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Abstract
An independent set in a graph is a set of vertices where no two vertices are adjacent to each other.
A maximum independent set is the largest possible independent set that can be formed within a
given graph G. The cardinality of this set is referred to as the independence number of G. This
paper investigates the independence number of 1-planar graphs, a subclass of graphs defined by
drawings in the Euclidean plane where each edge can have at most one crossing point. Borodin
establishes a tight upper bound of six for the chromatic number of every 1-planar graph G, leading
to a corresponding lower bound of n/6 for the independence number, where n is the number of
vertices of G. In contrast, the upper bound for the independence number in 1-planar graphs is less
studied. This paper addresses this gap by presenting upper bounds based on the minimum degree δ.
A comprehensive table summarizes these upper bounds for various δ values, providing insights into
achievable independence numbers under different conditions.
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1 Introduction

An independent set in a graph contains vertices that are not adjacent to each other. A
maximum independent set is an independent set of largest possible size for a given graph, and
the number of vertices in this set is known as the independence number of G and denoted by
α(G). The size α(G) serves as a crucial parameter in graph theory and holds significance
in algorithmic contexts. For instance, Kirkpatrick [24] and Dobkin and Kirkpatrick [19]
employed the repeated removal of independent sets from triangulations to devise data
structures for efficient planar point location and distance computation between convex
polytopes, respectively. Biedl and Wilkinson [6] explored the size of independent sets in
bounded degree triangulations. In addition, Bose, Dujmović and Wood [11] obtained graphs
of bounded degree with large independent sets.

The celebrated 4-color theorem [3, 29] immediately implies that every planar graph
contains an independent set of size at least n/4, where n is the number of vertices in the
graph. Interestingly, this bound represents the maximum attainable, as there exist planar
graphs without larger independent sets; for instance, consider disjoint copies of complete
graphs with 4 vertices. Some weaker lower bounds are also established [1, 17] that circumvent
the complexity of the 4-color theorem (as suggested by Erdős [5]) via charging and discharging
arguments. Also, Caro and Roditty in [13] gives the following upper bound.

▶ Theorem 1 ([13]). Let G be a planar graph with minimum degree δ. Then α(G) ≤ 2n−4
δ .
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In addition, they construct an infinite family of planar graphs with α(G) = 2n−4
δ , where

δ takes values of 3, 4, and 5. From an algorithmic standpoint, determining the maximum
independent set in planar graphs is NP-hard, even when restricted to planar graphs of
maximum degree 3 [21, 28] or planar triangle-free graphs [26]. Consequently, efforts have
shifted towards approximating large independent sets through methods like approximation
algorithms [2, 4, 12, 15, 20, 26], parallel algorithms [16, 18, 22], or within certain minor-free
planar graphs [20, 25, 27].

There are various generalizations of planar graphs, for example a 1-planar graph is a
graph that can be drawn in the Euclidean plane with at most one crossing per edge. In this
paper, we study the independence number of 1-planar graphs. Borodin [10] establishes that
every 1-planar graph G has a 6-coloring, therefore α(G) ≥ n/6. This is tight, for example a
graph consisting of disjoint copies of K6 is 1-planar and has chromatic number 6. Unlike
planar graphs, there were no prior results on the upper bound for the independence number
of 1-planar graphs under degree conditions.

Our Results. This paper aims to explore the upper bounds on the independence number
of 1-planar graphs. We provide such upper bounds, relative to the minimum degree δ.
Furthermore, we construct 1-planar graphs that (for most values of δ) match the bound, i.e.,
they have this minimum degree and have an independent set of that size. Our results are
summarized in Table 1.

Table 1 Bounds on the independence number of 1-planar graphs of minimum degree δ and
optimal 1-planar graphs. The upper bound means that no graph can have a bigger independent set,
while the lower bound means that some 1-planar graph has an independent set of this size. Note
that the bounds match (up to small additive constants) except for δ = 7.

δ = 3 δ = 4 δ = 5 δ = 6 δ = 7 Optimal 1-planar

Upper bound 6
7 (n − 2) 2

3 (n − 2) 4
7 (n − 2) 1

2 (n − 3) 8
20 (n − 2) 1

3 (n − 2)

Lower bound 6
7 (n − 2) 2

3 (n − 2) 4
7 (n − 2) 1

2 (n − 4) 8
21 (n − 13.5) 1

3 (n − 2)

We also study optimal 1-planar graphs, which are 1-planar graphs with the maximum
possible number of edges, and for these, we give an upper bound 1

3 (n−2) on the independence
number. In addition, we show that this upper bound is tight by providing a family of optimal
1-planar graphs that achieve this bound.

Our paper is organized as follows. After giving preliminaries, we first construct in Section 3
a number of 1-planar graphs as a warm-up to introduce this graph class. Specifically, we
provide infinite families of 1-planar graphs with large independent sets for minimum degree
δ = 3, 4, 5, 6, 7. In Section 4, we then present upper bounds for the independence number
of 1-planar graphs with minimum degrees δ = 3, 4, 5, 6, 7. Here for δ = 3, 4, 5 the upper
bounds are proven with some techniques that were used to bound the size of matchings in
such graphs [7]. For δ = 6, 7 we prove the upper bounds by expanding and generalizing some
known results. Section 5 focuses on the independence number of optimal 1-planar graphs,
before we conclude in Section 6 with some further thoughts.

2 Preliminaries

Let G = (V, E) be a graph on n vertices. We assume familiarity with basic terms in graph
theory, such as connectivity. We refer the reader to Bondy and Murty [9] for graph theoretic
notations. Throughout the paper our input is always a connected graph G = (V, E) on n

vertices, and n ≥ 3. We also use the letter T to denote an independent set, i.e., a set of
vertices without edges between them. The notation T refers to the set of vertices V \ T .
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A drawing Γ of a graph G assigns vertices to points in R2 and edges to curves in R2 in
such a way that edge-curves join the corresponding endpoints. In this paper we only consider
good drawings, see [30], where the following holds:
1. no vertex-points coincide and no edge-curve intersects a vertex-point except at its two

ends;
2. if two edge-curves intersect at a point p that is not a common endpoint, then they properly

cross at p;
3. if three or more edge-curves intersect at a point p, then p is a common endpoint of the

curves;
4. if the curves of two edges e, e′ intersect twice at points p ̸= p′, then e, e′ are parallel edges

and p, p′ are their endpoints; and
5. if the curve of an edge e self-intersects at point p, then e is a loop and p is its endpoint.
A drawing is called k-planar if each edge is involved in at most k crossings; a 0-planar
drawing is simply called planar. In this paper, all drawings are 1-planar. A graph is called
planar/1-planar if it has a planar/1-planar drawing, respectively.

For a given drawing Γ, the cells are the connected regions of R2 \ Γ; if Γ is planar then
these are also called faces. The unbounded cell is also called the outer face (even for drawings
that are not planar).

3 1-planar graphs with large independent sets

In this section, we construct several families of 1-planar graphs, each corresponding to
a specified minimum degree denoted by δ. These graphs are designed to possess a large
independent set. We first provide a general overview of how to construct them, and in each
subsection, we elaborate with full details.

3.1 1-planar graphs with large independent sets for δ = 3, 4, 5, 6

All but one of our constructions use a scheme that we call a standard construction which
we explain here in general terms (see Figure 1). Fix three integer parameters s, k, τ , where
s ≥ 1 is arbitrary (it serves to make the graph as big as we wish), while k and τ will depend
on the minimum degree δ.

The standard construction (illustrated in Figure 1) starts with s nested k-cycles, i.e.,
cycles of length k that are drawn (in the 1-planar drawing that we construct) such that each
next cycle is inside the previous one. We will show our drawings on the standing flat cylinder,
i.e., a rectangle where the left and right side have been identified; the nested cycles then
become horizontal lines.

The s nested cycles define s+1 faces; of these, s−1 faces (the middle faces) are bounded
by two disjoint k-cycles while two faces (the end faces) are bounded by one k-cycle. Consider
one middle face, say it is bounded by k-cycles P and P ′. We place τ vertices t1, . . . , tτ inside
this middle face; these vertices (over all middle faces together, plus possibly a few more at
the end-faces) become our independent set T . These vertices are drawn in white in Figure 1.
We make each ti adjacent to ⌈δ/2⌉ vertices on one of P, P ′ and ⌊δ/2⌋ vertices on the other.
With this, the vertices in T have degree δ. The main bottleneck for τ and k is that we must
be able to place these vertices so that the drawing is 1-planar and simple. Another bottleneck
is that all vertices in T := V \ T must have degree at least δ. Both claims will be mostly
proved by illustrations outlining the 1-planar embeddings.

SWAT 2024
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Figure 1 The standard construction and the view when the graph is drawn in the plane.

The construction inside the end-faces depends very much on δ; sometimes we add nothing
at all, sometimes we add edges, sometimes we add more vertices (in T or in T or both). The
bottleneck is again that the vertices on the first/last nested cycle must have degree δ or
more. In total the number of vertices is n = s · k + (s−1)τ (plus whatever we added at the
end-faces). The size of the independent set is |T | = (s−1)τ (plus whatever we added at the
end-faces).

Now we give the specific constructions. (We should mention that for δ = 3, 4 these are
the same as the ones given in [7] to obtain 1-planar graphs for which the maximum matching
is small, though described in a different way.)

(a) (b)

Figure 2 The graphs for δ = 3 and δ = 4 (for s = 3). Vertices in T are white, vertices in T are
black.

▶ Lemma 2. For any integer N and δ ∈ {3, 4, 5, 6}, there exists a simple 1-planar graph
with minimum degree δ and n ≥ N vertices with an independent set that has the size listed
in Table 1 under “Lower bound”.
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Proof. We follow the standard construction, choosing s big enough so that the resulting
graph has at least N vertices. We choose k and τ as follows:

For δ = 3, we use k = 3 (so nested triangles) and τ = 18. Into each end-face we add three
more vertices of T that we make adjacent to all three vertices of the nested triangle that
bounds the face. See Figure 2(a) to verify that this can be done such that the drawing is
1-planar and the minimum degree is 3. With this we have n = 3s+18(s−1)+6 = 21s−12
and |T | = 18(s − 1) + 6 = 18s − 12 = 6

7 (21s − 14) = 6
7 (n − 2).

For δ = 4, we use k = 4 (so nested quadrangles) and τ = 8. Into each end-face we add two
more vertices of T that we make adjacent to all four vertices of the nested quadrangle that
bounds the face. See Figure 2(b) to verify that this can be done such that the drawing is
1-planar and the minimum degree is 4. With this we have n = 4s + 8(s−1) + 4 = 12s − 4
and |T | = 8(s − 1) + 4 = 8s − 4 = 2

3 (12s − 6) = 2
3 (n − 2).

For δ = 5, we use k = 12 and τ = 16. Into each end-face we add four more vertices
of T connected as a path, and then 12 more vertices of T that we each make adjacent
to two vertices of the path and three vertices of the 12-gon that bounds the face. See
Figure 3, and verify that this can be done such that the drawing is 1-planar and the
minimum degree is 5. With this we have n = 12s + 16(s−1) + 32 = 28s + 16 and
|T | = 16(s − 1) + 24 = 16s + 8 = 4

7 (28s + 14) = 4
7 (n − 2).

Figure 3 The graph for δ = 5 (for s = 3).

For δ = 6, we use k = 4 (so nested quadrangles) and τ = 4. Into each end-face we
add a pair of crossing edges between the four vertices of the nested quadrangle that
bounds the face. See Figure 4 to verify that this can be done such that the drawing is
1-planar and the minimum degree is 6. With this we have n = 4s + 4(s−1) = 8s − 4 and
|T | = 4(s − 1) = 4s − 4 = 1

2 (8s − 8) = 1
2 (n − 4). ◀

3.2 1-planar graphs with large independent sets for δ = 7
In this subsection, we show how to construct a 1-planar graph with minimum degree 7 and a
large independent set. This does not use the construction from the previous section since it
seems impossible to use equal-length nested cycles. Instead, we prove first a construction
with desirable properties by induction, and then combine two such constructions into a graph
with minimum degree 7.

SWAT 2024
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Figure 4 The graph for δ = 6 (for s = 4). We also show a graph where all but 6 vertices have
degree 6 that has an independent set of size (n − 3)/2.

▷ Claim 3. For all k ≥ 0, there exists a 1-planar graph Gk with 27 · 2k − 9 vertices and an
independent set T with 9 · 2k − 6 vertices such that (in some 1-planar drawing)

there are exactly 9 · 2k vertices on the outer-face, they form a cycle and each of them has
degree at least 4,
all other vertices have degree at least 7,
no vertex of T is on the outer-face.

Proof. For the base case (k = 0), we need a graph with 18 vertices of which three form an
independent set; see Figure 5(a) to verify all conditions.

Now assume that we have graph Gk with 9 · 2k vertices on the outer-face Fk. Insert 9 · 2k

new vertices in Fk (let Tk+1 be the set of added vertices) and make each of them adjacent to
three vertices of Fk; Figure 5(b) shows that this can be done while retaining 1-planarity and
keeping Tk+1 on the outer-face. With this, all vertices in Fk receive three more neighbours
and hence now have degree 7 or more. Insert 18 · 2k new vertices into the outer-face of the
resulting graph, and connect them in a cycle that will form the outer-face Fk+1 of the new
graph Gk+1. Make each vertex of Tk+1 adjacent to four vertices of Fk+1; the figure shows
that can be done while remaining 1-planar. Also, with this all vertices on Fk+1 receive two
neighbours in Tk+1; this plus the cycle among them ensures that they have degree 4 while
everyone else has degree at least 7. As desired Tk+1 forms an independent set and has no
edges to vertices of the independent set Tk of Gk since those are not on Fk by inductive
hypothesis.

It remains to verify the claim on the size. Independent set Tk ∪ Tk+1 has size 9 · 2k − 6 +
9 · 2k = 9 · 2k+1 − 6. The outer-face Fk+1 of Gk+1 has 18 · 2k = 9 · 2k+1 vertices, and finally
|V (Gk+1)| = |V (Gk)| + |Tk+1| + |Fk+1| = 27 · 2k − 9 + 9 · 2k + 18 · 2k = 27 · 2k+1 − 9. ◁

▶ Lemma 4. For any integer N , there exists a simple 1-planar graph with minimum degree
7 and n ≥ N vertices with an independent set of size 8

21 (n − 13.5).

Proof. Let k = ⌈log2((N+18)/63)⌉ and start with two copies of Gk, placed such that the
two outer-faces Fk, F ′

k of the two copies together bound one face. Into this face, insert 9 · 2k

vertices that we call Uk+1, grouped into 3 · 2k paths of three vertices each. Each vertex of
Uk+1 is adjacent to three vertices each of Fk and F ′

k; Figure 6 shows that this can be done
while remaining 1-planar.
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F0

(a)

rest
of Gk

Fk Fk+1Tk+1

(b)

Figure 5 The base case and the induction step for building the graph Gk. For ease of reading we
now show the construction on the rolling cylinder, rather than the standing one.

Since each vertex of Uk+1 also has at least one neighbour in Uk+1, and each vertex of
Fk and F ′

k receives three more neighbours, the resulting graph G has minimum degree 7.
Define T to consist of the two independent sets of the two copies of Gk as well as the 6 · 2k

end-vertices of the paths in Uk+1; this is an independent set. See Figure 5.
It remains to analyze the size of G and T . Since G contains two copies of Gk, plus Uk+1,

it has

n = 2 · 27 · 2k − 2 · 9 + 9 · 2k = 63 · 2k − 18 ≥ N

vertices. Likewise T contains two copies of the independent set of Gk, plus the ends of the
3 · 2k paths, hence

|T | = 2 · 9 · 2k − 2 · 6 + 6 · 2k = 24 · 2k − 12.

Since 8
21 (63 · 2k − 18 − 13.5) = 24 · 2k − 144

21 − 108
21 = 24 · 2k − 12, the bound holds. ◀

With this we have proved all lower-bound entries in Table 1.

4 Upper bounds on the independence number

All our approaches to prove the upper bounds rely on bounding the maximum size of a
bipartite 1-planar graph where one side of the bipartition is the bounded degree independent
set. A previously known result here gives tight upper bounds for 1-planar graphs with
minimum degree 3,4 and 5. For δ = 6, by counting differently, we improve the bound. For
δ = 7 we improve the existing result by using a charging/discharging argument.

4.1 Upper bounds on the independence number for δ = 3, 4, 5
To obtain our upper bounds in this section, we use the following lemma from [7] on independent
sets in 1-planar graphs.

SWAT 2024
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Fk F �
k

rest
of Gk

rest
of G�

k

Uk+1

Figure 6 Combining two copies of Gk.

▶ Lemma 5 ([7]). Let G be a simple 1-planar graph. Let T be a non-empty independent set
in G where deg(t) ≥ 3 for all t ∈ T . Let Td be the vertices in T that have degree d. Then

2|T3| +
∑
d≥4

(3d − 6)|Td| ≤ 12|T | − 24. (1)

The notation of “minimum degree” is normally only defined for an entire graph, but we now
use it also for a subset T of vertices, so T has minimum degree δ if all vertices in T have
degree at least δ (but vertices in T may have smaller degrees).
Given the upper bound established in Lemma 5, we are able to use a counting argument to
obtain the following upper bounds.

▶ Corollary 6. Let G be a simple 1-planar graph and T be an independent set with minimum
degree δ = 3. Then |T | ≤ 6

7 (n − 2).

Proof. We have 2|T | = 2
∑

d≥3 |Td| ≤ 2|T3| +
∑

d≥4(3d − 6)|Td| ≤ 12(n − |T |) − 24 and
therefore 14|T | ≤ 12n − 24. ◀

▶ Corollary 7. Let G be a simple 1-planar graph and T be an independent set with minimum
degree δ = 4. Then |T | ≤ 2

3 (n − 2).

Proof. Since T3 is empty, we have 6|T | =
∑

d≥4 6|Td| ≤ 2|T3| +
∑

d≥4(3d − 6)|Td| ≤ 12(n −
|T |) − 24 and therefore 18|T | ≤ 12n − 24. ◀

▶ Corollary 8. Let G be a simple 1-planar graph and T be an independent set with minimum
degree δ = 5. Then |T | ≤ 4

7 (n − 2).

Proof. Since T3 and T4 are empty, we have 9|T | =
∑

d≥5 9|Td| ≤ 2|T3| +
∑

d≥4(3d − 6)|Td| ≤
12(n − |T |) − 24 and therefore 21|T | ≤ 12n − 24. ◀

4.2 Upper bounds on the independence number for δ = 6
Note that if we apply the above Lemma for δ = 6, we get a bound of 12|T | =

∑
d≥6 12|Td| ≤

2|T3| +
∑

d≥4(3d − 6)|Td| ≤ 12(n − |T |) − 24 and therefore 24|T | ≤ 12n − 24 which means
1
2 (n − 2). However, we are able to get a slightly better bound by using an alternative
argument.
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▶ Lemma 9. Let G be a simple 1-planar graph. Then for any independent set T with
minimum degree δ we have |T | ≤ 3n−8−χ

δ where χ = 1 if n is odd and χ = 0 otherwise.

Proof. Consider the 1-planar bipartite subgraph G− of G that consists of the edges between
T and T . This graph has n vertices and has (by a result by Karpov [23]) at most 3n − 8 − χ

edges. Every vertex of T has no neighbour in T , so all its incident edges are in G−. Therefore
δ|T | ≤ E(G−) ≤ 3n − 8 − χ which implies the result. ◀

▶ Corollary 10. Let G be a simple 1-planar graph and T be an independent set with minimum
degree δ = 6. Then |T | ≤ 1

2 (n − 3).

Proof. If n is odd then |T | ≤ 1
6 (3n − 9) = 1

2 (n − 3). If n is even then by integrality
|T | ≤ ⌊ 1

6 (3n − 8)⌋ = ⌊ n
2 − 4

3 ⌋ = n
2 − 2 = 1

2 (n − 4). ◀

4.3 Upper bounds on the independence number for δ = 7
We notice that by using the counting argument as above, the upper bounds that can be
obtained for δ = 7 are

3n−8
7 , 4n−8

9

which are quite weak. We are able to obtain a better upper bound by revisiting the
charging/discharging argument that was used in the proof of Lemma 5 (this was hinted at
in [7], and many parts of the proof below are directly taken from there). We furthermore
generalize the statement to graphs with parallel edges (in [7] simplicity of the graph was used
only for δ = 3). Specifically we assume that the graph has no loops and a bigon-free 1-planar
drawing Γ, i.e., there is no cell whose boundary consists of two parallel uncrossed edges.

▶ Lemma 11. Let G be a 1-planar graph with an independent set T that has minimum degree
δ ≥ 4. Graph G may have parallel edges, but assume that it has no loops and a bigon-free
1-planar drawing Γ. Then

|T | ≤ 4
δ + ⌈ δ

3 ⌉
(n − 2).

Proof. We use a charging scheme, where we assign some charges (units of weight) to edges
in G (as well as to some edges that we add to G), redistribute these charges to the vertices
in T , and then count the number of charges in two ways to obtain the bound.

As a first step, delete all edges within T so that G becomes bipartite. Also add any edge
to Γ that connects T to T and that can be added without a crossing. We are allowed to
add parallel edges, as long as they do not form a bigon. Both operations can only increase
degrees of vertices in T , so it suffices to prove the bound in the resulting drawing Γ′.

As shown in [7], for any vertex t ∈ T there cannot be three consecutive crossed edges in
the circular ordering of edges at t. For if there were three such edges (say (t, s1), (t, s2), (t, s3))
then the edge that crosses (t, s2) has one endpoint in T ; we could have added an uncrossed
edge from this endpoint to t, and since it would be before or after (t, s2) in the circular
ordering at t it would not have formed a bigon. This contradicts maximality.

We assign charges as follows: Let E− be the uncrossed edges of Γ; each of those receives
2 charges. Let E× be the crossed edges of Γ; each of those receives 1 charges. We know
(see [7]) that 1

2 |E×| + |E−| ≤ 2n − 4 (this holds even with parallel edges if the drawing is
bigon-free and has no loops). Hence

#charges = 2|E−| + 1|E×| ≤ 4n − 8. (2)

SWAT 2024
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For t ∈ T , let c(t) be the total charges of incident edges of t and write d for the degree
of t. We know that there are at least ⌈ d

3 ⌉ uncrossed edges at t since there are no three
consecutive crossed edges. Thus t obtains 2⌈ d

3 ⌉ charges from three uncrossed edges, and at
least d − ⌈ d

3 ⌉ further charges from the remaining edges. Hence c(t) ≥ d + ⌈ d
3 ⌉ ≥ δ + ⌈ δ

3 ⌉ and

#charges =
∑
t∈T

c(t) ≥ |T |(δ + ⌈ δ
3 ⌉). (3)

Combining this with (2) gives |T |(δ + ⌈ δ
3 ⌉) ≤ 4n − 8 as desired. ◀

▶ Corollary 12. Let G be a simple 1-planar graph and T be an independent set with minimum
degree δ = 7. Then |T | ≤ 2

5 (n − 2).

Proof. The proof follows from Lemma 11 by setting δ = 7 ◀

With this we have proved all upper-bound entries in Table 1.

5 Optimal 1-planar graphs

Caro and Roditty in [13] showed that if G is a planar graph with order n ≥ 4 and minimum
degree δ, the equality α(G) = 2n−4

δ holds if and only if G can be formed from a planar graph
H, all of whose faces are bounded by δ-cycles, by adding a vertex of degree δ inside each
region. In particular, for planar graph the upper bound on the independence number is tight
for maximal planar graph, i.e., planar graphs that have the maximum possible number 3n − 6
of edges.

In the same spirit, one should ask what the independence number can be for 1-planar
graphs that have the maximum possible number of edges. It is known that every 1-planar
graph has at most 4n − 8 edges, and a simple 1-planar graph G is called optimal if it has
exactly 4n − 8 edges. An optimal 1-planar graph can equivalently be defined as the graphs
obtained by taking a planar quadrangulated graph Q (i.e., all faces are bounded by 4-cycles)
and inserting a pair of crossing edges into each face. Numerous results are known for such
graphs, see [8]. In particular, a simple optimal 1-planar graph has exactly n − 2 pairs of
crossing edges, all vertex-degrees are even, and the minimum degree is 6.

▶ Lemma 13. Let G be a simple optimal 1-planar graph. Then for any independent set T

we have |T | ≤ 1
3 (n − 2).

Proof. Fix an arbitrary vertex t ∈ T , say it has degree d ≥ 6. In the 1-planar drawing of G,
the cyclic order of edges around t alternates between uncrossed and crossed edges. Therefore
half of the incident edges of t are crossed, and we assign all these crossings to t. This does
not double-count crossings, because (in an optimal 1-planar graph) the four endpoints of a
crossing induce K4 and so at most one of them can belong to T . We assigned at least three
crossings to every vertex in T , and there are exactly has n−2 crossings, so |T | ≤ 1

3 (n−2). ◀

▶ Lemma 14. For any integer N , there exists a simple optimal 1-planar graph with n ≥ N

vertices and an independent set of size 1
3 (n − 2).

Proof. Let H be a 2s-prism, i.e., it consists of two cycles of length 2s with corresponding
vertices of the cycles connected by an edge. Here s ≥ max{4, N−2

6 }. Graph H has 4s vertices
and is bipartite; we let T be one of its colors classes and note that |T | = 2s. See also Figure 7.

Now obtain graph G by adding the dual graph H∗ to H and connecting every dual vertex
vF of H∗ to all vertices of the face F of H that vF represents. It is well-known that this gives
an optimal 1-planar graph, and since H has 2s + 2 faces, we have n = |V (G)| = 6s + 2 ≥ N .
No two vertices of T were connected, so T is an independent set of G of size 2s = 1

3 (n−2). ◀
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Figure 7 Graph H (bold) for s = 2 and the resulting optimal 1-planar graph that has an
independent set (white) of size n−2

3 .

Combining the two results we obtain:

▶ Theorem 15. The independence number of optimal 1-planar graphs is exactly n−2
3 for the

only feasible minimum degree δ = 6.

6 Further thoughts

In this paper, we studied upper bounds on the independence number of 1-planar graphs of
minimum degree δ (for δ = 3, 4, 5, 6, 7). This considered all interesting cases, because for
δ = 2 the complete bipartite graph K2,n−2 is 1-planar (in fact, planar), so the independence
number can be arbitrarily close to n, and there are no simple 1-planar graphs with minimum
degree δ = 8. We also provided 1-planar graphs for these minimum degrees that have large
independent sets.

For δ = 3, 4, 5, our lower and upper bound match exactly (see also Table 1). For δ = 6,
our bounds are within a very small constant of each other. We do leave a larger gap between
upper and lower bounds for δ = 7.

One reason for this gap is that the arguments used for upper bounds (Lemmas 5, 9,
and 11) are ignoring some information: they do not use that the entire graph has minimum
degree δ, but they only use that the independent set T has minimum degree δ. While this
(surprisingly) does not seem to make a difference for δ = 3, 4, 5, it makes a tiny (additive)
difference for δ = 6 and a noticeable (multiplicative) difference for δ = 7. For δ = 6, we can
construct a graph with an independent set T of the (maximum possible size) (n − 3)/2 if we
allow just six vertices in T to have smaller degree; see also Figure 4. It is also not hard to
construct a 1-planar graph with an independent set T of size 2

5 n − O(1) that has minimum
degree 7 (but some vertices of T have smaller degree); roughly speaking take two graphs Gk

(from Lemma 4) and identify the vertices of the two copies of Fk (we leave the calculations
to the reader). So Lemma 11 as written is tight, but can we prove a smaller upper bound in
the scenario where vertices of T also must have minimum degree δ?

Last but not least, it would be interesting to explore algorithmic questions around finding
independent sets of a certain size. For example, it is easy to find an independent set of size
n
8 in any 1-planar graph (because they are 7-degenerate and so can be 8-coloured in linear
time). With more effort, we can even 7-color the graph in linear time, so find an independent
set of size at least n

7 [14]. But can we find, say, an independent set of size n
3 − O(1) in an

optimal 1-planar graph efficiently?

SWAT 2024
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