S, and define N⋆(v) as the set of
neighbors of v whose square is smaller than the one of v.

The main theorem from this subsection is the following. Recall that P encompasses
fundamental algorithmic problems such as FVS, Pseudo Forest Del and Pt-Hitting for
t ≤ 5 (Claim 6).

▶ Theorem 9. Let Π be a problem of P and C be a hereditary graph class such that:
maximum clique can be O(1)-approximated in polynomial time in C;
for any G ∈ C, there exists a subneighborhood function N⋆ that has O(ω(G)c1)-bounded
occurrences for some c1 ∈ N; and
C has the ASQGM(ω, µN⋆) property, i.e., there exists a multivariate polynomial P such
that for all G ∈ C, we have tw(G) = O(P (ω(G), µN⋆(G)) · ⊞(G)).

Then, Π admits a parameterized subexponential algorithm on C. More precisely, for ϵ > 0
such that P (kϵ, k(c1+2)ϵ) = O(k 1

2 −ϵ), Π admits a parameterized subexponential algorithm on
C running in time 2O(k1−ϵ log(k)). This algorithm does not need a representation except if one
is required for finding the O(1)-approximation of a maximum clique.

▶ Lemma 10. Let Π be a problem of P. Consider a graph G and N⋆ a c-bounded occurrences
subneighborhood function of G. Let M ⊆ V (G) be a cΠ-bundle hitting set of G such that
for any vertex v ∈ M , µ(G[N(v)] − M) < cΠ. Then for every positive integer τ ≥ cΠ, there
exists a set B ⊆ V (G) of size |B| = c|M |

τ−cΠ+1 such that µN⋆(G − B) ≤ τ .

Proof. Let τ a positive integer with τ ≥ cΠ, and let us define B = {v ∈ V (G) : µN⋆(v) ≥ τ}
the set of vertices with “big” µN⋆ in G. Let us first prove that for any v ∈ B, | N⋆(v) ∩ M | ≥
µN⋆(v) − cΠ + 1. Let E′ ⊆ E(G) be a maximum matching in G[N⋆(v)] with |E′| = µN⋆(v).
Observe that we cannot have cΠ edges e ∈ E′ such that V (e) ∩ M = ∅ as if v /∈ M , then
vertices of E′ together with v would form a cΠ-bundle not hit by M , a contradiction, and if
v ∈ M , this would contradict the hypothesis µ(G[N(v)] − M) < cΠ. Thus, there is at least
|E′| − cΠ + 1 edges of E′ intersecting M , leading to the desired inequality. Thus, we get

|B|τ ≤
∑
v∈B

µN⋆

(v) ≤
∑
v∈B

(| N⋆(v) ∩ M | + cΠ − 1).
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Moreover, as for any v ∈ V (G) there are at most c vertices u such that v ∈ N⋆(u), we
get

∑
v∈B | N⋆(v) ∩ M | ≤ c|M | by the pigeonhole principle (if the inequality was false, then

there would exists v ∈ M with |{u : v ∈ N⋆(u)}| > c). This leads to |B| = c|M |
τ−cΠ+1 . ◀

We are now ready to describe the general algorithm to solve Π.

Proof of Theorem 9. Given an instance (G, k) of Π, we first use Corollary 7 with p = kϵ

to obtain in time 2O(k1−ϵ log(k)) the set of 2O(k1−ϵ log(k)) triples (G2, M, k2) with k2 ≤ k,
|M | = O(k1+ϵ), and ω(G2) ≤ kϵ.

In order to solve Π on (G, k), it is now enough to solve it on these instances (G2, k2).
Observe that applying the Lemma 10 to such (G2, k2, M) triple with τ ≥ cΠ gives a set
B of size at most c|M |

τ−cΠ+1 = O(ω(G2)c1 k1+ϵ

τ−cΠ+1 ) = O(k1+ϵ+ϵc1

τ−cΠ+1 ) such that G3 = G2 \ B verifies
µN⋆(G3) ≤ τ .

By assumption on the ASQGM property we then have tw(G3) = O(P (kϵ, τ)⊞(G)).
Moreover tw(G2) ≤ tw(G3) + |B| = O(P (kϵ, τ)⊞(G)) + O

(
k1+ϵ+ϵc1

τ−cΠ+1

)
as removing a vertex

decreases the treewidth by at most 1. We set τ = k(c1+2)ϵ. By assumption we have
P (kϵ, k(c1+2)ϵ) = O(k 1

2 −ϵ). As Π is bidimensionnal, there exists c1 such that if ⊞(G) > c1
√

k,
then (G, k) is a no-instance.

Thus, as tw(G2) = O
(

k
1
2 −ϵ ⊞(G)

)
+ O

(
k1+ϵ+ϵc1

τ

)
= O

(
k

1
2 −ϵ ⊞(G)

)
+ O(k1−ϵ), observe

that if ⊞(G) ≤ c1
√

k, then there exists a constant c such that tw(G2) ≤ ck1−ϵ. Thus, we use
the treewidth approximation of [21] on G2 with ℓ = ck1−ϵ to obtain in 2O(ℓ)nO(1) either a
2ℓ + 1 treewidth decomposition, or conclude that tw(G2) > ℓ. In the later case, this implies
that ⊞(G) > c1

√
k, and thus we can conclude that (G, k) is a no instance. Otherwise, by

definition of problems in P we can solve Π in time twO(tw(G2))), which gives the claimed
overall time complexity of 2O(k1−ϵ log(k)) × tw(G2)O(tw(G2)) = 2O(k1−ϵ log(k)). ◀

3.2 From ASQGM(ω, lr) to ASQGM(ω, µN⋆)
To be able to use Theorem 9, we need to deal with graph classes that have the ASQGM(ω, µN⋆)
property. This section provides a general framework for obtaining this property via local
radius. The local radius was originally introduced by Lokshtanov et al. [24] for disks graphs
in the context of approximation algorithms. Here we first extend this definition to string
graphs. To that end, we will see string graphs as graphs admitting a thick representation. In
such a representation every vertex v of the considered graph G corresponds to a subset Dv of
the plane that is homeomorphic to a disk, two intersecting such regions have an intersection
with non-empty interior, and the number of maximal connected regions R2 \

⋃
v∈V (G) ∂Dv is

finite.
To turn a string representation into a thick one, it simply suffices to thicken each string by

a small enough amount so that no new intersections occur. On the other hand, note that any
thick representation can be turned into a string representation by replacing each connected
subset of the plane Du by a string that almost completely fills its interior. Note that a thick
representation is not necessarily a pseudo-disk representation as here, the intersection of two
regions, Du ∩ Dv, may not be connected, or it may also be that Du \ Dv is not connected.
Thick representations allow us to extend the definition of local radius to all string graphs.
The next definition is illustrated Figure 4.

▶ Definition 11. Let G be a string graph and S be a thick representation of it. Let X be the
set of all maximal connected region R of R2 \

⋃
D∈S ∂D, contained in at least one object of

S. We define the arrangement graph of S, denoted AS , by:
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adding one vertex of each region of X
adding an edge between two vertices if the boundaries of their regions share a common
arc.

Moreover, for each v ∈ G, we denote RS(v) ⊆ X the set of regions included in Dv (recall
that Dv is the region associated to v), and VS(v) ⊆ V (AS) the set of vertices associated to
the regions of RS(v) (implying |VS(v)| = |RS(v)|). Finally, we denote AS(v) = AS [VS(v)].

▶ Definition 12 (from [24], extended here to string graphs). Let G be a string graph.
Given a thick representation S of G,

for any v ∈ V (G), we define lrS(v) as the radius of the graph AS(v)
we define lrS(G) = minv∈V (G) lrS(v)

the local radius lr(G) of G is the minimum over all thick representation S of G of lrS(G).

In order to show ASQGM we use the framework of Baste and Thilikos [4] (originally
designed for the classic SQGM property), that we recall now.

▶ Definition 13 (Contractions [4]). Given a non-negative integer c, two graphs H and G,
and a surjection σ : V (G) → V (H) we write H ≤c

σ G if
for every x ∈ V (H), the graph G[σ−1(x)] has diameter at most c and
for every x, y ∈ V (H), xy ∈ E(H) ⇐⇒ G[σ−1(x) ∪ σ−1(y)] is connected.

We say that H is a c-diameter contraction of G if there is a surjection σ such that H ≤c
σ G

and we write this H ≤c G. Moreover, if σ is such that for every x ∈ V (H), |σ−1(x)| ≤ c′,
then we say that H is a c′-size contraction of G, and we write H ≤(c′) G. If there exists an
integer c such that H ≤c G, then we say that H is a contraction of G.

▶ Definition 14 ((c1, c2)-extension [4]). Given a class of graph G and two non-negative
integers c1 and c2, we define the (c1, c2)-extension of G, denoted by G(c1,c2), as the class
containing every graph H such that there exist a graph G ∈ G and a graph J that satisfy
G ≤(c1) J and H ≤c2 J (see Figure 3).

JG ∈ G H ∈ G(c1,c2)c1-size contraction c2-diameter contraction

Figure 3 A graphical representation of the definition of G(c1,c2).

▶ Lemma 15 (implicit in the proof of [4, Theorem 15]). For every integers c1, c2 and G ∈
P(c1,c2), with P the class of planar graphs, we have tw(G) = O(c1c2 ⊞(G)).

The main result of this section is the following.

▶ Theorem 16. String graphs have the ASQGM(ω, lr) property, more precisely for a string
graph G we have tw(G) = O(ω(G) lr(G)⊞(G)).

Proof. Let G be a string graph, and S a thick representation such that lrS(G) = lr(G). Let
us define a graph J as follows, Figure 4 is a representation of the construction. For any
maximal connected region R of R2 \

⋃
D∈S ∂D, we add to J a clique KR of size ply(R). Then,

for any pair of regions {R1, R2} that share a common arc, we add all edges between KR1

and KR2 . For any v ∈ V (G), we associate a set X(v) ⊆ V (J) such that for any R ∈ RS(v),
|X(v) ∩ KR| = 1, and such that X(v) ∩ X(u) = ∅ for any u ̸= v. Notice that the condition
X(v) ∩ X(u) = ∅ is possible as |KR| = ply(R), and thus any vertex v can take its “private”
vertex in X(v) ∩ R for any R ∈ RS(v).
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Figure 4 Left: thick representation of a string graph G. Right: Illustrates both AS and the
graph J used in the proof of Theorem 16. To visualise AS , consider that each black dotted ellipse is
a single vertex (we have |V (AS)| = 23). Moreover, if v is the vertex represented in red, we have
|VS(v)| = 6 and lrS(v) = 2. To visualise J : for each maximal connected region R of R2 \

⋃
D∈S ∂D,

the clique KR with more than one vertex is represented by a black dotted ellipse around the clique.
For readability only one edge is represented between two cliques instead of the complete bipartite
graph.

Let us prove that G is a lr(G)-diameter contraction of J by defining a surjection σ :
V (J) → V (G) as follows. For any v ∈ V (G), we define σ−1(v) = X(v) (informally we
contract all vertices in X(v)). As for any v ∈ V (G), J [X(v)] is isomorphic to AS(v), we
immediately have diam(J [σ−1(v)]) = lr(G). Moreover, it is straightforward to check that for
every x, y ∈ V (G), xy ∈ E(G) ⇐⇒ J [σ−1(x) ∪ σ−1(y)] is connected. Now, observe that
AS (which is planar) is a ply(S)-size contraction of J using σ′ : V (J) → V (AS) such that
for any v ∈ V (AS), v corresponding to a region R of the plane delimited by the boundaries
of the objects of S, σ

′−1(v) = KR. As ply(S) ≤ ω(G), we get the desired result. ◀

The following corollary is immediate from Theorem 9 and Theorem 16.

▶ Corollary 17. Given an hereditary graph class C which is a subclass of string graphs such
that

maximum clique can be O(1)-approximated in polynomial time,
for any G ∈ C, there exists a subneighborhood function N⋆ that has O(ω(G)c1)-bounded
occurrences for some c1 ∈ N, and
there exists a multivariate polynomial such that for any G ∈ C, lr(G) = P (ω(G), µN⋆(G))

Then, any problem Π ∈ P admits a parameterized subexponential algorithm on C. More pre-
cisely, let P ′(ω(G), µN⋆(G)) = ω(G)P (ω(G), µN⋆(G)). For any ϵ > 0 such that P ′(kϵ, k(c1+2)ϵ)
= O(k 1

2 −ϵ), FVS can be solved in time O∗(kO(k1−ϵ)). This algorithm does not need a rep-
resentation except if one is required for finding the O(1)-approximation of a maximum
clique.

3.3 Upper bounding the local radius for square graphs
Again we provided in the previous section a generic result (Corollary 17) but so far it might
not be clear to the reader which graph classes may satisfy its requirements. To demonstrate
the applicability of this result, we show here that square graphs do. This requires to define
an appropriate N⋆ and prove that lr(G) = ω(G)O(1) · µN⋆(G)O(1). A second application is for
contact-segment graphs, but due to space constraints we had to move the proof to the full
version [6].
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We say that a graph G is a square graph if it is the intersection graph of some collection
of (closed) axis-parallel squares in the plane. In the following by square we always mean
closed and axis-parallel square. By slightly altering the sizes and positions of the squares in
a collection we can obtain a collection where exactly the same pairs of squares intersect and,
in addition, all the side lengths of the squares are different from each other and no two sides
squares are aligned. Furthermore this can easily be performed in polynomial time. From
now on we will assume that all the representations we consider satisfy this property.

The first requirement of Corollary 17 is provided by following lemma from [8], which
describes an EPTAS for the clique problem in the more general case of the intersection graph
of a fixed convex geometric shape with a central symmetry, while allowing rescaling.

▶ Theorem 18 ([8]). There is a polynomial-time 2-approximation of maximum clique in
intersection graphs of squares, even when no representation is provided.

▶ Definition 19. Given a square representation S = {Dv}v∈V (G) of a graph G, we denote
ℓS(Dv) the length of a side of the square Dv, N−

S (v) (resp. N+
S (v)) the set of vertices u such

that u ∈ NG(v) and ℓS(Du) < ℓS(Dv) (resp. >). When S is clear from the context, we will
instead write ℓ, N− and N+.

As the lengths of all sides differ, {N+(v), N−(v)} is a partition of N(v) for every vertex v.

▶ Lemma 20. Given a square representation S of a graph G, N− is a O(ω(G))-occurrences
bounded subneighborhood function.

Proof. N− is clearly a subneighborhood function. For v ∈ V (G), observe that a square
larger than Dv has to contain one of the four corners of Dv if the two squares intersect. But a
corner of Dv cannot be contained in more than ω(G) squares. Hence there are at most 4ω(G)
vertices u ∈ V (G) such that v ∈ N−(u), and so N− is 4ω(G)-occurrences bounded. ◀

We will prove that choosing N∗ = N− allows us to bound the local radius.

▶ Definition 21. Given a square graph G with representation S, for any v ∈ G, we define H(v)
as a minimum vertex cover of G[N−(v)], I(v) = N−(v) \ H(v), and X(v) = H(v) ∪ N+(v).

▷ Claim 22. For every vertex v of a square graph G with representation S, the following
properties hold:
1. I(v) is an independent set of G;
2. |H(v)| ≤ 2 µN⋆(G);
3. |N+(v)| = O(ω(G)) (as in the proof of Lemma 20);
4. |X(v)| = O(µN⋆(G) + ω(G)); and
5. {X(v), I(v)} is a partition of N(v).

▶ Definition 23. For a curve C : [0, 1] → R2 such that for t ∈ [0, 1], C(t) = (x(t), y(t)), we
say that C is monotonic if the functions x and y are monotonic. For k ≥ 2 we say that C is
k-monotonic if it is the composition5 of k monotonic curves.

Recall in the next Lemma that DI(v) denotes the union of all squares in I(v).

5 A curve C(t) = (x(t), y(t)) is the composition of k curves (Ci(t) = (xi(t), yi(t)))i∈{1,...,k} if (x(0), y(0)) =
(x1(0), y1(0)), (x(1), y(1)) = (xk(1), yk(1)), (xi(1), yi(1)) = (xi+1(0), yi+1(0)) for every i ∈ {1, . . . , k−1}
and the set of points {(x(t), y(t)}, t ∈ [0, 1]} is the union of the {(xi(t), yi(t)}, t ∈ [0, 1]} for i ∈ {1, . . . , k}.
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Figure 5 Illustrations of the construction used in the proof of the Lemma 24. Squares of I(v)
are represented in green. Top left: construction used for the Claim 25. Top right: construction
used for the Claim 26. Bottom left: construction used for Claim 27. Observe that in this situation
ca and cb are next to opposite sides of the square containing c0, that C∗

a can be extended in an
counterclockwise direction, and C∗

b in a clockwise direction, which ensure the existence of a common
point c of their monotonic extensions. Bottom right: an example of a 4-monotonic curve between a

and b obtained by the construction of Lemma 24. Observe that only two squares of I(v) are crossed.

▶ Lemma 24. Let G be a square graph and S a representation. Let v ∈ V (G) and a, b two
points contained in Dv. There exists a 4-monotonic curve C contained in Dv joining the
point a to the point b, and crossing at most twice a boundary of the squares of I(v).

Proof. In what follows, what we call a diagonal line (resp. half line) any line (resp. half
line) having an angle +45◦ or −45◦ with the horizontal axis, and a diagonal of a point p in
the plan a diagonal half line whose endpoint is p.

The first step for the creation of the curve is to reduce to the case where the point a

and b are outside DI(v). If this is not the case, for example if a in contained in a square
s = Du with u ∈ I(v), we create a rectilinear curve from a toward the outside of s, in a
direction such that the intersection of the curve with the boundary of s is still in Dv (see the
construction in Figure 5 for an example of such reduction). As such curve is monotonic and
crosses the boundary of a square of I(v) exactly once, after the reduction we are in the case
where we want to construct a 2-monotonic curve between two points of Dv \ DI(v) such that
no square of I(v) is crossed. In what follow we suppose we have reduced to this case and we
still denote a and b the two points of Dv \ DI(v) we want to join by a curve.

▷ Claim 25. Given two points c, p ∈ Dv \ DI(v) on the same diagonal line, there is a
monotonic curve included in Dv \ DI(v) between c and p.

Proof. The construction is represented in Figure 5. The curve is created by starting from the
point c, then by following the diagonal line toward p. When encountering a square s = Du of
a vertex u ∈ I(v), it is always possible of getting around s in order to join back the diagonal
on the other side, and doing so in a direction such that the curve is still monotonic and
contained in Dv. ◁

▷ Claim 26. There are diagonals da of a and db of b intersecting on a point c0 ∈ Dv.
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Proof. Consider the line d parallel to the top left to bottom right diagonal of Dv (see Figure 5),
at equal distances of the points a and b. By symmetry of the square and of the variables a

and b, we can suppose that d goes from top left to bottom right, is above the diagonal of Dv,
and that a is above d. The symmetric a′ of the point a relatively to d is inside Dv and is
contained in a diagonal of both a and b. ◁

Now, if c0 ∈ Dv \ DI(v), composing the two curves toward c0 given by the previous claim
gives the wanted result.

It remains to deal with the case where c0 lies in some square s = Du for u ∈ I(v). Let
ca be a point of da between a and the square s, at an infinitely small distance outside of s.
Claim 25 gives a monotonic curve C∗

a from a to ca. In the same way we define cb and C∗
b .

▷ Claim 27. There exists a point c ∈ Dv \ DI(v) such that C∗
a and C∗

b can be extended to c

while still being monotonic and contained in Dv \ DI(v).

Proof. We can assume that da and db are perpendicular as otherwise the points a and b are
on the same diagonal and so Claim 25 gives the wanted result by taking c = b. Observe that
if ca and cb are arbitrarily close to the same side of s, then prolonging C∗

a toward cb would
keep the curve monotonic, as C∗

a was already going toward db as da and db intersect in s. So
taking c = cb would give the wanted result.

Otherwise if ca and cb are at arbitrarily small distance from two different sides, observe
that the curve C∗

a can be extended running alongside the boundary of s until crossing 2
corners. The same is true for C∗

b so the only situation where those extensions do not cross
each other would be if ca and cb are next to opposite side of s, and that the orientations of
da and db force the extensions of Ca∗ and C∗

b to go in the same direction around s. However,
this is impossible: as da and db cross each other inside of s, one extension will go clockwise
around s and the other counterclockwise (see Figure 5). This ensures that C∗

a and C∗
b can be

extended around s while still being monotonic in order for them to join on a point c while
staying outside of DI(v). ◁

Composing the two curves obtained by the above claim gives a path as wanted. ◀

We are now ready to prove the main combinatorial statement of this section.

▶ Lemma 28. Let G be a square graph. There exists a subneighborhood function N⋆ which
is ω(G)-occurrences bounded and such that lr(G) = O(µN⋆(G) + ω(G)).

Proof. Let S be a square representation of G, and let N⋆ as defined in Definition 19, which
is ω(G)-occurrences bounded according to Lemma 20. Let us now prove that lrS(G) =
O(|X(v)|). This will imply the required result as lr(G) ≤ lrS(G) and |X(v)| = O(µN⋆(G) +
ω(G)) by Claim 22. To that end, let us bound the diameter of AS [VS(v)]. Let u, v be two
vertices of AS [VS(v)], and let us bound the distance between these two vertices. Remember
that any vertex in AS [VS(v)] corresponds to an inclusion-wise maximal rectangular region
of the plane included in Dv, and delimited by edges of squares of S. Let a and b be points
in the regions of u and v respectively. Notice that to any curve inside Dv we can associate
a path in AS [VS(v)] by considering the sequence of regions visited by C, and associate to
each of the region its corresponding vertex in AS [VS(v)] (see Figure 6). Thus, we will upper
bound the distance from u to v in AS [VS(v)] by constructing a curve C from a to b, and by
counting the length of the sequence of regions visited by C.

We use for C the 4-monotonic curve between a and b defined in Lemma 24. Observe
the following property π0: any monotonic curve inside Dv crosses at most 4|X(v)| sides of
squares in X(v). Indeed, as each square in X(v) has at most 4 sides intersecting Dv, and any
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Figure 6 Examples of paths in the configuration graph, with Dv represented with a dashed red
square, I(v) by green squares and the sides of the squares of X(v) in black. Here we can see two
curves between the two purple regions, C1 (that goes up and then down) and C2, and the path
in AS(v) associated to each curve as in the proof of Lemma 28, where the regions traversed by
the paths are alternatively colored blue and yellow. Notice that C1 is 2-monotone, whereas C2 is
c-monotone, where c could be made arbitrary large by creating more and smaller squares in I(v).
As c is large, there is a side of a square in X(v) crossed many times (eight) by C2, and thus we do
not use curve like C2 in the proof.

side, as a vertical or horizontal segment intersecting in Dv, can be crossed at most one time
by a monotonic curve. Observe also that, each time C leaves its current region, C must cross
a side of a square in N(v). However, the total number of crossings between C and a side of a
square in N(v) is at most 16|X(v)| + 4, as each of the four monotonic part of C crosses at
most 4|X(v)| sides of squares in X(v) (by π0), and C crosses at most 4 sides of squares in
I(v) (the worst case being when a ̸= a′, and Ca→a′ crosses the corner of the square in I(v)
containing a, and same for b, b′). Thus, the curve C goes from a region to the next one at
most 16|X(v)| + 4 times, implying that the diameter of AS [VS(v)], and so the local radius
lrS(G), are in O(|X(v)|). ◀

As announced in the introduction of the section, we are now able to apply Corollary 17.

▶ Theorem 29. Any problem Π ∈ P can be solved in time 2O(k9/10 log(k))nO(1) in square
graphs, even when no representation is given.

Proof. Let Π ∈ P. According to Theorem 18, Lemma 28, we can apply Corollary 17 with
c1 = 1, and P (x, y) = x + y. This implies that for any ϵ such that kϵ(kϵ + k3ϵ) = O(k 1

2 −ϵ),
Π can be solved in O∗(kO(k1−ϵ)) in square graphs. Taking ϵ = 1

10 leads to the claimed
complexity. ◀

4 ETH based hardness results

Let us here sketch the lower bounds. Full proofs are provided in the full version.
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Figure 7 The construction for the formula (x2 ∨ x4 ∨ x3) ∧ (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x4). The
zero-length segments at each corner of the k-polygons are not represented, while that added for the
clause with two variables is depicted with a black dot.

▶ Theorem 30. Under the ETH, TH and OCT cannot be solved in time 2o(n) on n-vertex
2-DIR graphs.

Sketch of Proof. Let φ be a 3-SAT instance with n variables x1, . . . , xn and m clauses
C1, . . . , Cm. In these clauses, we do not have 3 literals all positive or all negative. We can
ensure this by adding only few variables and few clauses.

Let us now construct a 2-DIR graph G from the formula φ. In this graph, each variable
xi is represented by a polygon with ki vertical segments, ki horizontal segments, and with
also 2ki trivial segments (i.e. points) that are placed in each corner of the polygon, where ki

is some number linear in the number of clauses containing xi. See Figure 7 for an illustrative
example. There, one can see that these polygons form concentric rectangles, from which
small parts escape from above. These escaping parts allow interactions with other polygons,
corresponding to variables from a same clause.

The idea of the reduction is that, φ is satisfiable if and only if G has a TH (resp. OCT)
of size K =

∑
1≤i≤n ki. Furthermore, such hitting set will be of the following form. For the

polygon corresponding to xi, the hitting set will be either formed by the ki vertical segments,
or by the ki horizontal segments. This is ensured by the triangles induced at each corner
of the polygon. Furthermore, the choice of vertical or horizontal segments, depends on the
interactions among polygons, and will correspond to a valuation of the variable xi. ◀

In the full version [6] we also provide a refined bound of Theorem 30 depending on the
maximum degree, and another negative result in K2,2-free contact 2-DIR graphs.

5 Discussion

In this paper we gave subexponential FPT algorithms for cycle-hitting problems in intersection
graphs. A general goal is to characterize the geometric graph classes that admit subexponential
FPT algorithms for the problems we considered. In particular, an interesting open problem
is whether FVS admits a subexponential parameterized algorithm in 2-DIR graphs.
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