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Abstract
We introduce and study the weighted version of an online matching problem in the Euclidean plane
with non-crossing constraints: 2n points with non-negative weights arrive online, and an algorithm
can match an arriving point to one of the unmatched previously arrived points. In the vanilla model,
the decision on how to match (if at all) a newly arriving point is irrevocable. The goal is to maximize
the total weight of matched points under the constraint that straight-line segments corresponding to
the edges of the matching do not intersect. The unweighted version of the problem was introduced
in the offline setting by Atallah in 1985, and this problem became a subject of study in the online
setting with and without advice in several recent papers.

We observe that deterministic online algorithms cannot guarantee a non-trivial competitive ratio
for the weighted problem. We study various regimes of the problem which permit non-trivial online
algorithms. In particular, when weights are restricted to the interval [1, U ] we give a deterministic
algorithm achieving competitive ratio Ω

(
2−2

√
log U

)
. We also prove that deterministic online

algorithms cannot achieve competitive ratio better than O
(

2−
√

log U
)

. Interestingly, we establish
that randomization alone suffices to achieve competitive ratio 1/3 even when there are no restrictions
on the weights. Additionally, if one allows an online algorithm to revoke acceptances, then one
can achieve a competitive ratio ≈ 0.2862 deterministically for arbitrary weights. We also establish
a lower bound on the competitive ratio of randomized algorithms in the unweighted setting, and
improve the best-known bound on advice complexity to achieve a perfect matching.
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16:2 On the Online Weighted Non-Crossing Matching Problem

1 Introduction

We introduce and study the following problem, which we call Online Weighted Non-Crossing
Matching (OWNM). Suppose 2n points p1, . . . , p2n in Euclidean plane arrive online one-
by-one. When pi arrives, its positive weight w(pi) ∈ R>0 is revealed and an algorithm has
an option of matching pi to one of the unmatched previously revealed points, or leave pi

unmatched. In the vanilla online model, the decisions of the algorithm are irrevocable. There
is a non-crossing constraint, which requires that the straight-line segments corresponding to
the edges of the matching do not intersect. Assuming that the points are in general position,
the goal is to design an algorithm that maximizes the weight of matched points.

The interest in geometric settings, particularly the Euclidean plane setting, for the match-
ing problem stems from applications in image processing [14] and circuit board design [20].
In such applications, one is often required to construct a matching between various geometric
shapes, such as rectangles or circles, representing vertices, using straight-line segments or,
more generally, curves. Geometry enters the picture due to constraints on the edges, such as
avoiding intersections among the edges, as well as avoiding edge-vertex intersections. These
constraints can have a significant impact on the offline complexity of the problem, often
resulting in variants of problem that are NP-hard (see the survey by Kano and Urrutia [22]).

The unweighted version of the Non-Crossing Matching problem (i.e., when w(pi) = 1
for all i ∈ {1, . . . , 2n}) has been studied both in the offline setting ([8, 19]) and the online
setting ([11, 31, 21, 25]). We go over the history of the problem in detail in Section 2. For
now, it suffices to observe that an offline algorithm that knows the locations of all the points
in advance can match all the points while satisfying the non-crossing constraint. Thus, the
value of offline OPT is always W :=

∑2n
i=1 w(pi). Performance of an online algorithm is

measured by its competitive ratio, which for our problem corresponds to the fraction of W

that the algorithm can guarantee to achieve in the worst-case.
It is relatively easy to see that when there are no restrictions on the weights of points,

no deterministic online algorithm can guarantee a non-trivial competitive ratio bounded
away from 0 (in particular, this is an immediate corollary of Theorem 1). We study different
regimes under which the problem admits algorithms achieving non-trivial competitive ratios.
Our results can be summarized as follows:

In the Restricted OWNM, we assume that the weights of points are restricted to lie in the
interval [L, U ] for some L ≤ U ∈ R>0 that are known to the algorithm at the beginning
of the execution. Note that by scaling, we can assume that L = 1; thus, without loss of
generality, we assume that all the weights are in the interval [1, U ] in Restricted OWNM.
We show that the competitive ratio of any deterministic online algorithm is O

(
2−
√

log U
)

(Theorem 1). We also present a deterministic online algorithm, Wait-and-Match (Wam),
which has competitive ratio Ω

(
2−2
√

log U
)

(Theorem 5).
We show, perhaps surprisingly, that randomization alone is enough to guarantee a
constant competitive ratio for arbitrary weights. We present a simple randomized online
algorithm, called Tree-Guided-Matching (Tgm), and prove that it has competitive ratio
1/3 (Theorem 7). We supplement this result by showing that no randomized online
algorithm can achieve a competitive ratio better than 16/17, even for the unweighted
version of the problem (Theorem 6).2

2 Sajadpour [31] gave a proof that no randomized algorithm can achieve a competitive ratio better than
0.9262, which is stronger than our result 16/17 ≈ 0.9411. However, their argument has not been
peer-reviewed at the time of this paper. Moreover, our argument is much simpler and shorter.
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We show that allowing revocable acceptances (see beginning of Section 6 for the definition
of the model) permits one to obtain competitive ratio≈ 0.2862 by a deterministic algorithm
even when the weights of points are unrestricted (Theorem 10). We supplement this
result by showing that no deterministic algorithm with revoking can achieve competitive
ratio better than 2/3 (Theorem 8).
Lastly, we present a new algorithm, called Split-And-Match (Sam), that uses ⌈log Cn⌉ <

2n bits of advice (see beginning of Section 7 for the definition of the model) to achieve
optimality (Theorem 12), where Cn is the nth Catalan number. This improves upon the
previously known bound of 3n on the advice complexity of the problem [25]. Since Sam
achieves a perfect matching, it does not matter whether the given points are weighted or
not.

2 Related Work

Given 2n points in R2 in general position, the basic non-crossing matching (NM) problem is
to find a non-crossing matching with the largest possible number of edges. Observe that the
minimum-length Euclidean matching is non-crossing, hence a perfect NM always exists. The
NM problem and its variants have been extensively studied in the offline setting. Hershberger
and Suri [19] gave an algorithm that finds a perfect NM in time Θ(n log n). Atallah [8],
and Dumitrescu and Steiger [15] gave efficient algorithms for the bichromatic version of the
problem, where the points are divided into two subsets, and matching edges can only be
formed between the two subsets. Other versions of the problem considered in the research
literature include requiring the NM to be stable [30, 18], requiring two NMs to be compatible
(edges in two NMs are also non-crossing, only sharing endpoints) [2], and requiring compatible
NMs to satisfy certain diversity constraint [24].

Several studies considered optimization problems over all NMs. The objective functions
include maximizing the sum of the Euclidean length of matching edges [5], minimizing the
length of the longest matching edge [1], and other similar combinations of min and max [23].

Another line of research is to relax the non-crossing constraint and allow certain crossings.
An important problem is to understand the size of a crossing family, that is, matching edges
that are pairwise crossing. A recent breakthrough by Pach et al. [26] showed that the
largest crossing family has linear size. Aichholzer et al. [4] studied the counting problem of
k-crossing matchings.

At least two works [10, 32] considered weighted NM on n points, where every point has
weight in {1, 2, . . . , n}. Balogh et al. [10] considered the weight of an edge to be the sum
of the weights of the two endpoints modulo n, and studied the typical size of NM with
distinct edge weights (this is called non-crossing harmonic matching). Sakai and Urrutia [32]
considered the weight of an edge to be the minimum weight of the two endpoints, and they
studied the lower and upper bounds of the maximum weighted NM.

In pure mathematics, NM has been studied as a tool to understand the representation
theory of groups [7, 27]. A tuple of NMs (so-called a necklace) satisfying a specific property
is used to study the topology of harmonic algebraic curves associated with a polynomial over
C [33]. Extremal graph problems where NM of size k plays the role of a forbidden subgraph
are studied in [3, 17].

Besides the application in image processing and circuit design, as mentioned in the Intro-
duction, NM has also found other applications. One major application is in computational
biology. A restricted version of NM (e.g., points all on a circle), and k-non-crossing matching
(no k edges pairwise intersecting, which reduces to the standard NM when k = 2) have
been studied to understand RNA structures [9, 13, 34]. In applications that are related to
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16:4 On the Online Weighted Non-Crossing Matching Problem

visibility problems (such as in robotics) and geometric shape matching, one replaces all or a
subset of points in question by geometric objects [28, 6]. For example, when the question is
to match objects to objects, then an edge (p, q) between two objects A and B can be formed
by choosing arbitrary points p from A and q from B, conditioned on that the edge (p, q)
does not cross other objects.

The online NM has only been studied very recently. Bose et al. [11] initiated the study of
online (unweighted) NM and showed that the competitive ratio of deterministic algorithms is
2/3, while Kamali et al. [21] gave a randomized algorithm that matches in expectation about
0.6695 fraction of all points. The online bichromatic NM has also been studied in [11, 31].
Finally, the advice complexity was studied in [11, 25]. In particular, Lavasani and Pankratov
[25] resolved the advice complexity of solving online bichromatic NM optimally on a circle
and gave a lower bound of n/3− 1 and an upper bound of 3n on the advice complexity of
online NM on a plane.

3 Preliminaries

The input to the matching problems considered in this work is an online sequence I =
(p1, . . . , p2n) of points in general position, where pi has a positive real-valued weight w(pi) ∈
R>0. We use W to denote the total weight of all the points, i.e., W =

∑2n
i=1 w(pi). For the

Restricted OWNM, the weights are assumed to lie in the interval [1, U ] for some known
value of U , which is considered to be a hyper-parameter, and not part of the input. Upon
the arrival of pi, an online algorithm must either leave it unmatched or match it with an
unmatched point pj (j < i), in which case the line segment between pi and pj , denoted by
pipj , must not cross the line segments between previously matched pairs of points. The
objective is to maximize the total weight of matched points. For an online algorithm ALG
(respectively, offline optimal algorithm OPT), we use ALG(I) (respectively, OPT(I)) to
denote the total weight of points matched by the algorithm on input I. By abuse of notation,
the symbol pq is also used to denote the full line passing through the two points p and q,
dividing a convex region into two sub-regions.

We say that a deterministic online algorithm ALG is ρ-competitive if there exists a
constant c such that for every input sequence I we have

ALG(I) ≥ ρ ·OPT(I)− c.

For a randomized ALG the above inequality is replaced by the following

E(ALG(I)) ≥ ρ ·OPT(I)− c.

If c = 0 then we call the competitive ratio ρ strict, and we say that ALG is strictly ρ-
competitive. If c ≠ 0 then, for emphasis, we shall sometimes say that the competitive ratio
is asymptotic. Note that for the Restricted OWNM, we allow c to depend on the hyper-
parameter U when considering asymptotic competitiveness. Thus, an algorithm achieving
asymptotic competitive ratio ρ is allowed to leave a constant number of points unmatched
(regardless of their weights) beyond the (1− ρ)-fraction of W .

4 Deterministic Algorithms for Restricted OWNM

4.1 Point Classification
In both lower and upper-bound arguments, we use a point classification, based on parameters,
k ∈ N and U ∈ R, which we explain here. Let k = ⌈

√
log U⌉, and define values of a0, a1, . . . , ak

so that

a0 = 1, ak = U, r = a1/a0 = a2/a1 = . . . = ak/ak−1,
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which implies that r = U1/k and ai = ri. For a given value w ∈ [1, U ], define TwU as the
largest ai such that ai ≤ w. In what follows, a point with weight w is said to have type i

if TwU = ai. Thus, there are k + 1 distinct types, with type k containing only the value U .
The type of a line segment between two matched points x and y is defined by the type of the
end-point with larger weight, that is, xy has type i if one of its endpoints has type i and the
other endpoint has type at most i.

4.2 Negative Result
▶ Theorem 1. For a sufficiently large value of U , the asymptotic competitive ratio of any
deterministic online algorithm for the Restricted OWNM problem is O

(
2−
√

log U
)

.

Proof. Let ALG be any online deterministic algorithm. We use an adversarial argument.
The adversary sends all points on a circle C, so any match the algorithm makes creates a
chord in the circle, dividing a previous region into two. At any point in time, the adversary
sends a point in an active region of C, which is formed by one or two arcs, the segments of
the circle bounded by two consecutive points, in the boundary of C. Initially, the entire circle
forms the active region. The adversary’s strategy is to maintain a mapping from unmatched
points to matched points to ensure the ratio between the total weight of matched points and
unmatched points is O

(
2−
√

log U
)

. Note that this implies the ratio between the total weight

of matched points and all points is also O
(

2−
√

log U
)

.
The adversary starts the input with an arbitrarily large number, m (this is required

to guarantee that our bound is asymptotic). The adversary puts points of weight 1 in
arbitrary positions on the circle until either the algorithm matches m pairs of points or
it reaches m2k points on the circle. In the latter case, the competitive ratio is at most
O(2−k) = O(2−

√
log U ).

Therefore, we may assume that ALG eventually matches m pairs of points, creating
non-intersecting chords, and m + 1 regions. Now, make each matched pair responsible for a
distinct region created, though with the first matched pair being responsible for two regions,
initially the first two regions. Suppose a new chord xy divides region R into two. Let
{xR, yR} be the responsible pair for R, R1 be the side of R that has xRyR on its boundary
and R2 be the other side. Leave {xR, yR} responsible for R1 and make {x, y} responsible for
R2. This ensures that each matched pair is responsible for at least one region.

For each region R, the adversary makes R the active region, runs the following procedure
and continues with the next region until it covers all the regions. Let {xR, yR} be the
responsible pair of points for R. Consider the following two cases, depending on the number
of unmatched points in R:

Case 1. If the number of unmatched points in R is ≥ 2k − 1, the adversary does not send
any point in R and continues to the next region. In this case, we map the unmatched points
in R to the matched pair {xR, yR}. Note that 2k − 1 points of weight 1 are mapped to a
segment of total weight 2. The ratio between the weight of matched points to the unmatched
points will be ≤ 2/(2k − 1) ∈ O

(
2−
√

log U
)

.

Case 2. If the number of unmatched points in R is < 2k − 1, the adversary plans to send a
sequence of points, P = (p1, p2, . . . , pk), with weights a1, a2, . . . , ak (respectively), one point
from each weight, in the ascending order of their weights, in the following manner, (see
Fig. 1). The point p1 of weight a1 appears in an arbitrary position in R (on the circle). Upon
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16:6 On the Online Weighted Non-Crossing Matching Problem

xR1

yR1

p1

p2

p3 R1

R2

Figure 1 An illustration of the adversary’s strategy for k = 3. The two arcs form the active
region. Black points have weight 1. Suppose in the first phase ALG matched xR1 and yR1 , which
became responsible for R1 region. Note that the number of unmatched points (of weight 1) in
R1 is 6, which is less than 2k − 1 = 7. Thus, in the second phase, the adversary plans to send
points p1, p2, p3 of weights a1, a2, a3 in R1. Suppose ALG matches the point of weight a1; then the
adversary sends p2, p3 below the line segment between the matched pair (there are fewer unmatched
points there). Similarly, after the point p2 of weight a2 is matched, the adversary sends p3 to the
side of the resulting segment with no unmatched points. This ensures that some point of weight ai

(here a3) stays unmatched and is mapped to the matched pairs.

the arrival of a point pi with weight ai (i ∈ {1, . . . , k}), either ALG matches it with a point
of weight 1 or leaves it unmatched. In the latter case, the adversary does not send more
points in R and continues with the next region.

In the former case, when ALG matches a point pi of weight ai with a point q of weight
1, make the side of piq that contains at most half of the unmatched points, the active region.
The adversary continues putting the remaining points of P in the active region. Thus the
unmatched points on the opposite side of piq stay unmatched, since piq is between the new
point and those unmatched points.

Therefore, after matching pi and q, the number of unmatched points of weight 1 that can
match with future points in P decreases by a factor of at least 2. Let pj be the first point in
P that the algorithm leaves unmatched. Given that the adversary can send up to k points,
and there are initially less than 2k − 1 unmatched points in R, there exists such pj of weight
aj . At this point, the adversary ends the procedure for R and continues with the next region.

The total weight of points in matched pairs in R before the arrival of pj is:

M = 2︸︷︷︸
for(xR,yR)

+ j − 1︸ ︷︷ ︸
endpoints of weight 1

+ a1 + a2 + . . . + aj−1︸ ︷︷ ︸
endpoints with weight ai

≤ 2aj − 1
r − 1 .

Given that the unmatched point pj is of weight aj , the ratio between the weight of matched
points and unmatched points is at most M/aj ∈ O(1/r) = O

(
2−
√

log U
)

.
Given that each matched pair is responsible for at least one region, the above procedure

creates a mapping of matched points to unmatched points with a weight ratio of O(2−
√

log U )
in all cases, as desired. This finishes the proof. ◀

4.3 Positive Result: The Wait-and-Match Algorithm
We propose an algorithm called “Wait-and-Match” (Wam). Assume the points appear in a
bounding box B. Throughout its execution, Wam maintains a “convex partitioning” of B.
Initially, there is only one region formed by the entire B. As we will describe, the algorithm
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(
−∞, 1

)

(
−∞, 0

)

[
1,
√

U
]

[
3,
√

U
]

[
8, 1

]

[
4,
√

U
]

[
2,
√

U
]

[
6, 1

]

[
7,
√

U
]

[
5,
√

U
]

Figure 2 An illustration of the mapping used to analyze Wam. In this example, we have k = 2 and
8 points with weights in {1,

√
U, U}. Here, [t, w] indicates the tth point in the input sequence having

weight w. Note that points 1 and 3 are mapped to the segment corresponding to the imaginary
points (−∞, 0) and (−∞, 1) of weight U .

matches two points only if they appear in the same convex region. Whenever two points in a
convex region R are matched, the line segment between them is extended until it hits the
boundary of R, which results in partitioning R into two smaller convex regions. We use the
same point classification as defined in Section 4.1.

Suppose a new point p appears, and let R denote the convex region of p. In deciding
which point to match p to (if any), the algorithm considers all unmatched points in R in the
non-increasing order of their weights. Let q be the next point being considered, and let i be
the maximum of the type of p and the type of q. The algorithm matches p with q if there
are at least 2k−i − 1 unmatched points on each side of pq. If all points in R are examined,
and no suitable q exists, p is left unmatched.

Example. Suppose k = 2. Then a0 = 1, a1 =
√

U, and a2 = U . Let p be a point with weight
1. Upon the arrival of a point p, the algorithm matches p with any point q of weight U when
there are at least 22−2 − 1 = 0 points on each side of pq. That is, if there is an unmatched
point of weight U in the region, the algorithm would match p to it unconditionally. Similarly,
if there are no unmatched points of weight U in the region, the algorithm tries to match p

with any point q of weight [a1 =
√

U, a2 = U) provided there is at least 22−1 − 1 = 1 point
on each side of pq. Finally, if previous scenarios do not occur, the algorithm tries to match
p with any point q of weight [a0 = 1, a1 =

√
U) provided there are at least 22−0 − 1 = 3

unmatched points on each side of pq. This will happen if there were at least 7 unmatched
points in the region.

To analyze the algorithm, we match each unmatched point into a matched pair. For
the sake of analysis, we introduce two “imaginary” points (−∞, 0) and (−∞, 1) of weight U

and treat them as if they were matched before the input sequence is revealed. Suppose a
new point, p, arrives in a region R that is not matched. In this case, we map p to the most
recent segment that forms a boundary of the region R. See Figure 2 for an illustration of
this mapping.

▶ Lemma 2. Every point of type i is mapped to a segment of type j ≥ i.

Proof. For the sake of contradiction, suppose a point p with type i arrives in the region R

and gets mapped to pR, qR of type ≤ i− 1.

SWAT 2024



16:8 On the Online Weighted Non-Crossing Matching Problem

Without loss of generality, assume pR arrived after qR. By the definition of the algorithm,
at the time pR appeared, there were at least 2k−i+1−1 unmatched points in R (otherwise, pR

would not have been matched with qR). These unmatched points are still unmatched when p

appeared (otherwise, R should have been partitioned, and p should have been mapped to
some other segment). Thus, when p appeared, the algorithm could match it with the point
that bisects these unmatched points, and there would be at least (2k−i+1 − 2)/2 = 2k−i − 1
points on each side of the resulting line segment. This contradicts the fact that the algorithm
left p unmatched. ◀

▶ Lemma 3. Let s be any line segment between two matched points. For any i, at most
2k−i+2 − 2 unmatched points of type i are mapped to s.

Proof. For the sake of contradiction, assume at least 2k−i+2−1 points of type i are mapped to
s. Then, there must be at least ⌈(2k−i+2−1)/2⌉ = 2k−i+1 points of type i in a convex region R

formed by extending s. At the time the last of these points, say p, arrives, it could be matched
to the point q that bisects the other points; there will be at least (2k−i+1 − 2)/2 = 2k−i − 1
points on each side of pq. Since pq is of type i, the algorithm must have matched p with q,
which contradicts the fact that p and q are unmatched and mapped to s. ◀

▶ Lemma 4. Assuming U is sufficiently large, the total weight of unmatched points mapped
to a segment of type j is at most aj+12k−j+3.

Proof. Note that a point of type i has weight at most ai+1 = ri+1. Hence, by Lemma 2 and
Lemma 3, the total weight of unmatched points mapped to a segment of type j is at most

j∑
i=0

ri+12k−i+2 = 2k+2r

j∑
i=0

(r

2

)i

= 2k+2r
(r/2)j+1 − 1

r/2− 1 ≤ aj+12k−j+3. ◀

Here, we assumed that r ≥ 4, which holds for a sufficiently large U .

▶ Theorem 5. The competitive ratio of the deterministic online algorithm Wam for the
Restricted OWNM problem is Ω

(
2−2
√

log U
)

.

Proof. For every matched pair pq by Wam consider the set of points formed by p, q, and the
unmatched points mapped to them. By Lemma 4, if pq has type j, the ratio of the weight of
the matched pair over all the points in this set is at least aj

2aj+aj+12k−j+3 ≥ 1
r2k+4 .

Since the algorithm Wam guarantees that every unmatched point is mapped to some
matched pair, the competitive ratio of Wam is at least 2−(2k+4), where we used k = ⌈

√
log U⌉

and r = U1/k = 2(log U)/k ≤ 2k. ◀

5 Randomized Algorithms

5.1 Negative Result
To bound the competitive ratio of randomized algorithms, we will use Yao’s minimax principle.
We create a randomized unweighted input similar to what Lavasani and Pankratov [25]
used for the advice model. We prove an upper bound on the competitive ratio of every
deterministic algorithm on this input, and this gives us an upper bound for randomized
algorithms in the adversarial setting. We consider a circle and generate points on the
circumference of this circle. For a point p, let the left and the right arcs of p be the clockwise
and counter-clockwise arcs that are bounded by p.
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Put p1 and p2 on two arbitrary antipodals of the circle, creating two arcs. Make p2 the
current active point. At each step, we choose one of the arcs of the current active point
randomly and then we put the next active point on that arc. To deceive the algorithm,
sometimes we generate a fake point on one of the arcs of the active and then put the next
active point on the other arc.

Consider two sequences L1, . . . , L2n and F1, . . . , F2n of Bernoulli i.i.d. random variables
with parameter 1/2. Iterate the following procedure to make 2n points. Let pi be the current
active point, Li determines the position of pi+1. If Li is 1, put pi+1 in the middle of the left
arc of pi, and if Li is 0, put it in the middle of the right arc of pi.

Given pi is an active point, if Fi+1 is 1, the point pi+1 becomes fake point. Make pi+2
the next active point and put it in the middle of the other arc of pi (e.g. if pi+1 is on the
left arc of pi, put pi+1 on the right arc of pi). If Fi+1 is 0, make pi+1 the new active point.
Continue the procedure with the new active point.

▶ Theorem 6. No randomized online algorithm can achieve a competitive ratio better than
16/17 in expectation.

Proof. We aim to bound the competitive ratio of any deterministic algorithm on the described
input sequence. Fix a deterministic algorithm ALG. Segments of matched points by ALG
divide the circle into convex regions. If an unmatched point is in a region that no new points
arrive in, it cannot be matched anymore and we call it an isolated point. Given that ALG
matches pi upon its arrival, let Xi be the indicator random variable that pi is an active
point, and matching it causes at least one point to become isolated. Let Ai be the indicator
random variable that pi becomes an active point. For i ≥ 3, pi is a fake point if and only if
pi−1 was an active point and Fi is 1. Thus we can write Ai as 1−Ai−1Fi.

Suppose pi is an active point that arrives in a convex region R, that ALG matches
upon its arrival, splitting R into RL and RR, which contain the left and right arcs of pi,
respectively. If RL and RR are both empty, meaning they do not contain any unmatched
point, pi+1 becomes isolated if it is a fake point. If RL and RR are both non-empty and the
point pi+1 becomes an active point, then the unmatched points of the opposite side of pi+1
become isolated. Now suppose RL is empty and RR is not empty and pi+1 arrives on the
left arc of pi. If pi+1 is a fake point, it becomes isolated, and if it is the new active point,
unmatched points in RR become isolated. Similarly, if RR is empty and RL is not empty
and pi+1 arrives in the right arc of pi, the segment pipj creates isolated points. If i = 2n,
there is no pi+1, and matching pi makes points isolated if RL or RR are not empty. Since we
are interested in the asymptotic competitive ratio we can ignore this case. Therefore, given
ALG matches pi we can write Xi as follows.

Xi =


AiFi+1 if RL and RR are empty
AiLi if RL is empty and RR is not
Ai(1− Li) if RR is empty and RL is not
Ai(1− Fi+1) if RL and RR are not empty

Let the random variable M be the size of the matching made by ALG, and for each
1 ≤ i ≤ M , let Ti be the step number in which ALG makes the ith match. Thus, the
algorithm is guaranteed to have at least

∑M
i=1 XTi

unmatched points at the end of the
execution. In order to bound the expectation of M , it may be beneficial to view it in the
context of the following game. Suppose that ALG has a budget of 2n points. The game
proceeds in rounds. In round j the algorithm pays 2 points from the budget to make a guess
(this corresponds to a pair of points getting matched) of a Bernoulli random variable outcome
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(which corresponds to ALG’s match either resulting in an isolated point or not). If the guess
is correct (this corresponds to XTj

= 0, no isolated points are guaranteed to be created),
then the algorithm does not pay any more points for this round. If the guess is incorrect
(this corresponds to XTj = 1), then the algorithm pays one more point from the budget.
ALG tries to maximize the total number of rounds before the budget is exhausted. Thus,
in round j, the algorithm uses XTj + 2 points from the budget. Overall, M is the largest
integer such that

∑M
j=1(XTj + 2) ≤ 2n. If XTj were i.i.d., we could use the renewal theorem

to bound E(M). The issue is that XTj
are not i.i.d., because Xi depends on Ai and Fi+1;

thus there are correlations between Xi and Xi+1. The idea is to lower bound the expression∑M
j=1(XTj

+ 2) by the sum of some i.i.d. random variables Zi, compute the corresponding
value of M ′ for the Zi, and then relate it back to the value of M .

Now we define an auxiliary random variable sequence Y1, . . . , YM as follows:

Yi =


(1− FTi)FTi+1 if RL and RR are empty
(1− FTi

)LTi
if RL is empty and RR is not

(1− FTi
)(1− LTi

) if RR is empty and RL is not
(1− FTi

)(1− FTi+1) if RL and RR are not empty

By replacing Ai with 1−Ai−1Fi, we can see Yi ≤ XTi . Note that Y2, Y4, . . . , Y2⌊ M
2 ⌋ are i.i.d.

Bernoulli random variables with parameter 1/4. Thus for every m ≤ M , we can bound∑m
j=1(XTj + 2) as follows:

m∑
j=1

(XTj + 2) ≥
⌊m/2⌋∑

j=1
(XT2j−1 + XT2j + 4) ≥

⌊m/2⌋∑
j=1

(Y2j−1 + Y2j + 4) ≥
⌊m/2⌋∑

j=1
(Y2j + 4)

Let us define yet another auxiliary random variable sequence Z1, Z2, . . . as follows. For
1 ≤ i ≤ ⌊M

2 ⌋, let Zi = 4 + Y2i and for i > ⌊M
2 ⌋ let Zi = 4 + Y ′

i such that Y ′
i s are i.i.d.

Bernoulli random variables with parameter 1/4. This makes the Zi i.i.d. random variables
that take on values of either 4 or 5 with probability 1/4 and 3/4, respectively.

Let the random variable M ′ be the maximum m such that
∑m

i=1 Zi < 2n. Note that∑⌊M/2⌋
i=1 Zi =

∑⌊M/2⌋
i=1 (YTj + 4) ≤

∑M
i=1(XTj + 2) ≤ 2n. Therefore M ′ ≥ ⌊M/2⌋. Since the

Zi’s are i.i.d. and E(Zi) = 17/4, by the renewal theorem E(M ′) = 8n/17 and therefore E(M)
is at most 16n/17. By Yao’s minimax principle, this shows an upper bound of 16/17 on the
competitive ratio of randomized algorithms in the adversarial model. ◀

5.2 Positive Result: Tree-Guided-Matching Algorithm
We propose a randomized algorithm called “Tree-Guided-Matching” (Tgm) that has the
following uniform guarantee, regardless of the weights of the points: each point appears in a
matching with probability at least 1/3.

The algorithm Tgm uses a binary tree to guide its matching decisions. The binary tree
is created online, with each node of the tree corresponding to an online point. Intuitively,
the binary tree, as it grows, gives an online refining of the partition of the plane into convex
regions, such that for each region there is some online point responsible for it. Initially, set
p1 as the root of the tree and p2 the child of p1. By an abuse of notation, we also use pq to
denote the straight line determined by points p and q. Let R1 and R2 denote the two regions
corresponding to the half-spaces created by p1p2. Let p2 be responsible for both R1 and R2.
In general, when pi arrives into a region R for which pj is responsible (of course, j < i), make
pi a child of pj in the binary tree. The line pipj divides the region R into two sub-regions R′
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and R′′, let pi be responsible for both of them, and at this point the responsibility of pj on
R is lost as region R has been refined to R′ and R′′. Note that this implies every node of
the tree has at most two children. Next, we describe how Tgm chooses to match points. At
the beginning, Tgm matches p2 with p1 with probability 1/3. After that, upon the arrival
of pi, let pj be its parent in the tree. If pj is unmatched and pi is its first child, match pi

to pj with probability 1/2. If pj is unmatched and pi is its second child, match pi to pj

deterministically. Note that Tgm only tries to match an online point with its parent in the
tree.

▶ Theorem 7. Every point, regardless of its weight, is chosen into a matching by the
randomized algorithm Tgm with probability at least 1/3. Hence, Tgm achieves a strict
competitive ratio at least 1/3.

Proof. Note that since Tgm only matches a child to its parent in the binary tree, the
matching is non-crossing. Indeed, by our construction of the tree, every child is a point
inside3 a convex region for which its parent is responsible, and its parent lies on the boundary
of that region. Hence, the line segment formed by them does not cross any existing line
segment.

Next, we show the claimed performance of Tgm. By the definition of Tgm, p1 is matched
(by p2) with probability 1/3. We will show that every pi, i ≥ 2, upon its arrival gets matched
to its parent with probability exactly 1/3, which implies the claim. To see this, proceed
inductively. The base case is true for p2. Let p be the currently arrived point and q be its
parent. We consider two cases.

If p is the first child of q, then by the induction hypothesis q at this moment is unmatched
with probability 2/3, hence according to Tgm, p is matched (to q) with probability
(2/3) · (1/2) = 1/3.
If p is the second child of q, then q at this moment is unmatched with probability
1− 1/3− 1/3 = 1/3. By Tgm, p is matched (to q) with probability (1/3) · 1 = 1/3. ◀

6 Revocable Acceptances

In this section, we consider the revocable setting. When a new point p arrives, an algorithm
has an option of removing one of the existing edges from the matching prior to deciding
on how to match p. The decision to remove an existing edge is irrevocable. The benefit of
making this decision is that the end-points of the removed edge, along with possible points on
the other side of the edge (though our positive result does not use this possibility), become
available candidates to be matched with p, provided the non-crossing constraint is respected.

6.1 Negative Result
Bose et al. [11] showed that a deterministic greedy algorithm without revoking can achieve
2/3 competitive ratio in the unweighted version. In this section, we prove that in the
unweighted version, no deterministic algorithm with revoking can beat the ratio 2/3.

▶ Theorem 8. No deterministic algorithm with revoking can achieve a competitive ratio
better than 2/3 even in the unweighted version.

3 Recall that online points are in general position.
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Proof. Fix a deterministic algorithm ALG, an arbitrary large n, and a circle in the plane.
The adversary adds at least 2n points, all of weight 1, on the circle, one by one, and let ALG
match them into pairs. We maintain the invariants that there is always one active region of
the circle, and that for each matched pair, there is always at least one unmatched point.

Initially, the entire circle is the active region. A phase consists of the adversary presenting
points on the circle, in the active region, until ALG either matches a pair or revokes a
matching, or until 2n points have been given. The adversary stops if there are 2n points and
the last point is unmatched. Otherwise, if a match has just occurred, there are two cases.

In Case 1, the current point, p, is simply matched to a point, q, on the circle. The chord
pq divides the active region into two sub-regions, R1 and R2. If neither region has any points,
add a point, p′, to R1. Without loss of generality, assume that R1 contains at least as many
unmatched points as R2. If p′ is matched, ALG has revoked a matching; and we get the
extra point from Case 2. Otherwise, R2 becomes the active region, some unmatched point in
R1 is associated with the matched pair, and the phase ends.

In Case 2, ALG revokes a matching and either matches the current point, p, or leaves
p unmatched. Removing the one match, removes a chord of the circle, joining two regions
into a new convex region. This region is the active region if p is not matched. In either
case, the number of matched points is not increased. However, the number of unmatched
points is increased by at least 1, since at least one of the points, q, from the revoked match
is now unmatched and p is only matched to one point. If there is a new match for p, the
sub-region created by the match that does not contain q becomes the active region, and q is
the unmatched point associated with the new matched pair. The current phase ends.

Inductively, the invariants hold after each phase, and the unmatched point associated
with each matched pair ensures that no more than 2/3 of the points are matched. Although
the number of points may be odd, this gives an asymptotic lower bound of 2/3 on the
competitive ratio. ◀

Note that ignoring the revoking option, the above proof is a simpler alternative to bound
the competitive ratio of the deterministic algorithm which was given by Bose et al. [11].

6.2 Positive Result: Big-Improvement-Match
We present a deterministic algorithm with revoking, called “Big-Improvement-Match” (Bim).
This algorithm has a strict competitive ratio of ≈ 0.2862 even when weights of points are
unrestricted. This shows that while revoking does not improve the competitive ratio in the
unweighted version, it provides us with an algorithm with a constant competitive ratio, which
is unattainable for a deterministic algorithm without revoking.

Bim maintains a partitioning of the Euclidean space into regions. Each region in the
partition is assigned an edge from the current matching to be responsible for that region.
Each edge can be responsible for up to two regions. Bim starts out by matching the first two
points, p1 and p2 regardless of their weights, dividing the plane into two half-planes by p1p2.
Bim then assigns p1p2 to be responsible for the two half-plane regions. Next, consider a new
point pi (for i ≥ 3) that arrives in an existing region R. Suppose that pjpj′ is the responsible
edge for R. If there is at least one unmatched point in R, Bim matches pi with an unmatched
point pk in R with the highest weight. Then pjpj′ is no longer responsible for R, and the
region R is divided into two new regions by pipk. The responsibility for both new regions is
assigned to pipk. If pi is the only point in R, then Bim decides to revoke the matching (pj , pj′)
or not as follows. Without loss of generality, assume w(pj) ≤ w(pj′). If w(pi) < rw(pj′),
then Bim leaves pi unmatched. Otherwise, Bim removes the matching (pj , pj′) and matches
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pi with pj′ . We note that r is a parameter that is going to be chosen later so as to optimize
the competitive ratio. If R is the only region that pjpj′ was responsible for when pi arrived,
then R is divided into two regions by pipj′ , and pipj′ becomes responsible for the two new
regions. (The regions on the other side of pjpj′ from pi keep their boundaries, even though
(pj , pj′) is no longer in the matching.) Otherwise pjpj′ was responsible for R′ in addition to
R when pi arrived. In this case, after removal of the match (pj , pj′), regions R and R′ are
merged to give region R′′ = R ∪ R′, and R′′ is divided by pipj′ into two regions, and Bim
makes pipj′ responsible for both new regions.

▶ Proposition 9. The following observations concerning Bim hold:
1. All responsible edges are defined by two currently matched points.
2. Each edge is responsible for at most two regions.
3. All regions are convex.
4. When a matched edge (pj , pj′) is replaced due to the arrival of a point pi in region R,

then edge (pi, pj′) is contained in R.

Proof. (1) follows since an edge only becomes responsible when its endpoints become matched.
When another edge becomes responsible for a region, the original edge is no longer responsible.
(2) follows since the only two regions an edge is made responsible for are the two regions
created when the endpoints of the edge were matched. When two points in one of the regions
an edge is responsible for are matched, the edge is no longer responsible for that region, but
will still be responsible for one region if it had been responsible for two up until that point.
(3) follows inductively, since separating two convex regions by a line segment creates two
convex regions. In addition, when Bim removes an edge, that edge was the last matching
created in either of the two regions it was responsible for. (4) follows by (3). ◀

▶ Theorem 10. Bim with r ∈ (1,
√

2] has strict competitive ratio at least min
(

r2−1
r3 , 1

1+2r

)
for the OWNM with arbitrary weights.

Proof. We consider for each region an edge is responsible for, the total weight of unmatched
points in that region. These points come in two flavours: those that were matched at some
point during the execution, but due to revoking became unmatched, and those that were
never matched during the entire execution of the algorithm.

Consider any subsequence of all created edges, ⟨e1, . . . , ek⟩, where e1 was created when
a second unmatched point arrived in some region, and the possible remaining edges were
created via revokings, i.e., ei caused ei−1 to be revoked for 2 ≤ i ≤ k, and ek is in Bim’s final
matching. Let ej = (pij

, pij+1) and w(pij
) ≤ w(pij+1), so ej+1 = (pij+1 , pij+2). Thus, for

3 ≤ j ≤ k + 1, pij
arrived after pij−1 . Every pair ever matched by Bim is included in some

such sequence of edges. The points, pi1 , . . . , pik−1 could be unmatched points in a region for
which ek is responsible.

Let α = w(pik
), so for every 2 ≤ j ≤ k, w(pij ) is at most αr−(k−j) and w(pi1) ≤ w(pi2) ≤

αr−(k−2). Let β = w(pik+1). The total weight of points in this sequence is

k+1∑
j=1

w(pij
) = w(pi1) +

k∑
j=2

w(pij
) + w(pik+1) ≤ αr−(k−2) + α

(
r

r − 1

)
(1− r−(k−1)) + β

= α

(
r−(k−1) r(r − 2)

r − 1 + r

r − 1

)
+ β.

Now, we consider other points that were never matched, but were at some time in a region
for which one of the ej was responsible. After e1 is created and before e2, a first point q1
could arrive in one of the regions for which e1 is responsible. Note that q1 is not matched
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if w(q1) < rw(pi2). (Note that a second point arriving in that region will then be matched
to q1, dividing the region, and the sub-regions will not be considered part of the region for
which ek eventually becomes responsible.) Now, suppose that another point, q2, arrives
between when ej and ej+1 are created for some 2 ≤ j < k, remaining unmatched in one of
the regions for which ek is responsible. Then, neither q2 nor pij+2 is in the same region as
pij−1 or one of them would have been matched to pij−1 (or pij−1 was already matched and
the region divided). By Proposition 9.2, ei is responsible for at most two regions, so pij+2

arrives in the same region as q2, while unmatched. This is a contradiction, since Bim would
match them. Thus, other than q1, the only never-matched point, q2, in a region for which ek

is responsible, arrives after ek and w(q2) < rw(pik+1).
Then, for k ≥ 2, the total weight of unmatched points for which ek is responsible is at

most
(

r−(k−3) + r−(k−1) r(r−2)
r−1 + r

r−1

)
α + (1 + r)β. If r ≤

√
2, then r−(k−3) + r−(k−1) r(r−2)

r−1
is at most zero and we can bound the total weight when k ≥ 2 by: ( r

r−1 )α + (1 + r)β. Thus,
the ratio between the weight of matched points in sequence pi1 , pi2 , . . . , pik+1 and the total
weight of all points associated with this sequence for k ≥ 2 is at least α+β

( r
r−1 )α+(1+r)β . Since

r
r−1 > 1 + r, for 1 < r ≤

√
2, this ratio is minimized when β is minimized, which happens at

β = rα. Thus, the competitive ratio for k ≥ 2 is at least (1 + r)/( r
r−1 + r(1 + r)) = r2−1

r3 .
Now, consider the case of k = 1, and let α and β have the same meaning as above. Then

the sequence ei1 , ei2 , . . . , eik
consists of a single edge. Thus, the weight of the matched points

is α + β, and there could be two unmatched points q1 and q2 at the end of the execution of
the algorithm charged to this edge. We have w(qi) < rβ, so the ratio between the weight of
matched points and the total weight of all points associated with the sequence in case of
k = 1 is at least α+β

α+(1+2r)β . Observe that this ratio is minimized when β goes to infinity and
becomes 1/(1 + 2r).

Taking the worse ratio between the above two scenarios proves the statement of the
theorem. ◀

▶ Corollary 11. With the choice of parameter for Bim, r∗, defined as the positive solution to
the equation 1

1+2r = r2−1
r3 , approximately 1.2470, we get a competitive ratio of 1

1+2r∗ , at least
0.2862.

Proof. The value r∗ is obtained by setting the two terms in the minimum in Theorem 10
equal to each other and solving for r, giving the lower bound on the competitive ratio.

To show that this result is tight, consider the following input: p1 of weight α arrives
at the north pole of the unit sphere, followed by p2 of weight β ≥ α at the south pole of
the unit sphere, followed by p3 of weight r∗β − ϵ at the west pole of the unit sphere, and
followed by p4 of weight r∗β − ϵ at the east pole of the unit sphere. The algorithm would
end up matching p1 with p2, leaving p3 and p4 unmatched. Thus, in such an instance, the
competitive ratio of the algorithm is (α + β)/(α + β + 2r∗β − 2ϵ). Taking β to ∞ and ϵ to 0
shows that the algorithm does not guarantee a competitive ratio better than 1/(1 + 2r∗) in
the strict sense. ◀

7 Algorithms with Advice

In this section, we consider the OWNM problem in the tape advice setting. In the advice
setting, a trustworthy oracle cooperates with an online algorithm according to a pre-agreed
protocol. The oracle has access to the entire input sequence in advance. The oracle
communicates with an online algorithm by writing bits on the advice tape. When an input
item arrives, an algorithm reads some number of advice bits from the tape, and makes a
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decision for the new item based on the advice it read from the tape so far, and the items
that have arrived so far. The question of interest is to bound the number of bits that need
to be communicated between the oracle and the algorithm on the worst-case input to allow
an online algorithm to solve the problem optimally. For an introduction to online algorithms
with advice, an interested reader is referred to the survey [12] and references therein.

We propose an online algorithm with advice, which we call “Split-And-Match” (Sam),
and show that it achieves optimality. For input sequences of size 2n, Sam uses a family of
Cn advice strings, where Cn is the nth Catalan number. The oracle encodes each advice
string using Elias delta coding scheme [16], which requires ⌈log Cn⌉+ log n + O(log log(Cn))
bits. We ignore the O(log log(Cn)) term for simplicity.

The Sam oracle and algorithm jointly maintain a partitioning of the plane into convex
regions, and a responsibility relation, where a point can be assigned to be responsible for at
most one region, and each region can have at most one point responsible for it. Each region
defined will eventually receive an even number of points in total. No region which has not
yet been divided into sub-regions contains more than one unmatched point. When a new
point p arrives in a region R, if R does not have a responsible point, then p is assigned to
be the responsible point for R, and p is left unmatched at this time. Otherwise, suppose
that q is the responsible point for R at the time p arrived. In this case, the responsibility
of q is removed, and the plane partition is refined by subdividing R into R1 and R2 – the
sub-regions of R formed by pq. If the total number of points (including future points, but
excluding p and q) in Ri is even for each i ∈ {1, 2}, then p and q are matched (we refer to
this event as a “safe match”), and R1 and R2 do not have any responsible points assigned to
them. Otherwise, p and q are not matched, and q is made responsible for R1, and p is made
responsible for R2. Note that when a region has a responsible point, that point is assumed
to lie in the region by convention, though it can lie on the boundary.

To implement the above procedure in the advice model, the Sam oracle creates a binary
string D of length 2n, where the ith bit indicates whether pi arrives in a region which has
some responsible point pj assigned to it, and pi and pj form a safe match. The string D is
encoded on the tape and is passed to Sam. The Sam algorithm reads the encoding of D

from the tape (prior to the arrival of online points), recovers D from the encoding, and then
uses the information in D to run the above procedure creating safe matches.

Observe that we aim to show the bound log Cn + log n ∼ 2n − 1
2 log n on the advice

complexity. The reason for the additive savings of 3
2 log n in the log Cn, as compared to 2n,

is that not all binary strings of length 2n can be generated as a valid D. Thus, the oracle
and the algorithm can agree beforehand on the ordering of the universe of possible strings D,
which we call the advice family. Then the oracle writes on the tape the index of a string in
this ordering that corresponds to D for the given input. The following theorem establishes
the correctness of this algorithm, as well as the claimed bound on the advice complexity.

▶ Theorem 12. Sam achieves a perfect matching with the advice family of size Cn.

Proof. Since the request sequence contains 2n points, an even number of points eventually
arrive. Inductively, a region that is divided always has an even number of points in both
sub-regions, and each of these sub-regions is convex. Thus, any point arriving in a region
can be matched to the point that is already there and responsible for the region. There are
only two kinds of regions that occur during the execution of Sam, as a new point arrives:

type I: this region does not have a responsible point, it is empty at the time of creation,
and there are an even number of points arriving in this region in the future, and
type II: this region has a responsible point, which is the only point in the region at the
time of its creation, and there are an odd number of points arriving in this region in the
future.
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We argue inductively (on the number of future points arriving in a region) that the algorithm
ends up matching all points inside a region, regardless of their type. The base case for a
type I region is trivial: the number of future points is 0, and there is nothing to prove. The
base case for type II region is easy: one point arrives in the region, then according to the
algorithm it will be matched to the responsible point (since R1 and R2 are empty).

For the inductive step, consider a type I region R, and suppose that 2k points will arrive
inside the region. The first point that arrives in the region becomes responsible for this
region, changing its type to II. There are 2k − 1 future points arriving in this region, and
the claim follows by the inductive assumption applied to the type II region. Now, consider
a type II region R, and suppose that 2k − 1 points arrive inside the region. Let q be the
responsible point for R, and let p be the first point arriving inside R. Note that pq partitions
R into R1 and R2. There are two possible cases. Case 1: If R1 and R2 are both of type I,
then p is matched with q and the inductive step is established for R by invoking induction
on R1 and R2. If Case 2: R1 and R2 are both of type II, then inductive step is established
for R by invoking induction on R1 and R2.

Observe that the entire plane is a region of type I at the beginning of the execution of
the algorithm (prior to arrival of any points). Thus, correctness of the algorithm follows by
applying the above claim to this region.

To establish the bound on advice complexity, observe that by the definition of the
algorithm, Sam matches the most recent point whenever D[i] is 1 and does not match
otherwise. Thus, D has an equal number of zeros and ones and no prefix of D has more ones
than zeros. This makes D a Dyck word and it is known that there are Cn Dyck words of size
2n [29]. ◀

8 Conclusion

We introduced the weighted version of the Online Weighted Non-Crossing Matching problem.
We established that no deterministic algorithm can guarantee a constant competitive ratio
for this problem. Then, we explored several ways of overcoming this limitation and presented
new algorithms and bounds for each of the considered regimes. In particular, we presented
the results for deterministic algorithms when weights of the points are restricted to lie
in the range [1, U ], randomized algorithms without restrictions on weights, deterministic
algorithms with revoking, and deterministic algorithms with advice. Many open problems
remain. In particular, our bounds are not tight, and closing the gap in any of the settings
would be of interest. It is also interesting to study the online setting of other versions of the
problem that were considered in the offline literature. For example, one could allow an online
algorithm to create some number of crossings up to a given budget, or one could consider the
k-non-crossing constraint as inspired from understanding RNA structures. In this paper, we
considered the vertex-weighted version, but one could also consider an edge-weighted version
of the problem, where edge weights could be either abstract, or related to geometry.
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A Omitted Pseudocode

Algorithm 1 Split-And-Match Oracle.

procedure Split-And-Match-Oracle

D ← [0]
make p1 responsible for the plane
for i = 2 to 2n do

let R be the region that pi arrives in
if R has a responsible point pj then

revoke the responsibility of pj

divide R into R1 and R2 by pipj

if RL (and RR) is going to contain an even number of points in total then
D.append(1)

else
make pj and pi responsible for R1 and R2 respectively
D.append(0)

else
make pi responsible for R

D.append(0)
pass D to the algorithm

https://doi.org/10.1016/j.comgeo.2022.101943
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Algorithm 2 Split-And-Match Algorithm.

procedure Split-And-Match(D)
while receive a new point pi do

let R be the region that pi arrives in
if R has a responsible point pj then

revoke the responsibility of pj

divide R into R1 and R2 by pipj

if D[i] == 1 then
match pi with pj

else
make pj and pi responsible for R1 and R2 respectively
leave pi unmatched

else
make pi responsible for R

leave pi unmatched
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