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Abstract
The problem of edge coloring has been extensively studied over the years. Recently, this problem has
received significant attention in the dynamic setting, where we are given a dynamic graph evolving
via a sequence of edge insertions and deletions and our objective is to maintain an edge coloring of
the graph.

Currently, it is not known whether it is possible to maintain a (∆ + O(∆1−µ))-edge coloring in
Õ(1) update time, for any constant µ > 0, where ∆ is the maximum degree of the graph.1 In this
paper, we show how to efficiently maintain a (∆ + O(α))-edge coloring in Õ(1) amortized update
time, where α is the arboricty of the graph. Thus, we answer this question in the affirmative for
graphs of sufficiently small arboricity.
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1 Introduction

Consider any graph G = (V, E), with n = |V | nodes and m = |E| edges, and any integer
λ ≥ 1. A (proper) λ-(edge) coloring χ : E → [λ] of G assigns a color χ(e) ∈ [λ] to each edge
e ∈ E, in such a way that no two adjacent edges receive the same color. Our goal is to get a
proper λ-coloring of G, for as small a value of λ as possible. It is easy to verify that any such
coloring requires at least ∆ colors, where ∆ is the maximum degree of G. On the other hand,
a textbook theorem by Vizing [13] guarantees the existence of a proper (∆ + 1)-coloring in
any input graph.

This work focuses on the edge coloring problem in the dynamic setting, where an extensive
body of work has been devoted to this problem. Before describing our contributions, we first
summarize the relevant state-of-the-art in the dynamic setting.

1 We use Õ(·) to hide polylogarthmic factors.
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12:2 Arboricity-Dependent Algorithms for Edge Coloring

Dynamic Edge Coloring. In the dynamic setting, the input graph G undergoes a sequence
of updates (edge insertions/deletions), and throughout this sequence the concerned algorithm
has to maintain a proper coloring of G. We wish to design a dynamic algorithm whose update
time (time taken to process an update) is as small as possible. The edge coloring problem
has received significant attention within the dynamic algorithms community in recent years.
It is known how to maintain a (2∆− 1)-coloring in O(log ∆) update time [2, 3], and Duan
et al. [11] showed how to maintain a (1 + ϵ)∆-coloring in O(log8 n/ϵ4) update time when
∆ = Ω(log2 n/ϵ2). Subsequently, Christiansen [10] presented a dynamic algorithm for (1+ϵ)∆-
coloring with O(log9 n log6 ∆/ϵ6) update time, without any restriction on ∆. More recently,
Bhattachrya et al. [5] showed how to maintain a (1 + ϵ)∆-coloring in O(log4(1/ϵ)/ϵ9) update
time when ∆ ≥ (log n/ϵ)Θ((1/ϵ) log(1/ϵ)). At present, no dynamic edge coloring algorithm
is known with a sublinear in ∆ additive approximation and with Õ(1) update time. We
summarize the following basic question that arises.

Is there a dynamic algorithm for maintaining a (∆ + O(∆1−µ))-edge coloring with Õ(1)
update time, for any constant µ > 0?

1.1 Our Contribution
We address the above question for the family of bounded arboricity graphs. Formally, a graph
G = (V, E) has arboricity (at most) α iff:⌈

|E(G[S])|
(|S| − 1)

⌉
≤ α for every subset S ⊆ V of size |S| ≥ 2,

where G[S] denotes the subgraph of G induced by S and E(G[S]) denotes the edge-set of
G[S]. It is easily verified that the arboricity of any graph is upper bounded by its maximum
degree. There are many instances of graphs, however, with very high maximum degree but
low arboricity.2 Intuitively, a graph with low arboricity is sparse everywhere. Every graph
excluding a fixed minor has O(1) arboricity, thus the family of constant arboricity graphs
contains bounded treewidth and bounded genus graphs, and specifically, planar graphs. More
generally, graphs of bounded (not necessarily constant) arboricity are of importance, as they
arise in real-world networks and models, such as the world wide web graph, social networks
and various random distribution models.

We now summarize our main result.

▶ Theorem 1. There is a deterministic dynamic algorithm for maintaining a (∆ + (4 + ϵ)α)-
edge coloring of an input dynamic graph with maximum degree ∆ and arboricity α, with
O(log6 n/ϵ6) amortized update time and O(log4 n/ϵ5) amortized recourse.3

Thus, Theorem 1 addresses the above question in the affirmative, for all dynamic graphs
with arboricity at most O(∆1−µ), for any constant µ > 0.

An important feature of our dynamic algorithm is that it is adaptive to changes in the
values of ∆ and α over time: At each time-step t, we (explicitly) maintain a proper edge
coloring of the input graph G using the colors {1, . . . , ∆t + (4 + ϵ)αt}, where ∆t and αt are
respectively the maximum degree and arboricity of G at time t.

2 Think of a star graph on n nodes. It has ∆ = n − 1 but α = 1.
3 A dynamic algorithm has an amortized update time (respectively, amortized recourse) of O(λ), if, starting

with an empty graph, the total runtime (resp., number of output changes) to handle any sequence of T
updates is O(T · λ).
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Before giving our full dynamic algorithm, we give a simpler “warmup” dynamic algorithm,
where we assume access to values α and ∆ such that αt ≤ α and ∆t ≤ ∆ at each time-step
t. In this setting, we can maintain a (∆ + (4 + ϵ)α)-edge coloring with O(log2 n log ∆/ϵ2)
amortized update time and O(log n/ϵ) worst-case recourse. As an immediate corollary of our
“warmup” dynamic algorithm, we also get the following structural result, which should be
contrasted with the lower bound of [7] for extending partial colorings, which shows that there
exist n-node graphs of maximum degree ∆ and (∆ + c)-edge colorings on those graphs (for
any c ∈ [1, ∆/3]), such that extending these colorings to color some uncolored edge requires
changing the colors of Ω(∆ log(cn/∆)/c) many edges.

▶ Corollary 2. Let G = (V, E) be a graph with maximum degree ∆ and arboricity α, and let
χ be a (∆ + (2 + ϵ)α)-edge coloring of G. Then, given any uncolored edge e ∈ E, we can
extend the coloring χ so that e is now colored by only changing the colors of O(log n/ϵ) many
edges.

Independent Work. In independent and concurrent work, Christiansen, Rotenberg and
Vlieghe also obtain a deterministic dynamic algorithm that maintains a (∆ + O(α))-edge
coloring in Õ(1) amortized update time [9].

1.2 Our Techniques
At a high level, our algorithm can be interpreted as a dynamization of a simple static
algorithm that computes a (∆+O(α))-edge coloring of a graph G, which can be implemented
to run in near-linear time in the static sequential model of computation.4 This algorithm
is similar to the classic greedy algorithm for (2∆ − 1)-edge coloring, which simply scans
through all edges of the graph in an arbitrary order and, while scanning any edge e, assigns
e an arbitrary color in [2∆ − 1] that has not been already assigned to one of its adjacent
edges. Since e has at most 2∆− 2 adjacent edges, such a color must always exist. This static
algorithm does something quite similar – the difference is that it computes a “good” ordering
of the edges in G instead of using an arbitrary ordering, which allows it to use fewer colors.
More specifically, it repeatedly identifies a vertex of minimum degree in G, colors an edge
incident on in, and removes that edge from the graph. For the sake of completeness, we
include this algorithm and its analysis in Appendix A of the full version of our paper. We
remark that a variant of this algorithm appears in [1], which considers the distributed model
of computation.

To highlight the main conceptual insight underlying our approach, we describe the simpler
case where ∆ and α are fixed values (known to the algorithm in advance) that respectively
give upper bounds on the maximum degree and arboricity of the input graph at all times.
We sketch below how to maintain a (∆ + O(α))-coloring in Õ(1) update time in this setting.
Note that this directly implies a near-linear time static algorithm for (∆ + O(α))-coloring.5
We later outline (Section 1.2.1) how we extend our dynamic algorithm to handle the scenario
where ∆ and α change over time.

Our starting point is a well-known “peeling process”, which leads to a standard decom-
position of an input graph G = (V, E) with arboricity at most α [8]. The key observation is
that any induced subgraph of G has average degree at most 2α.6 Fix any constant γ > 1.

4 Recently, [4] and [12] considered edge coloring on low arboricity graphs in the static setting, but for the
problems of ∆ + 1 and ∆ coloring respectively.

5 Indeed, we can compute ∆ and a good approximation of α in linear time, and then simply insert the
edges in the input graph into the dynamic algorithm one after another.

6 Indeed, for any subset S ⊆ V , the average degree of G[S] is given by: 2 · |E(G[S])|/|S| ≤ 2α.

SWAT 2024



12:4 Arboricity-Dependent Algorithms for Edge Coloring

This motivates the following procedure, which runs for L = Θγ(log n) rounds.

Initially, during round 1, we set Z1 := V . Subsequently, during each round i ∈ {2, . . . , L},
we find the set of nodes S ⊆ Zi−1 that have degree > 2γα in G[Zi−1], and set Zi := S.

Consider any given round i ∈ [L] during the above procedure. Since the subgraph G[Zi−1]
has average degree at most 2α, it follows that at most a 1/γ fraction of the nodes in G[Zi−1]
have degree more than 2γα. In other words, we get |Zi+1| ≤ |Zi|/γ, and hence after L

iterations we would have ZL = ∅. Bhattacharya et al. [6] showed how to maintain this
decomposition dynamically with Õ(1) amortized update time, provided that γ > 2.

Now, our dynamic (∆ + O(α))-coloring algorithm works as follows. Suppose that we are
currently maintaining a valid coloring, along with the above decomposition. Upon receiving
an update (edge insertion/deletion), we first run the dynamic algorithm of [6], which adjusts
the decomposition Z1 ⊇ · · · ⊇ ZL, in amortized Õ(1) time. If the update consisted of an
edge deletion, then we do not need to do anything else beyond this point, since the existing
coloring continues to remain valid. We next consider the more interesting case, where the
update consisted of the insertion of an edge (say) (u, v).

Let i ∈ [L] be the largest index such that (u, v) ∈ E(G[Zi]). Then there must exist
some endpoint x ∈ {u, v} that belongs to Zi \ Zi+1. W.l.o.g., let u be that endpoint. Since
u ∈ Zi \ Zi+1, it follows that the node u has degree at most 2γα in G[Zi]. Also, the node
v trivially has degree at most ∆ in G. Let E(u,v) ⊆ E denote the set of edges e′ ∈ E that
belong to one of the following two categories: (I) e′ is incident on u and lies in G[Zi], (II) e′

is incident on v. We conclude that |E(u,v)| ≤ ∆ + 2γα. Thus, if we have a palette of at least
∆ + 2γα + 1 = ∆ + Θ(α) colors, then there must exist a free color in that palette which is
not assigned to any edge in E(u,v). Let c be that free color. Using standard binary search
data structures, such a color c can be identified in Õ(1) time [3]. We assign the color c to
the edge (u, v). This can potentially create a conflict with some other adjacent edge e′′ ∈ E

(which might already have been assigned the color c).
However, it is easy to see that such an edge e′′ must be incident on u, i.e., e′′ = (u, y)

for some y ∈ V , and there must exist some index iy < i such that y ∈ Ziy \ Ziy+1. We
then uncolor the edge e′′, set i ← iy, and recolor e′′ recursively using the same procedure
described above. Since after each recursive call, the value of the index i decreases by at least
one, this can go on at most L times. This leads to an overall update time of L · Õ(1) = Õ(1).
See Section 3 for details.

1.2.1 Handling the scenario where ∆ and α change over time
We now outline how we deal with changing values of ∆ and α. Let αt and ∆t respectively
denote the arboricity and maximum degree of the input graph G at the current time-step t.
We need to overcome two technical challenges.

(i) The “warmup” algorithm described above works correctly only if it uses a parameter
α ≃ αt to construct the decomposition of G. Informally, if α is too small w.r.t. αt, then the
number of iterations L required to construct the decomposition will become huge (possibly
infinite, if we aim at achieving ZL = ∅), and this in turn would blow up the update time of
the algorithm. In contrast, if α is too large compared to αt, then the algorithm would be
using too many colors in its palette.
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(ii) After the deletion of an edge e, the arboricity α and the maximum degree ∆ of G might
decrease. If either parameter drops by a significant amount (across some batch of updates),
then we might have to recolor a significant number of edges to ensure that we are still only
using ∆ + O(α) many colors, potentially leading to a prohibitively large update time.

To deal with challenge (i), we generalize the notion of graph decomposition to that of a
decomposition system. At a high level, a decomposition system is just a collection of graph
decompositions, where the relevant parameter across the decompositions is discretized into
powers of (1 + ϵ). This ensures that no matter what the value of α is at the present moment,
there is always some decomposition in our system that we can use to extend the coloring.
Finally, to deal with challenge (ii), we ensure that the color of each edge satisfies certain
local constraints, similar to the constraints used to give efficient dynamic algorithms in
[3, 10]. After the deletion of an edge, we can just uncolor the edges that violate those local
constraints, and then recolor them using the decomposition system. However, since the
constraints on an edge e depend not just on the degrees of its endpoints but also on the
decomposition system, we have to take extra care to ensure that these decompositions don’t
change too much between updates. See Section 4 for details.

1.3 Roadmap

The rest of the paper is organized as follows. Section 2 introduces the relevant preliminary
concepts and notations. This is followed by Section 3, which contains our warmup dynamic
algorithm for fixed α. In Section 4, we present our dynamic algorithm in its full generality.
Appendix B in the full version of our paper gives the full details of the relevant data structures
used by our algorithms.

2 Preliminaries

In this section, we define the notations used throughout our paper and describe the notion
of graph decompositions, which are at the core of our algorithms. We then provide a simple
extension of these graph decompositions, which we use as a central component in our final
dynamic algorithm.

2.1 The Dynamic Setting

In the dynamic setting, we have a graph G = (V, E) that undergoes updates via a sequence
of intermixed edge insertions and deletions. Our task is to design an algorithm to explicitly
maintain an edge coloring χ of G as the graph is updated. We assume that the graph G is
initially empty, i.e. that the graph G is initialized with E = ∅. The update time of such
an algorithm is the time it takes to handle an update, and its recourse is the number of
edges that change colors while handling an update. More precisely, we say that an algorithm
has a worst-case update time of λ if it takes at most λ time to handle an update, and an
amortized update time of λ if it takes at most T · λ time to handle any arbitrary sequence
of T updates (starting from the empty graph). Similarly, we say that an algorithm has a
worst-case recourse of λ if it changes the colors of at most λ edges while handling an update,
and an amortized recourse of λ if it changes the colors of at most T · λ edges while handling
any arbitrary sequence of T updates (starting from the empty graph).

SWAT 2024



12:6 Arboricity-Dependent Algorithms for Edge Coloring

2.2 Notation
Let G = (V, E) be an undirected, unweighted n-node graph. Given an edge set S ⊆ E,
we denote by G[S] the graph (V, S), and given a node set A ⊆ V , we denote by G[A] the
subgraph induced by A, namely (A, {(u, v) ∈ E |u, v ∈ A}). Given a node u ∈ V and a
subgraph H of G, we denote by NH(u) the set of edges in H that are incident on u, and by
degH(u) the degree of u in H. For an edge (u, v), we define NH(u, v) to be NH(u) ∪NH(v).
When we are considering the entire graph G, we will often omit the subscripts in NG(·) and
degG(·) and just write N(·) and deg(·).

2.3 Graph Decompositions
A central ingredient in our dynamic algorithm is the notion of (β, d, L)-decomposition, defined
by Bhattacharya et al. [6].

▶ Definition 3. Given a graph G = (V, E), β ≥ 1, d ≥ 0, and a positive integer L, a (β, d, L)-
decomposition of G is a sequence (Z1, . . . , ZL) of node sets, such that ZL ⊆ · · · ⊆ Z1 = V

and

Zi+1 ⊇ {u ∈ Zi | degG[Zi](u) > βd} and Zi+1 ∩ {u ∈ Zi | degG[Zi](u) < d} = ∅

hold for all i ∈ [L− 1].

Given a (β, d, L)-decomposition (Z1, . . . , ZL) of G = (V, E), we abbreviate G[Zi] as Gi

for all i, and for all u ∈ V , we abbreviate degGi
(u) as degi(u) and NGi(u) as Ni(u). We

define Vi := Zi \ Zi+1 for all i ∈ [L − 1], and VL := ZL. We say that Vi is the ith level of
the decomposition, and define the level ℓ(u) of any node u ∈ Vi as ℓ(u) := i. We define
deg+(u) := degℓ(u)(u) and N+(u) := Nℓ(u)(u) for u ∈ V . Given an edge e = (u, v), we define
the level ℓ(e) of e as ℓ(e) := min{ℓ(u), ℓ(v)}. Note also that for all u ∈ V \VL, deg+(u) ≤ βd.
However, given some u ∈ VL, deg+(u) may be much larger than βd, which motivates the
following useful fact concerning such decompositions.

▶ Lemma 4 ([6]). Let G = (V, E) be an arbitrary graph with arboricity α, let β, ϵ, d be any
parameters such that β ≥ 1, 0 < ϵ < 1, d ≥ 2(1 + ϵ)α, and let L = 2 + ⌈log(1+ϵ) n⌉. Then for
any (β, d, L)-decomposition (Z1, ..., ZL) of G, it holds that ZL = ∅.

Proof. Let (Z1, ..., ZL) be a (β, d, L)-decomposition of G satisfying the conditions of the
lemma. Let i be an arbitrary index in [L− 1]. Since the arboricity of Gi is at most α, the
average degree in Gi is at most 2α. On the other hand, by definition, the degree of any node
in Zi+1 in the graph Gi is at least d ≥ 2(1 + ϵ)α. It follows that

2(1 + ϵ)α|Zi+1| ≤
∑

u∈Zi+1

degi(u) ≤
∑

u∈Zi

degi(u) ≤ 2α|Zi|,

and hence |Zi+1| ≤ |Zi|/(1 + ϵ). Inductively, we obtain |ZL| ≤ (1 + ϵ)1−L|Z1| ≤ 1/(1 + ϵ) < 1,
yielding ZL = ∅. ◀

Orienting the Edges. For our purposes, it will be useful to think of a decomposition of G

as inducing an orientation of the edges. In particular, given an edge e = (u, v), we orient
the edge from the endpoint of lower level towards the endpoint of higher level. If the two
endpoints have the same level, we orient the edge arbitrarily. We write u ≺ v to denote that
the edge e is oriented from u to v. Note that deg+(u) is an upper bound on the out-degree
of u with respect to this orientation of the edges.
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Dynamic Decompositions. Bhattacharya et al. give a deterministic fully dynamic data
structure that can be used to explicitly maintain a (β, d, L)-decomposition of a graph
G = (V, E) under edge updates with small amortized update time. This algorithm also has
small amortized recourse, where the recourse of an update is defined as the number of edges
that change level following the update. The following theorem, from Section 4.1 of [6], will
be used as a black box in our dynamic algorithm.

▶ Proposition 5 ([6]). For any constant β ≥ 2 + 3ϵ, there is a deterministic fully-dynamic
algorithm that maintains a (β, d, L)-decomposition of a graph G = (V, E) with amortized
update time and amortized recourse both bounded by O(L/ϵ).

It is straightforward to modify this dynamic algorithm to explicitly maintain the orientation
of the edges that we described above without changing its asymptotic behavior. Furthermore,
we can assume that the orientation of an edge changes only when it changes level.

2.4 Graph Decomposition Systems
In order for our dynamic algorithm to be able to deal with dynamically changing arboricity α,
we will need to give a slight generalization of Definition 3, which we refer to as a decomposition
system. Intuitively, this will enable us to maintain multiple decompositions, one for each
“guess” of the arboricity, allowing us to use whichever decomposition is most appropriate to
modify the edge coloring while handling an update.

▶ Definition 6. Given a graph G = (V, E), β ≥ 1, a sequence (dj)j∈[K] such that dj ≥ 0, and
a positive integer L, a (β, (dj)j∈[K], L)-decomposition system of G is a sequence (Zi,j)i∈[L],j∈[k]
of node sets, where for each j ∈ [K], (Zi,j)i∈[L] is a (β, dj , L)-decomposition of G.

Given a (β, (dj)j∈[K], L)-decomposition system of G = (V, E), we denote the graph G[Zi,j ]
by Gi,j , degGi,j

(u) by degi,j(u), and NGi,j
(u) by Ni,j(u) for u ∈ V . We say that (Zi,j)i

is the jth layer of the decomposition system. We denote by ℓj(u) the level of node u in
the decomposition (Zi,j)i and define deg+

j (u) := degℓj(u),j(u) and N+
j (u) := Nℓj(u),j(u) for

u ∈ V .
Given a node u, we define the layer of u as L(u) = min{j ∈ [K] | ℓj(u) < L}. Given

an edge e = (u, v), we define the layer of e as L(e) = min{L(u),L(v)}. We denote the
orientation of the edges induced by the decomposition (Zi,j)i by ≺j .

We can use the data structure from Proposition 5 to dynamically maintain a decomposition
system, giving us the following proposition. In this context, we define the recourse of an
update to be the number of edges that change levels in some layer.

▶ Proposition 7. For any constant β ≥ 2 + 3ϵ, there is a deterministic fully dynamic
algorithm that maintains a (β, (dj)j∈[K], L)-decomposition system of a graph G = (V, E) with
amortized update time and amortized recourse O(KL/ϵ).

As before, we assume that the orientation of an edge e with respect to ≺j changes only when
ℓj(e) changes.

3 A Warmup Dynamic Algorithm (for Fixed α)

We now turn our attention towards designing an algorithm that can dynamically maintain a
(∆+O(α))-edge coloring of the graph G as it changes over time. A starting point for creating
such an algorithm is the static algorithm that we outline in Section 1.2. Unfortunately, the

SWAT 2024



12:8 Arboricity-Dependent Algorithms for Edge Coloring

highly sequential nature of this algorithm makes it very challenging to dynamize directly,
as it is not clear how to efficiently maintain the output in the dynamic setting. In order
to overcome this obstacle, we use the notion of graph decompositions (see Section 2.3).
Informally, these graph decompositions can be interpreted as an “approximate” version of
the sequence in which the static algorithm colors the edges in the graph – where instead of
peeling off a node with smallest degree one at a time, we peel off large batches of nodes with
sufficiently small degrees simultaneously. This leads to a “more robust” structure that can
be maintained dynamically in an efficient manner.

Let G = (V, E) be a dynamic graph that undergoes updates via edge insertions and
deletions. In this section, we work in a simpler setting where we assume that we are given
an α and are guaranteed that the maximum arboricity of the graph G remains at most
α throughout the entire sequence of updates. We then give a deterministic fully dynamic
algorithm that maintains a (∆ + O(α))-edge coloring of G, where ∆ is an upper bound on
the maximum degree of G at any point throughout the entire sequence of updates.7 Without
dealing with implementation details, we show that it achieves Õ(1) worst-case recourse per
update. In Section 4, we extend our result to the setting where ∆ and α are not bounded
and show how to maintain a (∆ + O(α))-edge coloring of G where α and ∆ are the current
arboricity and maximum degree of G respectively and change over time.

3.1 Algorithm Description
For the rest of this section, fix some constants ϵ, β, and L such that: 0 < ϵ < 1, β = 2 + 3ϵ,
L = 2 + ⌈log1+ϵ n⌉. At a high level, our algorithm works by dynamically maintaining a
(β, 2(1 + ϵ)α, L)-decomposition (Zi)L

i=1 of the graph G by using Proposition 5. During an
update, our algorithm first updates the decomposition (Zi)i, and then uses this decomposition
to find a path of length at most L such that, by only changing the colors assigned to the edges
in this path, it can update the coloring to be valid for the updated graph. Since L = Õ(1),
this immediately implies the worst-case recourse bound. Algorithm 1 gives the procedure
that we call to initialize our data structure, creating a decomposition of the empty graph,
and Algorithms 2 and 3 give the procedures called when handling insertions and deletions
respectively.

Algorithm 1 Initialize(G, α).

Input: An empty graph G = (V,∅) and a parameter α

1 Create a (β, 2(1 + ϵ)α, L)-decomposition (Zi)i∈[L] of G

Algorithm 2 Insert(e).

Input: An edge e to be inserted into G

1 Insert the edge e into G

2 χ(e)←⊥
3 Update the (β, 2(1 + ϵ)α, L)-decomposition (Zi)i of G

4 ExtendColoring(e, (Zi)i)

7 Note that the algorithm needs prior knowledge of α, but not ∆.
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Algorithm 3 Delete(e).

Input: An edge e to be deleted from G

1 Delete the edge e from G

2 χ(e)←⊥
3 Update the (β, 2(1 + ϵ)α, L)-decomposition (Zi)i of G

Algorithm 4 ExtendColoring(e, (Zi)i).

Input: An uncolored edge e and a (β, 2(1 + ϵ)α, L)-decomposition (Zi)i of G

1 S ← {e}
2 while S ̸= ∅ do
3 Let f = (u, v) be any edge in S where u ≺ v

4 C+
u ← χ(N+(u))

5 Cv ← χ(N(v))
6 Set c to any element in [|C+

u |+ |Cv|+ 1] \ (C+
u ∪ Cv)

7 if c ∈ χ(N(u)) then
8 Let f ′ be the edge in N(u) with χ(f ′) = c

9 χ(f ′)←⊥ and S ← S ∪ {f ′}
10 χ(f)← c and S ← S \ {f}

The following theorem, which we prove next, summarizes the behavior of our warmup dynamic
algorithm.

▶ Theorem 8. The warmup dynamic algorithm is deterministic and, given a sequence of
updates for a dynamic graph G and a value α such that the arboricity of G never exceeds α,
maintains a (∆ + (4 + ϵ)α)-edge coloring, where ∆ is the maximum degree of G throughout
the entire sequence of updates. The algorithm has O(log n/ϵ) worst-case recourse per update
and O(log2 n log ∆/ϵ2) amortized update time.

3.2 Analysis of the Warmup Algorithm
We now show that the warmup algorithm maintains a (∆ + 2β(1 + ϵ)α)-edge coloring and
has a worst-case recourse of at most L = O(log n/ϵ) per update.8

▶ Lemma 9. Let G = (V, E) be a graph with maximum degree at most ∆ and arboricity
at most α. Let e be an edge in G, (Zi)i a (β, 2(1 + ϵ)α, L)-decomposition of G and χ a
(∆ + 2β(1 + ϵ)α)-edge coloring of G− e. Then running ExtendColoring(e, (Zi)i):
1. changes the colors of at most L edges in G, and
2. turns χ into a (∆ + 2β(1 + ϵ)α)-edge coloring of G.

Proof. We first prove (1). Let ei denote the edge that is uncolored at the start of the ith

iteration of the while loop as we run the procedure. Let ℓ(ei) denote the minimum of the
level of both of its endpoints. Clearly ℓ(ei) ≤ L since this is the highest level and ℓ(ei) ≥ 1
for all i since this is the lowest level. Suppose the while loop iterates at least i times for
some integer i ≥ 2. Let ei−1 = (u, v) where u ≺ v, and hence ℓ(u) ≤ ℓ(v) (see Section 2.3).
Since ei ∈ N(u) during iteration i− 1 but χ(ei) /∈ χ(N+(u)), we have that ei /∈ N+(u), and
hence the endpoint of ei that is not u appears in a level strictly below the level of u, so

8 Note that 2β(1 + ϵ)α = (4 + O(ϵ))α.
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ℓ(ei) < ℓ(ei−1). It follows that 1 ≤ ℓ(ei) ≤ L + 1− i, so the while loop iterates at most L

times. For (2), note that if we let ei = (u, v) where u ≺ v, then |C+
u | = deg+(u) − 1 and

|Cv| = deg(v)− 1, so

|C+
u |+ |Cv|+ 1 ≤ deg+(u) + deg(v)− 1 ≤ ∆ + 2β(1 + ϵ)α,

and so the procedure never assigns any ei a color larger than ∆ + 2β(1 + ϵ)α. Since we know
from (1) that the procedure terminates after at most L iterations, after which every edge
in the graph is colored, and χ was a (∆ + 2β(1 + ϵ)α)-edge coloring of the graph G − e1
at the start of the procedure, it follows by induction that after the procedure terminates χ

assigns each edge in G a color from [∆ + 2β(1 + ϵ)α]. Furthermore, our algorithm can only
terminate if this assignment forms a valid edge coloring. Hence, χ is a (∆ + 2β(1 + ϵ)α)-edge
coloring of G. ◀

▶ Lemma 10. The warmup algorithm maintains a (∆ + 2β(1 + ϵ)α)-edge coloring of the
graph.

Proof. We prove this by induction. Since G is initially empty, the empty map is trivially a
coloring of G. Let λ = ∆ + 2β(1 + ϵ)α. Suppose χ is a λ-edge coloring of G after the ith

update. If the i + 1th update is a deletion, χ is still a λ-edge coloring of the updated graph
and we are done. If the i + 1th update is an insertion, then we run Algorithm 4 in order to
update χ. By part (2) of Lemma 9, it follows that χ is a λ-edge coloring of the updated
graph once the procedure terminates. ◀

▶ Lemma 11. The warmup algorithm changes the colors of at most L edges while handling
an update.

Proof. While handling the deletion of an edge e, our algorithm uncolors the edge e and does
not change the color of any other edge. While handling the insertion of an edge e, our algorithm
only changes the colors of edges while handling the call to ExtendColoring(e, (Zi)i). By
part (1) of Lemma 9, this changes the colors of at most L edges. ◀

In the full version of our paper, we prove the following lemma.

▶ Lemma 12. The warmup algorithm has an amortized update time of O(log2 n log ∆/ϵ2).

We also note that Corollary 2 follows immediately from Lemma 9. In particular, if we set
β = 1, by Lemma 4, the proof Lemma 9 still holds. Hence, we can use ExtendColoring
along with any (1, 2(1+ϵ)α, L)-decomposition of G in order to extend any (∆+2(1+ϵ)α)-edge
coloring χ with an uncolored edge e so that the edge e is now colored by only changing the
colors of O(log n/ϵ) many edges.

4 The Dynamic Algorithm

We now describe our full dynamic algorithm and show that it maintains a (∆ + O(α))-edge
coloring of the graph. We then use Proposition 7 to show that we can get Õ(1) amortized
recourse. In Appendix B of the full version of our paper, we describe the relevant data
structures and use them to implement our algorithm to get Õ(1) amortized update time.

4.1 Algorithm Description
In order to describe our algorithm, we fix some constant ϵ such that 0 < ϵ < 1 and set
β = 2 + 3ϵ, L = 2 + ⌈log1+ϵ n⌉. Let α̃j := (1 + ϵ)j−1 and note that, for any n-node graph G

with arboricity α, α̃1 = 1 ≤ α ≤ n < α̃L.
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Informal Description. Our algorithm works by maintaining the invariant that each edge
e = (u, v) receives a color in the set [deg(v) + O(α̃L(e))], where u ≺L(e) v. Since deg(v) ≤ ∆
and α̃L(e) = O(α) (see Lemma 15), it follows that the algorithm uses at most ∆ + O(α)
many colors. When an edge is inserted or deleted, this may cause some Õ(1) many edges
to violate the invariant. We begin by first identifying all such edges and uncoloring them.
We then update the decomposition system maintained by our algorithm, which may again
cause some Õ(1) many edges (on average) to violate the invariant. We again identify and
uncolor all such edges. We now want to color each of the uncolored edges, while ensuring
that we satisfy this invariant at all times. We do this by using the decomposition system
maintained by our algorithm: we take an uncolored edge f = (u, v) such that u ≺L(f) v and
assign it a color c that is not assigned to any of the edges in N+

L(f)(u) or N(v). If there
is an edge f ′ adjacent to f that is also colored with c, we uncolor this edge. We repeat
this process iteratively until all edges are colored. We can show that: (1) there are at most
deg(v) + O(α̃L(f)) many edges in N+

L(f)(u) ∪N(v), and hence we can find such a c in the
palette [deg(v) + O(α̃L(f))], and (2) if there is such an edge f ′ adjacent to f that is also
colored with c, then either ℓL(f ′)(f ′) < ℓL(f)(f) or L(f ′) < L(f), allowing us to carry out a
potential function argument that shows that the process terminates with all edges colored
after Õ(1) iterations on average, giving us an amortized recourse bound.

Formal Description. The following pseudo-code gives a precise formulation of our algorithm.
Algorithm 5 Initialize(G).

Input: An empty graph G = (V,∅)
1 Create a (β, (2(1 + ϵ)α̃j)j∈[L], L)-decomposition system (Zi,j)i,j∈[L] of G

Algorithm 6 Insert(e).

Input: An edge e to be inserted into G

1 Insert the edge e into G

2 S ← UpdateDecompositions(e)
3 χ(f)←⊥ for all f ∈ S

4 ExtendColoring(S)

Algorithm 7 Delete(e).

Input: An edge e to be deleted from G

1 Delete the edge e from G

2 S ← ∅
3 for v ∈ e do
4 S ← S ∪ {f = (u, v) ∈ N(v) |u ≺L(f) v and χ(f) > deg(v) + 2β(1 + ϵ)α̃L(f)}
5 S ← S ∪UpdateDecompositions(e)
6 χ(f)←⊥ for all f ∈ S

7 ExtendColoring(S)

Algorithm 8 UpdateDecompositions(e).

Input: The edge e that has been inserted/deleted from G

1 Update the decomposition system (Zi,j)i,j

2 Let S′ ⊆ E be the set of all edges whose level changes in some layer
3 return S′
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Algorithm 9 ExtendColoring(S).

Input: A set S of uncolored edges
1 while S ̸= ∅ do
2 Let f = (u, v) be any edge in S where u ≺L(f) v

3 C+
u ← χ(N+

L(f)(u))
4 Cv ← χ(N(v))
5 Let c be any element in [|C+

u |+ |Cv|+ 1] \ (C+
u ∪ Cv)

6 if c ∈ χ(N(u)) then
7 Let f ′ be the edge in N(u) with χ(f ′) = c

8 χ(f ′)←⊥ and S ← S ∪ {f ′}
9 χ(f)← c and S ← S \ {f}

The following theorem, which we prove next, summarizes the behavior of our full dynamic
algorithm.

▶ Theorem 13. The dynamic algorithm is deterministic and, given a sequence of updates
for a dynamic graph G, maintains a (∆ + (4 + ϵ)α)-edge coloring, where ∆ and α are the
dynamically changing maximum degree and arboricity of G, respectively. The algorithm has
O(log4 n/ϵ5) amortized recourse per update and O(log5 n log ∆/ϵ6) amortized update time.9

We split the proof of Theorem 13 into two parts. In Section 4.2, we show that our dynamic
algorithm maintains a (∆ + 2β(1 + ϵ)2α)-edge coloring and has an amortized recourse of
O(log4 n/ϵ5).10 In Appendix B of the full version of our paper, we describe the data structures
used by our algorithm, before showing how to use them in order to get O(log5 n log ∆/ϵ6)
amortized update time.

4.2 Analysis of the Dynamic Algorithm
For the rest of Section 4.2, fix a dynamic graph G = (V, E), and a (β, (2(1 + ϵ)α̃j)j , L)-
decomposition system Z = (Zi,j)i,j of G. Recall that ϵ is a fixed constant with 0 < ϵ < 1,
and that β = 2 + 3ϵ, L = 2 + ⌈log1+ϵ n⌉.

We begin with the following simple observations.

▶ Lemma 14. For all nodes u ∈ V , we have that L(u) ≤ j⋆, where j⋆ ∈ [L] is the unique
value such that α ≤ α̃j⋆ < (1 + ϵ)α.

Proof. By Lemma 4, we know that ZL,j⋆ = ∅. Hence, L(u) ≤ j⋆ for every node u ∈ V . ◀

▶ Corollary 15. For all edges e ∈ E, we have that α̃L(e) < (1 + ϵ)α.

We now define the notation of a good edge coloring. In such an edge coloring, the colors
satisfy certain locality constraints, which makes it easier to maintain dynamically.

▶ Definition 16. Given an edge coloring χ of the graph G, we say that χ is a good
edge coloring of G with respect to the decomposition system Z if and only if for every edge
e = (u, v) ∈ E such that χ(e) ̸=⊥ and u ≺L(e) v, we have that χ(e) ≤ deg(v)+2β(1+ ϵ)α̃L(e).

9 Whenever the term ∆ appears in an amortized bound, this should be interpreted as being an upper
bound on the maximum degree across the whole sequence of updates. In the introduction, we replaced
the log ∆ term with log n for simplicity.

10 Note that 2β(1 + ϵ)2α = (4 + O(ϵ))α.
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The following lemma shows that our algorithm can be used to maintain a good edge coloring.

▶ Lemma 17. Let χ be a good edge coloring of the graph G w.r.t. Z and let S ⊆ E be the
set of edges that are left uncolored by χ. Then running ExtendColoring(S):
1. changes the colors of at most L2|S| edges in G, and
2. turns χ into a good edge coloring with no uncolored edges.

Proof. We begin by proving (1). Given some edge f , define the potential of f by

Ψ(f) = L(L(f)− 1) + ℓL(f)(f).

Given the set of edges S, define the potential of S as Ψ(S) =
∑

f∈S Ψ(f). By Lemma 14, we
have that, for any edge f , 1 ≤ Ψ(f) = L(L(f)− 1) + ℓL(f)(f) ≤ L(L− 1) + L = L2. Hence,
|S| ≤ Ψ(S) ≤ L2|S|. During each iteration of the while loop in Algorithm 9, exactly one
edge receives a new color (and at most one edge becomes uncolored). We now show that
during each iteration of the loop, Ψ(S) drops by at least one, implying that we have at most
L2|S| iterations in total, changing the colors of at most L2|S| many edges. Let f be the edge
in S that we are coloring during some iteration of the loop and let c be the color that it
receives. During the iteration, we remove f from S; furthermore, if there exists some edge
f ′ colored with c that shares an endpoint with f , we uncolor f ′ and place it in S. If there
is no such edge f ′, then Ψ(S) drops by at least 1 since we remove f from S and Ψ(f) ≥ 1.
Suppose that there is such an edge f ′. We now argue that Ψ(f ′) < Ψ(f). We first note that
one of the endpoints of f ′ is not contained in Zi,j where i = ℓL(f)(u) and j = L(f). This
implies that ℓL(f)(f ′) < ℓL(f)(f), so L(f ′) ≤ L(f). Hence, if L(f) = L(f ′), it follows that
Ψ(f ′) < Ψ(f). Otherwise, L(f ′) < L(f), and we have that

Ψ(f)−Ψ(f ′) = L(L(f)− L(f ′)) + ℓL(f)(f)− ℓL(f ′)(f ′) ≥ L + (1− L) ≥ 1.

In either case, Ψ(S) drops by at least 1. We now prove (2). Let f = (u, v) be the edge in S

that we are coloring during some iteration of the while loop such that u ≺L(f) v. We need to
show that the color c picked by the algorithm satisfies c ≤ deg(v) + 2β(1 + ϵ)α̃L(f). It will
then follow by induction that the coloring produced by calling ExtendColoring(S) is good
given that we start with a good coloring. We first note that |Cv| ≤ deg(v)− 1. Now note
that |C+

u | ≤ deg+
L(f)(u) − 1. Since deg+

L(f)(u) ≤ 2β(1 + ϵ)α̃L(f), we get the desired bound
on c. Finally, note that at the start of each iteration, the uncolored edges correspond to
exactly the edges in S. Since the algorithm terminates if and only if S = ∅ and we know that
the algorithm terminates after at most L2|S| many iterations, it follows that the resulting
coloring has no uncolored edges. ◀

▶ Lemma 18. The dynamic algorithm maintains a (∆ + 2β(1 + ϵ)2α)-edge coloring of the
graph.

Proof. By showing that our algorithm maintains a good edge coloring, it follows by Corollary
15 that, for any edge e ∈ E, we have χ(e) ≤ ∆ + 2β(1 + ϵ)α̃L(e) ≤ ∆ + 2(1 + ϵ)2α. We do
this by showing that, after an update, the algorithm uncolors all of the edges f = (u, v) in
the graph that don’t satisfy the condition χ(f) ≤ deg(v) + 2β(1 + ϵ)α̃L(f) for u ≺L(f) v in
the updated decomposition system, places them in a set S, and calls Algorithm 9 on the set
S. By Lemma 17, it then follows that the algorithm maintains a good coloring of the entire
graph.

We refer to an edge e = (u, v) as bad if it does not satisfy the condition required by a
good coloring, i.e. if χ(e) ̸=⊥ and χ(e) > deg(v) + 2β(1 + ϵ)α̃L(f) where u ≺L(f) v. Suppose
we have a good edge coloring of the entire graph and insert an edge e into the graph. Since
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this cannot decrease the degrees of any nodes or change the levels of any edges (since we
have not yet updated the decomposition system) this cannot cause any edges to become bad.
On the other hand, if we delete an edge e = (u, v), some of the edges incident to u and v

might become bad since deg(u) and deg(v) decrease by 1. Any such edges that become bad
must be contained within the set Γu ∪ Γv where

Γw = {f = (w′, w) ∈ N(w) |w′ ≺L(f) w and χ(f) > deg(w) + 2β(1 + ϵ)α̃L(f)}

where the degrees are w.r.t. the state of the graph G after the deletion of e. If we uncolor
all of the edges in Γu ∪ Γv, we restore χ to being a good edge coloring. After updating the
decomposition system, the levels of some edges might change in some layers. Any edge that
does not change levels in any layer will not become bad, since L(f) (and hence α̃L(f)) and
its orientation in ≺L(f) do not change. However, an edge f that changes levels in some
layer might become bad if L(f) decreases (causing the value of α̃L(f) to decrease) or if
its orientation with respect to ≺L(f) changes. Hence, we uncolor all such edges.11 This
guarantees that there are no bad edges when we call ExtendColoring. Since we give
ExtendColoring all of the edges that are uncolored, it follows that we maintain a good
edge coloring of the entire graph. ◀

▶ Lemma 19. The dynamic algorithm has O(log4 n/ϵ5) amortized recourse per update.

Proof. Suppose that our algorithm handles a sequence of T updates (edge insertions or
deletions) starting from an empty graph. Let S(t) denote the set of edges uncolored by
our algorithm during the tth update before calling ExtendColoring on the set S(t). By
Lemma 17, we know that at most L2|S(t)| = O(|S(t)| log2 n/ϵ2) many edges will change
color during this update. By showing that (1/T ) ·

∑
t∈[T ] |S(t)| is O(log2 n/ϵ3), our claimed

amortized recourse bound follows. Now fix some t ∈ [T ] and let e = (u, v) be the edge being
either inserted or deleted during this update. The edges uncolored by the algorithm while
handling this update are either contained in the set Γu ∪ Γv (if the update is a deletion) or
change levels in some layer after we update the decomposition system. There can only be
at most 2L many edges of the former type. This is because, given some j ∈ [L], there is at
most one edge f ∈ Γw with L(f) = j such that χ(f) > deg(w) + 2β(1 + ϵ)α̃L(f). Otherwise,
since all the edges incident on w have distinct colors, there exists such an edge f such that
χ(f) > deg(w) + 2β(1 + ϵ)α̃L(f) + 1, which contradicts the fact that χ was a good coloring
of the graph before the deletion of e. It follows that |Γw ∩ L−1(j)| ≤ 1, so

|Γw| =
∑

j∈[L]

|Γw ∩ L−1(j)| ≤ L

and hence |Γu ∪ Γv| ≤ 2L. To bound the number of edges that changed levels in at least
one of the decompositions in the decomposition system, recall (see Proposition 7) that the
amortized recourse of the algorithm that maintains the decomposition system is O(L2/ϵ). It
follows that the amortized number of such edges is O(L2/ϵ). We have that

1
T
·

∑
t∈[T ]

|S(t)| = O

(
L2

ϵ

)
+ 2L = O

(
log2 n

ϵ3

)
. ◀

11 Note that these are precisely the edges that contribute towards the recourse of the dynamic decomposition
system.
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