
Size-Constrained Weighted Ancestors with
Applications
Philip Bille #

Technical University of Denmark, Lyngby, Denmark

Yakov Nekrich #

Michigan Technological University, Houghton, MI, US

Solon P. Pissis #

CWI, Amsterdam, The Netherlands
Vrije Universiteit, Amsterdam, The Netherlands

Abstract
The weighted ancestor problem on a rooted node-weighted tree T is a generalization of the classic
predecessor problem: construct a data structure for a set of integers that supports fast predecessor
queries. Both problems are known to require Ω(log log n) time for queries provided O(n poly log n)
space is available, where n is the input size. The weighted ancestor problem has attracted a lot of
attention by the combinatorial pattern matching community due to its direct application to suffix
trees. In this formulation of the problem, the nodes are weighted by string depth. This research has
culminated in a data structure for weighted ancestors in suffix trees with O(1) query time and an
O(n)-time construction algorithm [Belazzougui et al., CPM 2021].

In this paper, we consider a different version of the weighted ancestor problem, where the nodes
are weighted by any function weight that maps each node of T to a positive integer, such that
weight(u) ≤ size(u) for any node u and weight(u1) ≤ weight(u2) if node u1 is a descendant of node
u2, where size(u) is the number of nodes in the subtree rooted at u. In the size-constrained weighted
ancestor (SWA) problem, for any node u of T and any integer k, we are asked to return the lowest
ancestor w of u with weight at least k. We show that for any rooted tree with n nodes, we can locate
node w in O(1) time after O(n)-time preprocessing. In particular, this implies a data structure for
the SWA problem in suffix trees with O(1) query time and O(n)-time preprocessing, when the nodes
are weighted by weight. We also show several string-processing applications of this result.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases weighted ancestors, string indexing, data structures

Digital Object Identifier 10.4230/LIPIcs.SWAT.2024.14

Related Version Full Version: https://doi.org/10.48550/arXiv.2311.15777

Funding Philip Bille: Supported by the Independent Research Fund Denmark (DFF-9131-00069B).
Yakov Nekrich: Supported by the National Science Foundation under NSF grant 2203278.
Solon P. Pissis: Supported by the PANGAIA (No 872539) and ALPACA (No 956229) projects.

1 Introduction

In the classic predecessor problem [27, 16, 29, 24, 23], we are given a set S of keys from a
universe U with a total order. The goal is to preprocess set S into a compact data structure
supporting the following on-line queries: for any element q ∈ U , return the maximum p ∈ S

such that p ≤ q; p is called the predecessor of q.
The weighted ancestor problem, introduced by Farach and Muthukrishnan in [15], is

a natural generalization of the predecessor problem on rooted node-weighted trees. In
particular, given a rooted tree T , whose nodes are weighted by positive integers and such that
these weights decrease when ascending from any node to the root, the goal is to preprocess

© Philip Bille, Yakov Nekrich, and Solon P. Pissis;
licensed under Creative Commons License CC-BY 4.0

19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024).
Editor: Hans L. Bodlaender; Article No. 14; pp. 14:1–14:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:phbi@dtu.dk
https://orcid.org/0000-0002-1120-5154
mailto:yakov@mtu.edu
https://orcid.org/0000-0003-3771-5088
mailto:solon.pissis@cwi.nl
https://orcid.org/0000-0002-1445-1932
https://doi.org/10.4230/LIPIcs.SWAT.2024.14
https://doi.org/10.48550/arXiv.2311.15777
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 Size-Constrained Weighted Ancestors with Applications

$

GAA
$

$

GA$

GA

CAGAGA$

$

GA$

1

2

4

6

7

3

5u

1

3
2w

0

(a) The internal nodes are weighted by string
depth (in red). Asking a weighted ancestor query
for i = 2 (node u) and k = 2 will take us to
node w. Indeed, (w, k) is the locus of substring
AG in the suffix tree of X.

$

GAA
$

$

GA$

GA

CAGAGA$

$

GA$

1

2

4

6

7

3

5u

3

2
2

w

7

(b) The internal nodes are weighted by frequency
(in red). Asking a weighted ancestor query for
i = 2, j = 7 (node u) and k = 3 will take us
to node w. Indeed, A is the longest prefix of
AGAGA$ that occurs at least 3 times in X.

Figure 1 Weighted ancestor queries on the suffix tree of string X = CAGAGA$. The leaf nodes in
both trees are labeled by the starting position of the suffix of X they represent.

tree T into a compact data structure supporting the following on-line queries: for any given
node u and any integer k > 0, return the farthest ancestor of u whose weight is at least k.
Both the predecessor and the weighted ancestor problems require Ω(log log n) time for queries
provided O(n poly log n) space is available, where n is the input size of the problem [17].

The weighted ancestor problem has attracted a lot of attention in the combinatorial
pattern matching community [15, 4, 22, 21, 17, 8, 6] due to its direct application to suffix
trees [28]. The suffix tree of a string X is the compacted trie of the set of suffixes of X; see
Figure 1a. In this formulation of the problem, a node u is weighted by string depth: the
length of the string spelled from the root of the suffix tree to u; and a weighted ancestor
query for two integers i and k > 0 returns the locus of substring X[i . . i + k − 1] in the suffix
tree of X. We refer the reader to [17] for several applications. This research has culminated
in a data structure for weighted ancestors in suffix trees, given by Belazzougui, Kosolobov,
Puglisi, and Raman [8], supporting O(1)-time queries after an O(n)-time preprocessing.

However there are other tree weighting schemes that are of interest to string processing.
For example, each suffix tree node can be weighted by the number of its leaf descendants; see
Figure 1b. Thus the weight of a node u is equal to the frequency of the substring represented
by the root-to-u path. If we use this weighting function, then the following basic string
problem can be translated into a weighted ancestor query: Given a substring I = X[i . . j] of
string X and an integer k > 0, find the longest prefix of I that occurs at least k times in X.

Unfortunately, the existing data structures for the weighted ancestor problem on suffix
trees [17, 8] depend strongly on the fact that the suffix tree nodes are weighted by string
depth. They thus cannot be applied to solve the aforementioned basic string problem.

Motivated by this fact, we introduce a different version of the weighted ancestor problem
on general rooted trees. Let T be a rooted tree on a set V of n nodes. By size(u), we denote
the number of nodes in the subtree rooted at a node u ∈ V . Let weight : V → N denote any
function that maps each node of T to a positive integer, such that weight(u) ≤ size(u) for
any node u ∈ V and weight(u1) ≤ weight(u2) if node u1 ∈ V is a descendant of node u2 ∈ V .
The latter is also known as the max-heap property: the weight of each node is less than or
equal to the weight of its parent, with the maximum-weight element at the root. We will

P. Bille, Y. Nekrich, and S. P. Pissis 14:3

say that a function weight : V → N satisfying both properties is a size-constrained max-heap
weight function. For any node u ∈ V and any integer k > 0, a size-constrained weighted
ancestor query, denoted by SWA(u, k) = w, asks for the lowest ancestor w ∈ V of u with
weight at least k. The size-constrained weighted ancestor (SWA) problem, formalized next,
is to preprocess T into a compact data structure supporting fast SWA queries:

Size-Constrained Weighted Ancestor (SWA)
Preprocess: A rooted tree T on a set V of n nodes weighted by a size-constrained
max-heap function weight : V → N.
Query: Given a node u ∈ V and an integer k > 0, return the lowest ancestor w of u

with weight(w) ≥ k.

We assume throughout the standard word RAM model of computation with word size
Θ(log n); basic arithmetic and bit-wise operations on O(log n)-bit integers take O(1) time.
Note that, since function weight must satisfy the max-heap property, one can employ the
existing data structures for the weighted ancestor problem on general rooted trees [15, 4], to
answer SWA queries in O(log log n) time after O(n)-time preprocessing (see also [25]). Our
main result in this paper can be formalized as follows (see Section 3 and Section 4).

▶ Theorem 1. For any rooted tree with n nodes weighted by a size-constrained max-heap
function weight, there exists an O(n)-space data structure answering SWA queries in O(1)
time. The preprocessing algorithm runs in O(n) time and O(n) space.

As a preliminary step, we design an O(n log n)-space solution using an involved combina-
tion of rank-select data structures [7], fusion trees [16], and heavy-path decompositions [26].
We then design a novel application of ART decomposition [2] to arrive to Theorem 1.

Applications. Notably, Theorem 1 presents a data structure for the SWA problem in
suffix trees with O(1) query time and O(n)-time preprocessing, when the nodes are weighted
by a size-constrained max-heap weight function weight. We show several string-processing
applications of this result since weight(u) can be defined as the number of leaf nodes in the
subtree rooted at u. Let us first provide some intuition on the applicability of Theorem 1.

Consider a relatively long query submitted to a search-engine text database. If the
database returns no (or not sufficiently many) results, one usually tries to repeatedly truncate
some prefix and/or some suffix of the original query until they obtain sufficiently many
results. Our Theorem 1 can be applied to solve this problem directly in optimal time.

In particular, Theorem 1 yields optimal data structures, with respect to preprocessing
and query times, for the following basic string-processing problems (see Section 5):
1. Preprocess a string X into a linear-space data structure supporting the following on-line

queries: for any i, j, f return the longest prefix of X[i . . j] occurring at least f times in X.
2. Preprocess a dictionary D of documents into a linear-space data structure supporting the

following on-line queries: for any string P and any integer f , return a longest substring
of P occurring in at least f documents of D.

3. Preprocess a string X into a linear-space data structure supporting the following on-line
queries: for any string P and any integer f , return a longest substring of P occurring at
least f times in X.

Theorem 1 also directly improves on the data structure presented by Pissis et al. [25] for
computing the frequency-constrained substring complexity of a given string (see Section 5).

SWAT 2024

14:4 Size-Constrained Weighted Ancestors with Applications

2 Preliminaries

For any bit string B of length m and any α ∈ {0, 1}, the classic rank and select queries are
defined as follows:

rankα: for any given i ∈ [1, m], it returns the number of ones (or zeros) in B[1 . . i]; more
formally, rankα(B, i) = |{j ∈ [1, i] : B[j] = α}|.
selectα: for any given rank i, it returns the leftmost position where the bit vector contains a
one (or zero) with rank i; more formally, selectα(B, i) = min{j ∈ [1, m] : rankα(B, j) = i}.

The following result is known.

▶ Lemma 2 (Rank and Select [7]). Let B be a bit string of length m ≤ n stored in O(1 +
m/ log n) words. We can preprocess B in O(1 + m/ log n) time into a data structure of
m + o(m) bits supporting rank and select queries in O(1) time.

Bit strings can also be used as a representation of monotonic integer sequences supporting
predecessor queries; see [5], for example. Assume we have a set S of m keys from a universe
U with a total order. In the predecessor problem, we are given a query element q ∈ U , and we
are to find the maximum p ∈ S such that p ≤ q; we denote this query by predecessor(q) = p.
The following result is known for a special case of the predecessor problem.

▶ Lemma 3 (Fusion Tree [16]). We can preprocess a set of m = logO(1) n integers in O(m)
time and space to support predecessor queries in O(1) time.

3 Constant-time Queries using O(n log n) Space

We first show how to solve the SWA problem in O(1) time using O(n log n) space. This
solution forms the basis for our linear-time and linear-space solution in Section 4.

3.1 Heavy-path Decomposition
Let T be a rooted tree with n nodes. We compute the heavy-path decomposition of T in
O(n) time [26]. Recall that, for any node u in T , we define size(u) to be number of nodes in
the subtree of T rooted at u. We call an edge (u, v) of T heavy if size(v) is maximal among
every edge originating from u (breaking ties arbitrarily). All other edges are called light. We
call a node that is reached from its parent through a heavy edge heavy; otherwise, the node
is called light. The heavy path of T is the path that starts at the root of T and at each node
on the path descends to the heavy child as defined above. The heavy-path decomposition
of T is then defined recursively: it is a union of the heavy path of T and the heavy-path
decompositions of the off-path subtrees of the heavy path. A well-known property of this
decomposition is that every root-to-node path in T passes through at most log n light edges.
In particular, the following lemma is implied.

▶ Lemma 4 (Heavy-path Decomposition [26]). Let T be a rooted tree with n nodes. Any
root-to-leaf path in T consists of at most log n + O(1) heavy paths.

3.2 Data Structure
We construct a heavy-path decomposition of T . Consider a heavy path H = v1 . . . vℓ. We
construct a bit string B(H) that represents the differences between node weights using unary
coding. Suppose that nodes v1 . . . vℓ of H are listed in decreasing order of their depth and
let δ(vi) = weight(vi) − weight(vi−1), for all i > 1. We define B(H) as follows:

B(H) = enc(weight(v1)) · enc(δ(v2)) . . . · . . . enc(δ(vi)) · . . . · enc(δ(vℓ)),

P. Bille, Y. Nekrich, and S. P. Pissis 14:5

16

5

5

63

9 1

1 2

1

12

1

1

11

u2

u5

u1

u3

u4

u6

Figure 2 A rooted tree T with n = 16 nodes. Each node u of T is weighted by weight(u) = size(u).
For example, weight(u5) = size(u5) = 9, because there are 9 nodes in the subtree rooted at u5, and
SWA(u2, 7) = u5 because the lowest ancestor of u2 with weight at least 7 is node u5. A heavy-path
decomposition of T is also depicted: the heavy edges are the red edges. For example, the heavy
path of the whole T is u1u2 . . . u6.

where enc(i) denotes the unary code of i; i.e., enc(i) consists of i 1’s followed by a single 0.
The important property of our encoding is that the total number of 0-bits in B(H) is ℓ and
the total number of 1-bits is weight(vℓ).

▶ Example 5. Let H = u1u2 . . . u6 be the heavy path of T from Figure 2. We have
ℓ = 6 and weight(u1) = 1, weight(u2) = 2, weight(u3) = 5, weight(u4) = 6, weight(u5) =
9, weight(u6) = 16. We have B(H) = 1010111010111011111110. For instance, the second
1 denotes δ(u2) = weight(u2) − weight(u1) = 1. The leftmost occurrence of 111 denotes
δ(u3) = weight(u3) − weight(u2) = 3 1’s.

For any heavy path H, we can construct B(H) in O(ℓ) time using standard word RAM
bit manipulations to construct the unary codes and concatenate the underlying bit strings.
By Lemma 4, every leaf node of T has O(log n) ancestors vt, such that vt is the topmost node
of some heavy path H. Since any node in T is counted in the weight of O(log n) topmost
nodes, the total weight of all topmost nodes, summed over all heavy paths H, is O(n log n).
Thus, the total length of all bit strings B(H) is O(n log n) and we can construct them all in
O(n) time since the total length of the heavy paths is O(n). We store each such bit string
according to Lemma 2 to support O(1)-time rank and select queries using O(n) preprocessing
time and words of space. Furthermore, for each leaf node v in T we store the weights of
the top nodes of each heavy path on the path from the root to v. By Lemma 4, there are
O(log n) such top nodes for each leaf. For every leaf node we store the weights of its top
node ancestors in a fusion tree data structure according to Lemma 3. The total space used
by all such fusion trees is O(n log n) words and the preprocessing time is O(n log n). Finally,
we construct a lowest common ancestor (LCA) data structure over T . Such a data structure
answers LCA queries in O(1) time after O(n)-time and O(n)-space preprocessing [9].

SWAT 2024

14:6 Size-Constrained Weighted Ancestors with Applications

w2

w1

u

u`

u′

(a) Case 1: Only w1 is an ancestor of u. The
heavy path Hw is shown in red. The (f + 1)th
node w2 on Hw is below w1. The node w1 is
the (f + g)th node on Hw for some g > 1, and
so w1 is the answer.

w2

w1

u

u`

u′

(b) Case 2: Both w1 and w2 are ancestors of
u. The heavy path Hw is shown in red. The
(f + 1)th node w2 on Hw is above w1, and so
w2 is the answer.

Figure 3 The two cases of the querying algorithm.

3.3 Queries
Suppose we are given a node u and an integer k as an SWA(u, k) query. We are looking for
the lowest ancestor w of u with weight at least k. If the weight of u is at least k, we return
u. Otherwise we proceed as follows. First, we locate the heavy path Hw that contains node
w: we find an arbitrary leaf descendant uℓ of u; then, using the fusion tree of uℓ, we find the
lowest ancestor u′ of uℓ with weight at least k, such that u′ is a top node. Hw is the heavy
path, such that u′ is its top node. When we find Hw, we answer a query f = rank0(B(Hw), j)
for j = select1(B(Hw), k) using Lemma 2 in O(1) time. Let w1 denote the lowest ancestor of
u on the heavy path Hw (see Figure 3). If u is on Hw (Figure 3b), then w1 is simply the
parent of u. Otherwise (Figure 3a), w1 can be found as the lowest common ancestor of the
lowest node on Hw and node u. In the latter case, w1 can be found using an LCA query that
takes O(1) time. Let w2 denote the (f + 1)th node on Hw. The node w is the highest node
among w1 and w2. The query time is O(1) by Lemma 3 for finding Hw and by Lemma 2 for
finding f . Example 6 shows how we use B(Hw) to find f and thus the (f + 1)th node.

▶ Example 6. Let B(H) = 1010111010111011111110 from Example 5, u2 from Figure 2,
and k = 7. Then j = select1(B(H), 7) = 11 and f = rank0(B(H), 11) = 4. The output node
is u5, the (f + 1)th node on H. Indeed, weight(u5) = 9 ≥ k = 7 and weight(u4) = 6 < k = 7.

In summary, we have shown the following result, which we will improve in the next
section.

▶ Lemma 7. For any rooted tree with n nodes weighted by a size-constrained max-heap
function weight, there exists an O(n log n)-space data structure answering SWA queries in
O(1) time. The preprocessing algorithm runs in O(n log n) time and O(n log n) space.

4 Constant-time Queries using O(n) Space

We now improve the above solution to the SWA problem (Lemma 7) to linear-time and
linear-space preprocessing. We will reuse the previous section’s linear-time heavy-path
decomposition and the corresponding bit string encoding. The key challenge is identifying
the top nodes of heavy paths in O(1) time using linear space.

P. Bille, Y. Nekrich, and S. P. Pissis 14:7

4.1 ART Decomposition
The ART decomposition, proposed by Alstrup, Husfeldt, and Rauhe [2], partitions a rooted
tree into a top tree and several bottom trees with respect to an input parameter χ. Each
node v of minimal depth, with no more than χ leaf nodes below it, is the root of a bottom
tree consisting of v and all its descendants. The top tree consists of all nodes that are not in
any bottom tree. The ART decomposition satisfies the following important property:

▶ Lemma 8 (ART Decomposition [2]). Let T be a rooted tree with ℓ leaf nodes. Further let χ

be a positive integer. The ART decomposition of T with parameter χ produces a top tree with
at most O(ℓ/χ) leaves. Such a decomposition of T can be computed in linear time.

4.2 Data Structure
Recall that T consists of n nodes. As discussed in Section 3.2, we compute the heavy-path
decomposition of T , construct bit strings for each heavy path, and preprocess the bit strings
to support rank and select queries in O(1) time. This takes O(n) preprocessing time and
space, allowing us to answer queries on a heavy path in O(1) time. Thus what remains is a
linear-space and O(1)-time solution to locate the top nodes of heavy paths.

16

5

5

63

9 1

1 2

1

12

1

1

11

p1

p2
p3

p4

p5

p6

p7

p8

(a) The tree T from Figure 2. We write the
heavy path id pi at the end of the ith heavy
path.

p1 p2

p3 p4

p5

p6 p7 p8

(b) The contracted tree CT .

Figure 4 The contraction process of the tree T from Figure 2.

First, we construct the contracted tree CT of T obtained by contracting all edges of heavy
paths in T . In particular, this leaves all the light edges from T in CT and removes all the
heavy edges from T (see Figure 4). We then apply the ART decomposition on CT (see
Figure 5a) with parameter χ2, where χ = ϵ log n

log log n and ϵ is a positive constant. We apply
the ART decomposition again with parameter χ (see Figure 5b) on each resulting bottom
tree. The resulting partition of CT contains three levels of trees that we call the top tree, the
middle trees, and the bottom trees. Since the heavy-path decomposition of T can be computed
in O(n) time, contracting T takes O(n) time by processing the heavy-path decomposition of
T . By Lemma 8, the ART decompositions of T cost O(n) total time.

Let us first consider the top tree. As in Section 3.2, we store a fusion tree for each leaf
node in the top tree. By Lemma 8, the top tree has O(|CT |

χ2) leaves and hence, by Lemmas 3
and 4, this uses O(|CT |

χ2 · log n) = O(n(log log n)2

log n) = o(n) space and preprocessing time.

SWAT 2024

14:8 Size-Constrained Weighted Ancestors with Applications

|CT |/χ2

χ2 χ2 χ2

(a) First application of ART decomposition on
CT .

|CT |/χ2

χ χ χ χ χ χ χ χ χ χ

χ χ χ

(b) Application of ART decomposition on the
bottom trees of the tree in Figure 5a.

Figure 5 Application of ART decompositions on CT .

For the middle or bottom trees, we tabulate the answers to all possible queries in a global
table. The index in the table is given by a tree encoding and the node u along with integer k

for the SWA query. The corresponding value in the table is the output node of the SWA(u, k)
query. We encode the input to a query as follows. We represent each middle and bottom tree
compactly as a bit string encoding the tree structure and the weights of all nodes. Since each
internal node in CT is branching, the number of nodes in a middle or bottom tree is bounded
by O(χ). Thus, we can encode the tree structure using O(χ) bits. The weight of a node in a
middle or bottom tree is bounded by O(χ2) or O(χ), respectively, and can thus be encoded
in O(log χ) bits. Hence, we can encode the tree structure and all weights using O(χ log χ)
bits. We encode the query node u using O(log χ) bits. Since the maximum weight is O(χ2)
we can also encode the query integer k using O(log χ) bits. Hence, the full encoding uses
O(χ log χ) + O(log χ) + O(log χ) = O(χ log χ) bits. To encode the output node stored in the
global table we use O(log χ) bits. Thus, the table uses 2O(χ log χ) log χ = 2O(ϵ log n) = o(n)
bits for a sufficiently small constant ϵ > 0. The table can be constructed in o(n) time.

4.3 Queries

Suppose we are given a node u and an integer k as an SWA(u, k) query. Let ut denote the
top node on the heavy path of u in T and let uH denote the corresponding node in the
contracted tree CT . We find the lowest ancestor wH of uH with weight at least k in CT . If
uH is in the top tree we find wH as described in Section 3.2. If uH is in a middle or bottom
tree, we use the global table to find wH . If the result is not in the middle or bottom tree (the
weight of the top node in such a tree is smaller than k), we move up a level and query the
middle or top tree, respectively. Each of these at most three queries takes O(1) time. Thus
wH is found in O(1) time. Suppose that wH corresponds to a node w′ in the initial tree and
let H ′ denote the heavy path such that w′ is its top node. As explained in Section 3.2, we
can find the lowest ancestor of u with weight at least k on H ′ in O(1) time using rank and
select queries on B(H ′). In total the SWA(u, k) query takes O(1) time.

In summary, we have obtained the following result.

▶ Theorem 1. For any rooted tree with n nodes weighted by a size-constrained max-heap
function weight, there exists an O(n)-space data structure answering SWA queries in O(1)
time. The preprocessing algorithm runs in O(n) time and O(n) space.

P. Bille, Y. Nekrich, and S. P. Pissis 14:9

5 String-processing Applications

In this section, we show several applications of Theorem 1 on suffix trees. Recall that the
number of leaf nodes in the subtree rooted at node u in a suffix tree is the number of
occurrences (i.e., the frequency) of the substring represented by the root-to-u path.

5.1 Internal Longest Frequent Prefix
Internal pattern matching is an active topic [20, 3, 12, 11, 13, 1, 5] in the combinatorial
pattern matching community. We introduce the following basic string problem. The internal
longest frequent prefix problem asks to preprocess a string X of length n over an integer
alphabet Σ = [1, nO(1)] into a compact data structure supporting the following on-line queries:

ILFPX(i, j, f): return the longest prefix of X[i . . j] occurring at least f times in X.

Our solution to this problem will form the basic tool for solving the problems in Sections 5.2
and 5.3. We first construct the suffix tree T of X in O(n) time [14], and preprocess it in O(n)
time for classic weighted ancestor queries [8] as well as for SWA queries using Theorem 1.
For SWA queries, as weight(u), we use the number of leaf nodes in the subtree rooted at node
u in T . Such an assignment satisfies the requested properties of weight(·) and can be done in
linear time using a standard DFS traversal on T . Any ILFPX(i, j, f) query can be answered
by first finding the locus (u, j − i + 1) of X[i . . j] in T in O(1) time using a classic weighted
ancestor query on T , and, then, answering SWA(u, f) in T in O(1) time using Theorem 1.
We obtain the following result.

▶ Theorem 9. For any string X of length n over alphabet Σ = [1, nO(1)], there exists an
O(n)-space data structure that answers ILFPX queries in O(1) time. The preprocessing
algorithm runs in O(n) time and O(n) space.

5.2 Longest Frequent Substring
The longest frequent substring problem is the following: preprocess a dictionary D of d strings
(documents) of total length n over an integer alphabet Σ = [1, nO(1)] into a compact data
structure supporting the following on-line queries:

LFSD(P, f): return a longest substring of P that occurs in at least f documents of D.

This longest substring of P represents a most relevant part of the query with respect to
D. The length of LFSD(P, f) can also be used as a measure of similarity between P and the
strings in D, for some f chosen appropriately based on the underlying application.

We start by constructing the generalized suffix tree T of D in O(n) time [14] and preprocess
it in O(n) time for SWA queries using Theorem 1. For SWA queries, weight(u) is equal to
the number of dictionary strings having at least one leaf node in the subtree rooted at node
u in T . This assignment satisfies the requested properties of weight(·) and can be done in
linear time [19]. Let us denote by (vi, ℓi) the locus in T of the longest prefix of P [i . . |P |]
that occurs in any string in D. In fact, we can compute (vi, ℓi), for all i ∈ [1, |P |], in O(|P |)
time using the matching statistics algorithm of P over T [10, 18]. For each locus (vi, ℓi), we
trigger a SWA(vi, f) query using Theorem 1 (this is essentially an instance of the internal
longest frequent prefix problem). In total this takes O(|P |) time. We obtain the following
result.

▶ Theorem 10. For any dictionary D of total length n over alphabet Σ = [1, nO(1)], there
exists an O(n)-space data structure that answers LFSD(P, f) queries in O(|P |) time. The
preprocessing algorithm runs in O(n) time and O(n) space.

SWAT 2024

14:10 Size-Constrained Weighted Ancestors with Applications

An analogous result can be achieved for the following version of the longest frequent
substring problem: preprocess a string X of length n over an integer alphabet Σ = [1, nO(1)]
into a compact data structure supporting the following on-line queries:

LFSX(P, f): return a longest substring of P that occurs at least f times in X.
In particular, instead of a generalized suffix tree, we now construct the suffix tree T of X

and follow the same querying algorithm as above. For SWA queries, weight(u) is equal to
the number of leaf nodes in the subtree rooted at node u in T . Such an assignment satisfies
the requested properties of weight(·) and can be done in linear time using a standard DFS
traversal on T . We obtain the following result.
▶ Theorem 11. For any string X of length n over alphabet Σ = [1, nO(1)], there exists an
O(n)-space data structure that answers LFSX(P, f) queries in O(|P |) time. The preprocessing
algorithm runs in O(n) time and O(n) space.

5.3 Frequency-constrained Substring Complexity
For a string X, a dictionary D of d strings (documents) and a partition of [d] in τ intervals
I = I1, . . . , Iτ , the function fX,D,I(i, j) maps i, j to the number of distinct substrings of
length i of X occurring in at least αj and at most βj documents in D, where Ij = [αj , βj].
Function f is known as the frequency-constrained substring complexity of X [25].
▶ Example 12. Let D = {a,ananan,baba,ban,banna,nana}. For X = banana and I1 =
[1, 2], I2 = [3, 4], I3 = [5, 6], we have fX,D,I(2, 2) = 3: ba occurs in 3 ∈ I2 documents; an
occurs in 4 ∈ I2 documents; and na occurs in 3 ∈ I2 documents.

The function fX,D,I is very informative about X; it provides fine-grained information
about the contents (the substrings) of X. It can thus facilitate the tuning of string-processing
algorithms by setting bounds on the length or on frequency of substrings; see [25].

Let S be a 2D array such that S[i, j] = fX,D,I(i, j). Pissis et al. [25] showed that after
an O(n)-time preprocessing of a dictionary D of d strings of total length n over an integer
alphabet Σ = [1, nO(1)], for any X and any partition I of [d] in τ intervals given on-line, S

can be computed in near-optimal O(|X|τ log log d) time.
The solution in [25] can be summarized as follows. In the preprocessing step, we construct

the generalized suffix tree T of D. In querying, the first step is to construct the suffix tree
of X and compute the document frequency of its nodes in O(|X|) time. In the second
step, we enhance the suffix tree of X with O(|X|τ) nodes with document frequencies by
answering SWA queries on T in O(log log d) time per query [4]. The whole step thus takes
O(|X|τ log log d) time. In the third step, we infer a collection of length intervals, one per
node of the enhanced suffix tree and sort them in O(|X|τ) time using radix sort. In the last
step, we sweep through the intervals from left to right to compute array S in O(|X|τ) total
time. This concludes the summary of the solution in [25]. We amend the solution as follows.

We plug in Theorem 1 for preprocessing T and for the second step (SWA queries). For
SWA queries, as weight(u), we use the number of dictionary strings having at least one
leaf node in the subtree rooted at node u in T . Such an assignment satisfies the requested
properties of weight(·) and can be done in linear time [19]. We obtain the following result.
▶ Theorem 13. For any dictionary D of d strings of total length n over alphabet Σ = [1, nO(1)],
there exists an O(n)-space data structure that answers S = fX,D,I queries in O(|X|τ) time.
The preprocessing algorithm runs in O(n) time and O(n) space.

Since S is of size |X| · τ (it consists of |X| · τ integers), the complexity bounds are optimal
with respect to the preprocessing and query times.

P. Bille, Y. Nekrich, and S. P. Pissis 14:11

References
1 Paniz Abedin, Arnab Ganguly, Solon P. Pissis, and Sharma V. Thankachan. Efficient data

structures for range shortest unique substring queries. Algorithms, 13(11):276, 2020. doi:
10.3390/A13110276.

2 Stephen Alstrup, Thore Husfeldt, and Theis Rauhe. Marked ancestor problems. In 39th
Annual Symposium on Foundations of Computer Science, FOCS ’98, November 8-11, 1998,
Palo Alto, California, USA, pages 534–544. IEEE Computer Society, 1998. doi:10.1109/
SFCS.1998.743504.

3 Amihood Amir, Panagiotis Charalampopoulos, Solon P. Pissis, and Jakub Radoszewski.
Dynamic and internal longest common substring. Algorithmica, 82(12):3707–3743, 2020.
doi:10.1007/S00453-020-00744-0.

4 Amihood Amir, Gad M. Landau, Moshe Lewenstein, and Dina Sokol. Dynamic text and static
pattern matching. ACM Trans. Algorithms, 3(2):19, 2007. doi:10.1145/1240233.1240242.

5 Golnaz Badkobeh, Panagiotis Charalampopoulos, Dmitry Kosolobov, and Solon P. Pissis.
Internal shortest absent word queries in constant time and linear space. Theor. Comput. Sci.,
922:271–282, 2022. doi:10.1016/J.TCS.2022.04.029.

6 Golnaz Badkobeh, Panagiotis Charalampopoulos, and Solon P. Pissis. Internal shortest absent
word queries. In Pawel Gawrychowski and Tatiana Starikovskaya, editors, 32nd Annual
Symposium on Combinatorial Pattern Matching, CPM 2021, July 5-7, 2021, Wrocław, Poland,
volume 191 of LIPIcs, pages 6:1–6:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2021. doi:10.4230/LIPICS.CPM.2021.6.

7 Tim Baumann and Torben Hagerup. Rank-select indices without tears. In Zachary Friggstad,
Jörg-Rüdiger Sack, and Mohammad R. Salavatipour, editors, Algorithms and Data Structures
- 16th International Symposium, WADS 2019, Edmonton, AB, Canada, August 5-7, 2019,
Proceedings, volume 11646 of Lecture Notes in Computer Science, pages 85–98. Springer, 2019.
doi:10.1007/978-3-030-24766-9_7.

8 Djamal Belazzougui, Dmitry Kosolobov, Simon J. Puglisi, and Rajeev Raman. Weighted
ancestors in suffix trees revisited. In Pawel Gawrychowski and Tatiana Starikovskaya, editors,
32nd Annual Symposium on Combinatorial Pattern Matching, CPM 2021, July 5-7, 2021,
Wrocław, Poland, volume 191 of LIPIcs, pages 8:1–8:15. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2021. doi:10.4230/LIPIcs.CPM.2021.8.

9 Michael A. Bender and Martin Farach-Colton. The LCA problem revisited. In Gaston H.
Gonnet, Daniel Panario, and Alfredo Viola, editors, LATIN 2000: Theoretical Informatics,
4th Latin American Symposium, Punta del Este, Uruguay, April 10-14, 2000, Proceedings,
volume 1776 of Lecture Notes in Computer Science, pages 88–94. Springer, 2000. doi:
10.1007/10719839_9.

10 William I. Chang and Eugene L. Lawler. Sublinear approximate string matching and biological
applications. Algorithmica, 12(4/5):327–344, 1994. doi:10.1007/BF01185431.

11 Panagiotis Charalampopoulos, Tomasz Kociumaka, Manal Mohamed, Jakub Radoszewski,
Wojciech Rytter, Juliusz Straszynski, Tomasz Walen, and Wiktor Zuba. Counting distinct
patterns in internal dictionary matching. In Inge Li Gørtz and Oren Weimann, editors,
31st Annual Symposium on Combinatorial Pattern Matching, CPM 2020, June 17-19, 2020,
Copenhagen, Denmark, volume 161 of LIPIcs, pages 8:1–8:15. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2020. doi:10.4230/LIPICS.CPM.2020.8.

12 Panagiotis Charalampopoulos, Tomasz Kociumaka, Manal Mohamed, Jakub Radoszewski,
Wojciech Rytter, and Tomasz Walen. Internal dictionary matching. Algorithmica, 83(7):2142–
2169, 2021. doi:10.1007/S00453-021-00821-Y.

13 Maxime Crochemore, Costas S. Iliopoulos, Jakub Radoszewski, Wojciech Rytter, Juliusz
Straszynski, Tomasz Walen, and Wiktor Zuba. Internal quasiperiod queries. In Christina
Boucher and Sharma V. Thankachan, editors, String Processing and Information Retrieval
– 27th International Symposium, SPIRE 2020, Orlando, FL, USA, October 13-15, 2020,
Proceedings, volume 12303 of Lecture Notes in Computer Science, pages 60–75. Springer, 2020.
doi:10.1007/978-3-030-59212-7_5.

SWAT 2024

https://doi.org/10.3390/A13110276
https://doi.org/10.3390/A13110276
https://doi.org/10.1109/SFCS.1998.743504
https://doi.org/10.1109/SFCS.1998.743504
https://doi.org/10.1007/S00453-020-00744-0
https://doi.org/10.1145/1240233.1240242
https://doi.org/10.1016/J.TCS.2022.04.029
https://doi.org/10.4230/LIPICS.CPM.2021.6
https://doi.org/10.1007/978-3-030-24766-9_7
https://doi.org/10.4230/LIPIcs.CPM.2021.8
https://doi.org/10.1007/10719839_9
https://doi.org/10.1007/10719839_9
https://doi.org/10.1007/BF01185431
https://doi.org/10.4230/LIPICS.CPM.2020.8
https://doi.org/10.1007/S00453-021-00821-Y
https://doi.org/10.1007/978-3-030-59212-7_5

14:12 Size-Constrained Weighted Ancestors with Applications

14 Martin Farach. Optimal suffix tree construction with large alphabets. In 38th Annual
Symposium on Foundations of Computer Science, FOCS ’97, Miami Beach, Florida, USA,
October 19-22, 1997, pages 137–143. IEEE Computer Society, 1997. doi:10.1109/SFCS.1997.
646102.

15 Martin Farach and S. Muthukrishnan. Perfect hashing for strings: Formalization and algorithms.
In Daniel S. Hirschberg and Eugene W. Myers, editors, Combinatorial Pattern Matching, 7th
Annual Symposium, CPM 96, Laguna Beach, California, USA, June 10-12, 1996, Proceedings,
volume 1075 of Lecture Notes in Computer Science, pages 130–140. Springer, 1996. doi:
10.1007/3-540-61258-0_11.

16 Michael L. Fredman and Dan E. Willard. Surpassing the information theoretic bound with
fusion trees. J. Comput. Syst. Sci., 47(3):424–436, 1993. doi:10.1016/0022-0000(93)90040-4.

17 Pawel Gawrychowski, Moshe Lewenstein, and Patrick K. Nicholson. Weighted ancestors in
suffix trees. In Andreas S. Schulz and Dorothea Wagner, editors, Algorithms - ESA 2014
- 22th Annual European Symposium, Wroclaw, Poland, September 8-10, 2014. Proceedings,
volume 8737 of Lecture Notes in Computer Science, pages 455–466. Springer, 2014. doi:
10.1007/978-3-662-44777-2_38.

18 Dan Gusfield. Algorithms on Strings, Trees, and Sequences - Computer Science and Computa-
tional Biology. Cambridge University Press, 1997. doi:10.1017/cbo9780511574931.

19 Lucas Chi Kwong Hui. Color set size problem with application to string matching. In Alberto
Apostolico, Maxime Crochemore, Zvi Galil, and Udi Manber, editors, Combinatorial Pattern
Matching, Third Annual Symposium, CPM 92, Tucson, Arizona, USA, April 29 - May 1, 1992,
Proceedings, volume 644 of Lecture Notes in Computer Science, pages 230–243. Springer, 1992.
doi:10.1007/3-540-56024-6_19.

20 Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter, and Tomasz Walen. Internal
pattern matching queries in a text and applications. In Piotr Indyk, editor, Proceedings of the
Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego,
CA, USA, January 4-6, 2015, pages 532–551. SIAM, 2015. doi:10.1137/1.9781611973730.36.

21 Tsvi Kopelowitz, Gregory Kucherov, Yakov Nekrich, and Tatiana Starikovskaya. Cross-
document pattern matching. J. Discrete Algorithms, 24:40–47, 2014. doi:10.1016/J.JDA.
2013.05.002.

22 Tsvi Kopelowitz and Moshe Lewenstein. Dynamic weighted ancestors. In Nikhil Bansal, Kirk
Pruhs, and Clifford Stein, editors, Proceedings of the Eighteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2007, New Orleans, Louisiana, USA, January 7-9, 2007, pages
565–574. SIAM, 2007. URL: http://dl.acm.org/citation.cfm?id=1283383.1283444.

23 Gonzalo Navarro and Javiel Rojas-Ledesma. Predecessor search. ACM Comput. Surv.,
53(5):105:1–105:35, 2021. doi:10.1145/3409371.

24 Mihai Pătraşcu and Mikkel Thorup. Time-space trade-offs for predecessor search. In Jon M.
Kleinberg, editor, Proceedings of the 38th Annual ACM Symposium on Theory of Computing,
Seattle, WA, USA, May 21-23, 2006, pages 232–240. ACM, 2006. doi:10.1145/1132516.
1132551.

25 Solon P. Pissis, Michael Shekelyan, Chang Liu, and Grigorios Loukides. Frequency-constrained
substring complexity. In Franco Maria Nardini, Nadia Pisanti, and Rossano Venturini, editors,
String Processing and Information Retrieval - 30th International Symposium, SPIRE 2023,
Pisa, Italy, September 26-28, 2023, Proceedings, volume 14240 of Lecture Notes in Computer
Science, pages 345–352. Springer, 2023. doi:10.1007/978-3-031-43980-3_28.

26 Daniel Dominic Sleator and Robert Endre Tarjan. A data structure for dynamic trees. J.
Comput. Syst. Sci., 26(3):362–391, 1983. doi:10.1016/0022-0000(83)90006-5.

27 Peter van Emde Boas. Preserving order in a forest in less than logarithmic time and linear
space. Inf. Process. Lett., 6(3):80–82, 1977. doi:10.1016/0020-0190(77)90031-X.

28 Peter Weiner. Linear pattern matching algorithms. In 14th Annual Symposium on Switching and
Automata Theory, Iowa City, Iowa, USA, October 15-17, 1973, pages 1–11. IEEE Computer
Society, 1973. doi:10.1109/SWAT.1973.13.

29 Dan E. Willard. Log-logarithmic worst-case range queries are possible in space θ(n). Inf.
Process. Lett., 17(2):81–84, 1983. doi:10.1016/0020-0190(83)90075-3.

https://doi.org/10.1109/SFCS.1997.646102
https://doi.org/10.1109/SFCS.1997.646102
https://doi.org/10.1007/3-540-61258-0_11
https://doi.org/10.1007/3-540-61258-0_11
https://doi.org/10.1016/0022-0000(93)90040-4
https://doi.org/10.1007/978-3-662-44777-2_38
https://doi.org/10.1007/978-3-662-44777-2_38
https://doi.org/10.1017/cbo9780511574931
https://doi.org/10.1007/3-540-56024-6_19
https://doi.org/10.1137/1.9781611973730.36
https://doi.org/10.1016/J.JDA.2013.05.002
https://doi.org/10.1016/J.JDA.2013.05.002
http://dl.acm.org/citation.cfm?id=1283383.1283444
https://doi.org/10.1145/3409371
https://doi.org/10.1145/1132516.1132551
https://doi.org/10.1145/1132516.1132551
https://doi.org/10.1007/978-3-031-43980-3_28
https://doi.org/10.1016/0022-0000(83)90006-5
https://doi.org/10.1016/0020-0190(77)90031-X
https://doi.org/10.1109/SWAT.1973.13
https://doi.org/10.1016/0020-0190(83)90075-3

	1 Introduction
	2 Preliminaries
	3 Constant-time Queries using Space
	3.1 Heavy-path Decomposition
	3.2 Data Structure
	3.3 Queries

	4 Constant-time Queries using Space
	4.1 ART Decomposition
	4.2 Data Structure
	4.3 Queries

	5 String-processing Applications
	5.1 Internal Longest Frequent Prefix
	5.2 Longest Frequent Substring
	5.3 Frequency-constrained Substring Complexity

