
Fixed-Parameter Tractable Certified Algorithms for
Covering and Dominating in Planar Graphs and
Beyond
Benjamin Merlin Bumpus #

University of Florida, Gainesville, FL, USA

Bart M. P. Jansen #

Eindhoven University of Technology, The Netherlands

Jaime Venne #

Eindhoven University of Technology, The Netherlands

Abstract
For a positive real γ ≥ 1, a γ-certified algorithm for a vertex-weighted graph optimization problem
is an algorithm that, given a weighted graph (G, w), outputs a re-weighting of the graph obtained by
scaling each weight individually with a factor between 1 and γ, along with a solution which is optimal
for the perturbed weight function. Here we provide (1 + ε)-certified algorithms for Dominating Set
and H-Subgraph-Free-Deletion which, for any ε > 0, run in time f(1/ε) · nO(1) on minor-closed
classes of graphs of bounded local tree-width with polynomially-bounded weights. We obtain our
algorithms as corollaries of a more general result establishing FPT-time certified algorithms for
problems admitting, at an intuitive level, certain “local solution-improvement properties”. These
results improve – in terms of generality, running time and parameter dependence – on Angelidakis,
Awasthi, Blum, Chatziafratis and Dan’s XP-time (1 + ε)-certified algorithm for Independent Set
on planar graphs (ESA2019). Furthermore, our methods are also conceptually simpler: our algorithm
is based on elementary local re-optimizations inspired by Baker’s technique, as opposed to the heavy
machinery of the Sherali-Adams hierarchy required in previous work.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of
computation → Fixed parameter tractability

Keywords and phrases fixed-parameter tractability, certified algorithms

Digital Object Identifier 10.4230/LIPIcs.SWAT.2024.19

Funding Authors Bumpus and Jansen received funding by the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme (grant agreement No
803421, ReduceSearch).

Acknowledgements We are grateful to the anonymous referees for pointing out Theorem 2.5 and
making suggestions that improved the presentation of the paper.

1 Introduction

In many algorithmic contexts there is no tolerance for uncertainty. For instance, when lives
are at stake (e.g. kidney exchanges [6, 15]), the difference between an approximate solution
and a truly optimal one is staggering. However, finding exact optima only makes sense if the
objective function which we are optimizing is known to accurately model the optimization
problem at hand (and often this is not the case in e.g. clustering or vertex-optimization
problems [13]). Indeed, if the objective function is only an approximate model, then there is
no use in finding a true optimum relative to this objective function: after all, how could one
tell whether the returned solution is “truly” optimal or if it is instead optimal simply due to
the error, or noise in the objective function?

© Benjamin Merlin Bumpus, Bart M. P. Jansen, and Jaime Venne;
licensed under Creative Commons License CC-BY 4.0

19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024).
Editor: Hans L. Bodlaender; Article No. 19; pp. 19:1–19:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:benjamin.merlin.bumpus@gmail.com
https://orcid.org/0000-0002-8686-2319
mailto:b.m.p.jansen@tue.nl
https://orcid.org/0000-0001-8204-1268
mailto:j.c.venne@student.tue.nl
https://doi.org/10.4230/LIPIcs.SWAT.2024.19
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 Fixed-Parameter Tractable Certified Algorithms in Planar Graphs and Beyond

Thus it is clear that, if we are optimizing an objective function which is subject to a
certain degree γ of error, then it only makes sense to find optimal solutions when the inputs
are stable under γ-perturbations: i.e. stable under small variations in the objective by factors
which are at most our error γ. The precise formulation of the notion of γ-stability (which
follows) is due to Bilu and Linial [3] and is a necessary prerequisite to the notion of certified
algorithms, the focus of this paper.

▶ Definition 1.1 (γ-perturbation). For any γ ∈ R≥1 and set S, a γ-perturbation of a function
w : S → R is a function w′ : S → R satisfying w(v) ≤ w′(v) ≤ γ · w(v) for all v ∈ S.

▶ Definition 1.2 (γ-stable). For any γ ∈ R≥1, a γ-stable instance (G, w : V (G) → R) of a
vertex-minimization problem Π is an instance admitting a unique optimal solution S which
remains optimal (though not necessarily unique) even under γ-perturbations of (G, w).

Determining whether an instance is γ-stable or not can be a challenging computational
task [13]. However, this is often beside the point: if we do not know whether the objective
function we are optimizing has error or not, then it is enough to find a γ-approximate solution
with the extra guarantee that the returned solution is optimal whenever the instance is
γ-stable. Certified algorithms [3, 12, 13, 14] satisfy these requirements and more.

▶ Definition 1.3 (Certified algorithm). A γ-certified solution to an instance (G, w : V (G) → N)
of a weighted vertex-optimization problem Π is a pair (S, w′ : V (G) → R+) where w′ is a
γ-perturbation of w and S is an optimal solution on (G, w′). A γ-certified algorithm for Π
is one mapping instances of Π to γ-certified solutions.

Note that every γ-certified algorithm also serves as a factor-γ approximation algorithm [13,
Thm. 5.11] for the problem, while the converse is false in general. For example, a γ-
approximation for the Dominating Set problem may output a solution that fails to be
inclusion-minimal, but this can never be the output of a γ-certified algorithm since there is
no γ-perturbation for which such a solution is optimal.

Contributions. This paper is a foray into merging certified algorithms with parameterized
complexity: here we develop FPT-time (1 + ε)-certified algorithms for vertex-optimization
problems (Definition 2.2) parameterized by 1/ε. Specifically we provide certified algorithms
for H-Subgraph-Free-Deletion (for connected H) and Dominating Set which run in
polynomial time on minor-closed classes of bounded local tree-width, which are exactly
the apex-minor free graphs (Section 2). These results improve – in terms of generality,
running time and parameter dependence – on Angelidakis, Awasthi, Blum, Chatziafratis and
Dan’s XP-time (1 + ε)-certified algorithm for Independent Set on planar graphs [1] which
inspired the present paper.

Our results (Corollary 3.6) are obtained as by-products of our main theorem (Theorem 1.7).
They draw inspiration from Baker’s celebrated technique [2] and they establish FPT-time
certified algorithms for any problem Π on such graph classes provided Π satisfies certain
“local solution-improvement properties”. The rest of this section will lead up to the formal
statement of our main theorem by explaining precisely what these properties consist of.

The “local” nature of the “solution-improvement properties” mentioned above has to
do with the operation of m-stitching. Intuitively, this operation consists of amending a
given solution S1 by “stitching” onto it a small, local portion of another solution S2. In the
following definition, Nm

G [J] denotes the closed m-neighborhood of vertex set J (see Section 2).

B. M. Bumpus, B. M. P. Jansen, and J. Venne 19:3

▶ Definition 1.4 (m-stitch operation). For an integer m ≥ 0 and vertex sets J, S1, S2 ⊆ V (G)
of a graph G, we define the m-stitch of S2 onto S1 along J as:

S2 ⊕m
G,J S1 := (S1 \ J) ∪ (S2 ∩ Nm

G [J]).

Naturally we refer to vertex-optimization problems whose set of feasible solutions is closed
under the m-stitch operator as m-stitchable.

▶ Definition 1.5 (m-stitchable). A vertex-optimization problem Π is m-stitchable if, for any
feasible solutions S1 and S2 to Π on a graph G and any vertex set J ⊆ V (G), we have that
S2 ⊕m

G,J S1 is a feasible solution to Π on G.

While the stitching operation seems natural, we are not aware of earlier work exploiting this
idea. Our main theorem requires as a subroutine an algorithm for the following computational
task for minimization problems. Roughly speaking, algorithms for the task below should be
thought of as “local optimization” routines which improve any given solution S to produce
solutions which are at least as good as any m-stitch onto S.

Π-m-Stitching Parameter: tw(G[Nm
G [J]])

Input: an instance (G, w : V (G) → N) to an m-stitchable vertex-optimization problem Π
along with a solution S and a vertex set J ⊆ V (G).
Task: find a feasible solution S′ to Π on G, such that for all other feasible solutions S∗,
we have w(S′) ≤ w(S∗ ⊕m

G,J S).

Notice that Π-m-Stitching is parameterized by the tree-width of the closed distance-m
neighborhood of J ; this restricts the exponential dependency of this local optimization task
in terms of the tree-width of the closed m-neighborhood of J .

Finally, we can state our main result (Theorem 1.7) which, sweeping some details under
the rug, can be thought of as a way of turning any algorithm for Π-m-Stitching into an
FPT-time certified algorithm for Π whenever we can quickly guess at least one feasible
solution (Definition 1.6).

▶ Definition 1.6 (Guessable). We say that a vertex-optimization problem Π is guessable if
there is an algorithm that outputs a feasible solution (with no requirement for optimality) in
polynomial-time.

▶ Theorem 1.7 (main). Let G be a minor-closed graph class whose local tree-width is bounded
above by a linear function of the form g : r 7→ λr (where r ∈ N) for some given, fixed λ ∈ R.
If Π is a vertex-minimization problem such that:

Π is guessable and m-stitchable for some m ∈ N, and
there exists an algorithm A which solves Π-m-Stitching in time f(t) · |V (G)|O(1),
where t = tw(G[Nm

G [J]]) and f is some computable function;
then, for each ε > 0 there is a (1 + ε)-certified algorithm for Π which runs in time f(λm/ε) ·
|V (G)|O(1) on any input (G, w : V (G) → N) with G ∈ G and polynomially-bounded weights.

We note that Theorem 1.7 also applies to the complementary maximization problem (see
Section 5 for the formal definition) of any minimization problem Π as above. This observation
will furthermore allow us to obtain a 2O(1/ε) · nO(1)-time certified algorithm for the maximum
independent set problem (with polynomially bounded integer weights), which improves on
the algorithm with running time nO(1/ε) by Angelidakis, Awasthi, Blum, Chatziafratis and
Dan [1]. Apart from being more efficient and more general, our algorithm is also conceptually
simpler. It relies on repeated improvement of a solution in bounded-tree-width subgraphs,
rather than the technical machinery of the Sherali-Adams hierarchy employed in earlier work.

SWAT 2024

19:4 Fixed-Parameter Tractable Certified Algorithms in Planar Graphs and Beyond

Organization. After establishing some preliminary background and notation in Section 2,
we will show in Section 3 how to apply our main theorem to obtain certified algorithms
for H-Subgraph-Free-Deletion and Dominating Set. The main theorem itself (Theo-
rem 1.7) is instead proved later on in Section 4. We discuss our algorithmic results and their
application to complementary maximization problems in Section 5, which is also where we
pose open questions as an invitation to further work.

2 Preliminaries

We follow the convention that zero is a natural number. We only consider finite, simple, and
undirected graphs, which consist of a vertex set V (G) and edge set E(G) ⊆

(
V (G)

2
)
. For m ∈ N,

the closed m-neighborhood Nm
G [X] of a vertex subset X ⊆ V (G) in G is defined inductively

as Nm
G [X] := NG[Nm−1

G [X]] where N1
G[X] = NG[X] = {y ∈ V (G) | ∃x ∈ X : {x, y} ∈

E(G)} ∪ X. The open m-neighborhood Nm
G (X) is defined as Nm

G (X) := Nm
G [X] \ X. The

tree-width [8] of a graph G is denoted tw(G). The diameter of a connected graph G, which
is defined as the maximum number of edges on any shortest path, is denoted by diam(G).

Throughout this paper we will always assume that weight functions are polynomially
bounded in the size of the graph; i.e. we always consider weight functions of the form
w : V (G) → {0, . . . , |V (G)|O(1)}. This restriction is crucial to obtaining polynomial-time
algorithms for the vertex-optimization problems (defined below) considered in this paper.

▶ Definition 2.1. A vertex-subset property P assigns to each graph G the subset P(G) ⊆
2V (G) of vertex sets that satisfy property P on G. We say that a set S ⊆ V (G) is feasible
for P on G when S ∈ P(G).

▶ Definition 2.2 (vertex-optimization). A vertex-optimization problem Π is any pair of the
form (P, goal) consisting of a vertex-subset property P and a function goal ∈ {min, max}.
The task of Π is to find some vertex subset Ŝ ∈ P(G) such that w(Ŝ) = goalS∈P(G)w(S).
We call Π a vertex-minimization problem if goal = min and a vertex-maximization problem
otherwise.

Our main algorithmic theorems concern algorithms running in minor-closed classes of (linearly)
bounded local tree-width. We recall these notions below (where d(x, y) denotes the usual
shortest-paths distance metric on graphs).

▶ Definition 2.3 (local tree-width). Given a graph G, the local tree-width of G is the map

loctwG : N → N where loctwG : δ 7→ max
x∈V (G)

tw
(
G[{y ∈ V (G) : d(x, y) ≤ δ}]

)
.

▶ Definition 2.4 (graphs of bounded local tree-width). A graph class C has bounded local
tree-width if there is a function f : N → R such that loctwG(r) ≤ f(r) for all (G, r) ∈ C ×N.
Furthermore, if there is a λ ∈ R such that the function f above can be defined as f : r 7→ λr,
then we say that C has λ-linear local tree-width.

An apex graph is a graph that can be made planar by removing a single vertex. Eppstein [9]
proved that a minor-closed class of graphs has bounded local tree-width if and only if it
excludes an apex graph as a minor. Demaine and Hajiaghayi [7, Theorem 4.1] proved that
any apex-minor-free graph has linear local tree-width, thereby leading to the following
equivalence.

▶ Theorem 2.5 ([7, 9]). A minor-closed graph class C has bounded local tree-width if and
only if it has λ-linear local tree-width for some λ ∈ R.

B. M. Bumpus, B. M. P. Jansen, and J. Venne 19:5

For any graph-theoretic notation not defined here, we refer the reader to Diestel’s
textbook [8]; similarly for standard notation in parameterized complexity theory see Cygan
et al.’s textbook [4].

3 Applications of Theorem 1.7

Here we will apply Theorem 1.7 to obtain FPT-time certified algorithms for
Dominating Set and H-Subgraph-Free-Deletion. We recall the definitions of these
problems below.

H-Subgraph-Free-Deletion (for a fixed connected graph H)
Input: a vertex-weighted graph (G, w : V (G) → N).
Task: find a minimum-weight subset X ⊆ V (G) such that no subgraph of G − X is
isomorphic to H.

Dominating Set
Input: a vertex-weighted graph (G, w : V (G) → N).
Task: find a minimum-weight subset X ⊆ V (G) such that V (G) = NG[X].

To apply our main theorem to these problems we need to show that they are guessable
(which is trivially true: V (G) is feasible solution), m-stitchable for some appropriate choices of
m, and that there are FPT-time algorithms for the relevant stitching problems parameterized
by tree-width. We begin with stitchability.

▶ Lemma 3.1. Dominating Set is 2-stitchable while H-Subgraph-Free-Deletion is
diam(H)-stitchable for any connected graph H.

Proof. Consider any three vertex sets J, S1, S2 ⊆ V (G).
First we consider Dominating Set. If S1 and S2 are dominating sets, then so is

S2 ⊕2
G,J S1: any vertex of V (G) \ NG[J] is dominated by S1 \ J while vertices of NG[J] are

dominated by S2 ∩ N2
G[J]. Note that we need to consider the 2-neighborhood of J , since

there might be vertices in NG(J) that S1 dominates from within J but that S2 dominates
from N2

G(J).
Now we turn our attention to H-Subgraph-Free-Deletion. Let h : H ↪→ G be an

H-subgraph of G. If S1 and S2 are H-hitting sets and h(H) is not hit by S1 \ J , then
V (h(H) ∩ J) ̸= ∅. Hence h(H) lies entirely in N

diam(H)
G [J], since H is connected. But then

h(H) is hit by S2 ∩ N
diam(H)
G [J]. Thus S2 ⊕diam(H)

G,J S1 is an H-hitting set. ◀

Next we give algorithms for H-Subgraph-Free-Deletion-Stitching (Lemma 3.2) and
Dominating Set-Stitching (Lemma 3.3).

▶ Lemma 3.2. Let H be a fixed connected graph and m := diam(H). Given any algorithm A
which solves H-Subgraph-Free-Deletion on any vertex-weighted instance (G, w : V (G) →
N) in time f(tw(G)) · |V (G)|c for some function f and constant c, the following algorithm
solves H-Subgraph-Free-Deletion-m-Stitching in time f(tw(Q)) · |V (G)|c where Q =
G[Nm

G [J]].
Algorithm Stitch-H-Del
Input: a vertex-weighted graph (G, w : V (G) → N), a vertex set J ⊆ V (G), and a feasible
solution S1 on G, i.e., graph G − S1 has no subgraph isomorphic to H.
Output: a feasible solution S′ on G, such that for all other feasible solutions S∗, we have
w(S′) ≤ w(S∗ ⊕m

G,J S1).

SWAT 2024

19:6 Fixed-Parameter Tractable Certified Algorithms in Planar Graphs and Beyond

1. Let F = G[Nm
G [J] \ (S1 \ J)].

2. Let S2 be the output of the algorithm A on input (F, w|V (F)).
3. Return S2 ⊕m

G,J S1 if w(S2 ⊕m
G,J S1) < w(S1) and S1 otherwise.

Proof. The running time is clearly dominated by that of A. Notice, towards proving
correctness, that S2 ⊕m

G,J S1 is feasible: the set S′
2 := S2 ∪ (V (G) \ V (F)) ∪ (S1 ∩ Nm

G (J)) is
an H-deletion set in G and thus, by the m-stitchability of H-Subgraph-Free-Deletion
and definition of F , we find that S′

2 ⊕m
G,J S1 = S2 ⊕m

G,J S1 is an H-deletion set.
Now assume by way of contradiction that there is a feasible solution S3 such that

w(S2 ⊕m
G,J S1) > w(S3 ⊕m

G,J S1). Then we have that:

w|V (F)(S2) = w(S2) = (since S2 ⊆ V (F))
= w(S2 ∩ Nm

G [J]) (since V (F) ⊆ Nm
G [J])

= w(S1 \ J) + w(S2 ∩ Nm
G [J]) − w(S1 \ J)

= w
(
(S1 \ J) ∪ (S2 ∩ Nm

G [J])
)

− w(S1 \ J) (since V (F) ∩ (S1 \ J) = ∅)
= w(S2 ⊕m

G,J S1) − w(S1 \ J) (by def. of stitch)
> w(S3 ⊕m

G,J S1) − w(S1 \ J) (by assumption on S3)
= w

(
(S1 \ J) ∪ (S3 ∩ Nm

G [J])
)

− w(S1 \ J) (by def. of stitch)
= w

(
(S3 ∩ Nm

G [J]) \ (S1 \ J)
)

(w(A ∪ B) − w(A) = w(B \ A))
= w

(
S3 ∩ (Nm

G [J] \ (S1 \ J)
)

((A ∩ B) \ C = A ∩ (B \ C))
= w(S3 ∩ V (F)) (by def. of F)
= w|V (F)(S3 ∩ V (F))

which contradicts the fact that S2 was optimal on (F, w|V (F)) since S3 ∩ V (F) is an H-
deletion set on F (because the property of being an H-deletion set is closed under induced
subgraphs). ◀

Since – in contrast to H-deletion sets – the property of being a dominating set is not closed
under taking induced subgraphs, our algorithm for Dominating Set-2-Stitching will
require slightly different ideas from those in Lemma 3.2. Indeed, rather than finding a
solution that is locally optimal after the removal of S1 \ J (as we did in the previous lemma),
we will instead find a minimum-weight set that dominates all vertices which are not already
dominated by S1 \ J .

▶ Lemma 3.3. Given any algorithm A which solves Dominating Set on any vertex-weighted
instance (G, w : V (G) → N) in time f(tw(G)) · |V (G)|c for some function f and constant c,
the following algorithm solves Dominating Set-2-Stitching in time f(tw(Q)) · |V (G)|c
where Q = N2

G[J].
Algorithm Stitch-Dom-Set
Input: a vertex-weighted graph (G, w : V (G) → N), a vertex set J ⊆ V (G), and a
dominating set S1 on G.
Output: a dominating set S′ in G, such that, for all other dominating sets S∗, we have
w(S′) ≤ w(S∗ ⊕2

G,J S1).
1. Define F to be the graph obtained from G[N2

G[J]] by adding a new vertex f with
NF (f) := NG(NG[J]). (Vertex f is adjacent to the vertices at distance exactly two
from J in G.)

B. M. Bumpus, B. M. P. Jansen, and J. Venne 19:7

2. Define wF : V (F) → N as

wF : x 7→

{
0 if x ∈ (S1 \ J) ∪ {f}
w(x) otherwise.

(1)

3. Let S2 = S′
2 \ {f} where S′

2 is the output of algorithm A on input (F, wF).
4. Return S2 ⊕2

G,J S1 if w(S2 ⊕2
G,J S1) < w(S1) and S1 otherwise.

Proof. The proofs of the running-time bound and feasibility of S2 ⊕2
G,J S1 are virtually

identical to Lemma 3.2. Notice that we can assume that S1 ∩ N2
G(J) ⊆ S2 since, by its

definition in the algorithm above, wF (S1 \ J) = 0. The rest of the proof will make use of the
following auxiliary definition.

▶ Definition 3.4. Given a vertex subset X of a graph H, an X-dominating set in H is a set
S ⊆ V (H) such that y ∈ NH [S] for all y ∈ V (H) \ X.

We claim that S2 is a minimum-weight NF (f)-dominating set in G[N2
G[J]] with respect

to weight function w. To see this, first of all note that S2 is a NF (f)-dominating set
since it dominates every vertex in F − f−NF (f) = G[N2

G[J]] − NF (f): the vertex f that
is removed from the dominating set S′

2 in F only dominates vertices of {f} ∪ NF (f), so
the rest is dominated by S′

2 \ {f} = S2. Now suppose by way of contradiction that there
is an NF (f)-dominating set D in G[N2

G[J]] with w(D) < w(S2). Then, since wF (f) = 0,
wF (D ∪ {f}) = w(D) < w(S2) = wF (S2 ∪ {f}) which contradicts the fact that S2 ∪ {f} is a
minimum dominating set on (F, wF).

Now take any dominating set S3 in G. Observe that (S3 ⊕2
G,J S1) ∩ N2

G[J] is an NF (f)-
dominating set in G[N2

G[J]] and thus, by what we just showed,

w
(
(S3 ⊕2

G,J S1) ∩ N2
G[J]

)
≥ w(S2). (2)

Using the fact that S1 \ J = (S1 \ N2
G[J]) ∪ (S1 ∩ N2

G(J)), we thus have:

w(S3 ⊕2
G,J S1) = w

(
(S1 \ J) ∪ (S3 ∩ N2

G[J])
)

(by def. of stitch)
= w(S1 \ N2

G[J]) + w
(
(S1 ∩ N2

G(J)) ∪ (S3 ∩ N2
G[J])

)
(by fact above)

= w(S1 \ N2
G[J]) + w

(
(S3 ⊕2

G,J S1) ∩ N2
G[J]

)
(by def. of stitch)

≥ w(S1 \ N2
G[J]) + w(S2) (by Inequality (2))

= w(S1 \ N2
G[J]) + w

(
(S1 ∩ N2

G(J)) ∪ S2
)

(since S1 ∩ N2
G(J) ⊆ S2)

= w(S1 \ N2
G[J]) + w

(
(S1 ∩ N2

G(J)) ∪ (S2 ∩ N2
G[J])

)
(since S2 ⊆ V (F) \ {f})

= w
(
(S1 \ J) ∪ (S2 ∩ N2

G[J])
)

(since N2
G[J] \ N2

G(J) = J)
= w(S2 ⊕2

G,J S1). (by def. of stitch)
◀

From what we’ve seen so far in this section, we have that both Dominating Set and
H-Subgraph-Free-Deletion are stitchable (by Lemma 3.1). Thus, since these problems lie
in FPT parameterized by tree-width (as we recall for convenience in Theorem 3.5 below), we
can conclude by Lemmas 3.2 and 3.3 that both H-Subgraph-Free-Deletion-Stitching
and Dominating Set-Stitching also lie in FPT.

▶ Theorem 3.5 ([4, 5]). Given any weighted graph (G, w : V (G) → N) with tree-width at
most k, we can solve:

H-Subgraph-Free-Deletion in time 2O(k) · |V (G)|O(1) when H is a clique [5],

SWAT 2024

19:8 Fixed-Parameter Tractable Certified Algorithms in Planar Graphs and Beyond

H-Subgraph-Free-Deletion in time 2O(k)µ∗(H) log k ·|V (G)|O(1) when H is a connected
graph that is not a clique [5], and
Dominating Set in 2O(k) · |V (G)|O(1) [4, page 176],

where µ∗(H) for a connected graph H denotes the maximum, over all connected vertex
sets A ⊆ V (H) satisfying NH(NH [A]) ̸= ∅, of the quantity |NH(A)|.

Furthermore, since both H-Subgraph-Free-Deletion and Dominating Set are guess-
able, we can apply Theorem 3.5 to obtain (Corollary 3.6) polynomial time, certified algo-
rithms for H-Subgraph-Free-Deletion and Dominating Set on minor-closed classes
with bounded local tree-width.

▶ Corollary 3.6. For any minor-closed graph class C of λ-linear local tree-width
and each ε > 0 there are (1 + ε)-certified algorithms solving Dominating Set and
H-Subgraph-Free-Deletion whenever the input is of the form (G, w) with G ∈ C and
w : V (G) → N a polynomially-bounded weight function. Furthermore these algorithms respec-
tively admit the following worst-case running-time bounds:

2O(λ/ε) · |V (G)|O(1) in the case of H-Subgraph-Free-Deletion when H is a clique,
2O(k)µ∗(H) log k · |V (G)|O(1) (where µ∗(H) is the constant of Theorem 3.5 and k equals
diam(H)λ/ε) in the case of H-Subgraph-Free-Deletion for a connected graph H that
is not a clique, and
2O(2λ/ε) · |V (G)|O(1) in the case of Dominating Set.

4 Proving Theorem 1.7

The proof of Theorem 1.7 takes inspiration from Baker’s technique [2] for designing polynomial-
time approximation schemes on planar graphs. It will occur in three steps: we will outline
the algorithm in Section 4.2.1, show that it has the desired running time in Section 4.2.2,
and prove its correctness in Section 4.2.3. However, before doing so we shall briefly establish
a few useful definitions in Section 4.1 which will streamline the presentation of what follows.

4.1 Definitions for Theorem 1.7

Throughout we assume all graphs are connected unless stated otherwise and we denote any
interval {a, a + 1, . . . , b} in Z as [a, b]; furthermore we denote by ιa,b the obvious inclusion
ιa,b : [a, b] ↪→ Z given by ιa,b(i) = i for a ≤ i ≤ b. Often, we shall refer to ιa,b itself as an
interval.

▶ Definition 4.1 (m-boundary of an interval). Given any integer m ≥ 1, we define the left
and right m-boundaries of any interval ιa,b to respectively be the intervals

δL
m(ιa,b) : [a − m, a − 1] ↪→ Z and δR

m(ιa,b) : [b + 1, b + m] ↪→ Z.

We define the closed m-boundary of ιa,b as δm[ιa,b] : [a − m, a] ∪ [a, b] ∪ [b, b + m] ↪→ Z while
the open m-boundary of ιa,b is defined as δm(ιa,b) := δL

m(ιa,b) ∪ δR
m(ιa,b).

Recall that, given any vertex v in a graph G, the eccentricity of v in G is the maximum
length of a shortest path from v to any other vertex. Here we will denote this as ϵ̂(v, G) or
simply as ϵ̂(v) if G is understood from context.

B. M. Bumpus, B. M. P. Jansen, and J. Venne 19:9

Ripples
When one drops a stone in a pond, an outward-radiating rippling ring of waves forms where
the stone hit the surface of the water. In analogy to this phenomenon, we shall now define
an r-ripple1 in a graph as the sets of vertices (the waves, as it were) at fixed distances from
some given vertex r.

▶ Definition 4.2 (r-ripple). Given a vertex r in a graph G, we call the function

ρr : Z → 2V (G) where ρr : i 7→ {x ∈ V (G) : d(r, x) = i}

the r-ripple in G. The vertex-subsets that make up a ripple will be referred to as waves: for
any integer i, we define the i-th wave in ρr to be the set ρr(i).

In Definition 4.2 above, we call the vertex r the center of the ripple. If the center of the
ripple is understood from context, then we simply denote the ripple as ρ. Notice that the i-th
wave of a ripple will always be empty if i is negative or if it is greater than the eccentricity
ϵ̂(r) of the center of the ripple; one should think of such as “dummy” indices. Our choice to
represent ripples as functions with domain Z is simply for notational convenience; indeed,
one could instead restrict these functions to simply view any r-ripple as a function with
domain {0, . . . , ϵ̂(r)}.

▶ Definition 4.3 ((a, b)-subripple; see also Figure (1)). Let ρ be an r-ripple in a graph G

and ιa,b : [a, b] ↪→ Z be an interval. We define the (a, b)-subripple in ρ to be the function
ρa,b : [a, b] → 2V (G) defined as the composite ρa,b := ρ ◦ ιa,b. The width of a finite subripple
is the number of waves it consists of (e.g. the width of an (a, b)-ripple is |b − a + 1|).

For any graph G and (a, b)-subripple of an r-ripple ρ in G, the graph G[
⋃

a≤i≤b ρ(i)] is a
subgraph of the graph G′ obtained from G by contracting all vertices v with dG(r, v) < a

into r. As
⋃

a≤i≤b ρ(i) is contained in N b−a+1
G′ [r], the tree-width of G[

⋃
a≤i≤b ρ(i)] is bounded

in terms of the local tree-width of G′. Whenever G comes from a minor-closed graph class C
of bounded local tree-width, we have G′ ∈ C which ensures a bound on its local tree-width.
This yields the following observation.

▶ Observation 4.4 ([11]). Let C be a minor-closed class of graphs which has λ-bounded linear
local tree-width. If ρ is an r-ripple in a graph G belonging to C, then the tree-width of any
(a, b)-subripple of ρ is upper-bounded by tw(G[

⋃
a≤i≤b ρ(i)]) ≤ λ(|b − a + 1|).

We note that one can of course use composition to generalize the notion of m-boundaries
from intervals (Definition 4.1) to (sub)ripples. Indeed, we overload the notation so that, for
example, the left m-boundary of any (a, b)-subripple ρa,b is denoted δL

m(ρa,b) and it is defined
as the composite ρ ◦ δL

m(ιa,b). One can similarly define right, open and closed m-boundaries
of any (a, b)-subripple.

In the rest of this section we shall make two further definitions related to simple construc-
tions with ripples: modular slices of a ripple (Definition 4.5) and the difference of a ripple and
a modular slice (Definition 4.6). Since both of these concepts are very easy to grasp visually,
we defer their formal definitions and instead define them first “by picture” in Figure (1)
below. The notation S mod 4

2 (i) in Figure (1) denotes the i-th modular slice (an evenly spaced
sequence of subripples with a given start-index i) and the difference ρ ⊖ S mod 4

2 (i) is simply
the sequence of subripples that is “left-over” from ρ after we remove the modular slice
S mod 4

2 (i).

1 This is sometimes referred to as a “layering” in the literature.

SWAT 2024

19:10 Fixed-Parameter Tractable Certified Algorithms in Planar Graphs and Beyond

index : 0 1 2 3 4 5 6 7 8 9

ρ : ρ(0) ρ(1) ρ(2) ρ(3) ρ(4) ρ(5) ρ(6) ρ(7) ρ(8) ρ(9)

ρ1,4 : | |

S mod 4
2 (0) : | | | | | |

ρ ⊖ S mod 4
2 (0) | | | |

ρ0,1 ρ4,5 ρ8,9

ρ2,3 ρ6,7

Figure 1 Illustration of subripples, modular slices, and remainders.

▶ Definition 4.5 (modular slices). Let ρ be an r-ripple in a graph G. For any integers s and
k with 1 ≤ s ≤ k and any integer i ∈ {0, 1, . . . , k − 1} define the set

Zk
s(i) :=

⋃
j∈Z

{j · k + i, j · k + i + 1, . . . , j · k + i + s − 1}

and consider its obvious inclusion ιs,k,i : Zk
s ↪→ Z. We call the map S mod k

s (i) : Zk
s → 2V (G)

defined as the composite S mod k
s := ρ ◦ ιs,k,i the i-th modular k-slice of width s in ρ.

▶ Definition 4.6 (Remainder). Let s, k, and i be integers with 1 ≤ s ≤ k and 0 ≤ i ≤ k − 1.
Let ρ be an r-ripple in a graph G and S mod k

s (i) : Zk
s ↪→ 2V (G) be a modular k-slice of width

s in ρ. Letting ιs,k,i : Z \ Zk
s ↪→ Z be the obvious inclusion of Z \ Zk

s into Z, we define the
remainder of S mod k

s (i) in ρ, denoted as ρ ⊖ S mod k
s (i), to be the composite ρ ◦ ιs,k,i.

To ease legibility and conciseness, throughout this document, we shall treat any subripple
(resp. modular slice or difference thereof) as the union of all of its constituent waves
whenever performing set-theoretic operations. For example, for any subset X of V (G) and
any (a, b)-subripple ρa,b, we shall simply write X ∩ ρa,b instead of X ∩ (

⋃
a≤i≤b ρ(i)).

Pigeonhole arguments on ripples and their modular slices
We will conclude this preliminary section by proving two auxiliary lemmas (Lemmas 4.7
and 4.9) which will be of use to us in the proof of Theorem 1.7. Intuitively, the next lemma
says that for any weighted vertex set X in a graph G, when considering the modular k-slice
of width s of a ripple in G, there will be an offset i such that the vertices contained in its
waves at offset i contribute at most an s

k fraction of the total weight of X.

▶ Lemma 4.7. Let ρ be an r-ripple in a weighted graph (G, w : V (G) → R+) and let k ≥ 1
be an integer. For any vertex set X ⊆ V (G) and integer 1 ≤ s ≤ k, there exists an integer
i ∈ {0, . . . , k − 1} such that S mod k

s (i) satisfies w(X ∩ S mod k
s (i)) ≤ s

k w(X).

Proof. Seeking a contradiction, assume no such index i exists and hence conclude, by
summing over each index 0 ≤ j ≤ k − 1, that∑

0≤j≤k−1
w(X ∩ S mod k

s (j)) >
∑

0≤j≤k−1

s

k
w(X) = s · w(X) 1

k
= s · w(X). (3)

However, since each non-empty wave of the ripple ρ is counted by exactly s out of k of the
modular k-slices in the sum above, we can contradict the strictness of Inequality (3) by
verifying that

∑
0≤j≤k−1 w(X ∩ S mod k

s (j)) =
∑

j′∈Z s · w(X ∩ ρ(j′)) = s · w(X). ◀

B. M. Bumpus, B. M. P. Jansen, and J. Venne 19:11

Now consider, for example, the difference ρ ⊖ S mod 4
2 (0) shown in Figure 1 above. It is easy

to see (by inspection of the figure) that, after taking the closed 1-boundary of every subripple
in ρ ⊖ S mod 4

2 (0), the domains of the resulting subripples partition2 the domain of ρ. In
this case, we say simply that the extended subripples partition ρ. We can state this more
generally as the following observation.

▶ Observation 4.8. Let 0 ≤ 2s ≤ k be integers and ρ be an r-ripple in a graph G. If S mod k
2s

is a modular k-slice of width 2s in ρ, then
(
δs[ρa,b]

)
ρa,b∈ρ⊖S mod k

2s (i) partitions ρ for any i.

Observation 4.8 together with a pigeon-hole-like argument similar to that of the proof of
Lemma 4.7 yields the following lemma. It applies to two vertex subsets I and S in a weighted
graph G, which will later correspond to the solution S found by our algorithm and a solution I

that is purported to be better. The lemma applies when the weight of S \ I within the waves
of a ripple ρ, on vertices outside the i-th modular k-slice of a certain width 2s, is strictly
larger than the weight of I \ S. It guarantees the existence of a single subripple ρa,b with the
following special property: the weight of S \ I inside the subripple ρa,b is strictly larger than
the weight of I \ S inside the extended subripple ρa−s,...,b+s. We will later use this lemma
to argue that under certain conditions, a local optimization step can strictly improve the
solution.

▶ Lemma 4.9. Let ρ be an r-ripple in a weighted graph (G, w : V (G) → R+) and S mod k
s be

the modular k-slice of width 2s in ρ. If there are sets S, I ⊆ V (G) and an index i such that

w((S \ I) ∩ (ρ ⊖ S mod k
2s (i))) > w(I \ S), (4)

then there exists ρa,b ∈ ρ ⊖ S mod k
2s (i) satisfying w((S \ I) ∩ ρa,b) > w((I \ S) ∩ δs[ρa,b]).

Proof. Seeking a contradiction, assume no such subripple ρa,b exists; i.e. assume that

w((S \ I) ∩ ρa,b) ≤ w((I \ S) ∩ δs[ρa,b]) (5)

for all subripples ρa,b in the difference ρ ⊖ S mod k
2s (i). Then we have

w((S \ I) ∩ (ρ ⊖ S mod k
2s (i)) =

∑
ρa,b∈ρ⊖S mod k

2s (i)

w((S \ I) ∩ ρa,b) (by definition)

≤
∑

ρa,b∈ρ⊖S mod k
2s (i)

w((I \ S) ∩ δs[ρa,b]) (by Equation (5))

= w(I \ S)

where the last equality holds because
(
δs[ρa,b]

)
ρa,b∈ρ⊖S mod k

s (i) is a partition of ρ (by Obser-
vation 4.8). However, this contradicts Inequality (4) as desired. ◀

4.2 Proof of Theorem 1.7
We are now finally ready to prove Theorem 1.7: we will first describe (Section 4.2.1) the
algorithm mentioned in the statement of Theorem 1.7; then we shall establish its running time
guarantees (Section 4.2.2) and finally its correctness (Section 4.2.3). Using the existence of an
algorithm for Π-m-Stitching, it will be easy to describe our (1 + ε)-certified algorithms; the
main challenge lies in the proof that the solution it outputs is optimal for a (1+ε)-perturbation
of the input.

2 Notice that, although it is not drawn, ρ(0) is in the 1-boundary of the element ρ−1,−2 of ρ ⊖ S mod 4
2 (0).

SWAT 2024

19:12 Fixed-Parameter Tractable Certified Algorithms in Planar Graphs and Beyond

4.2.1 The algorithm
Throughout the rest of the proof of Theorem 1.7 we shall let Π be a vertex-optimization
problem as given in the statement of Theorem 1.7, i.e. it satisfies the following:
1. Π is guessable and m-stitchable for some given constant m ∈ N, and
2. there exists an algorithm A that solves Π-m-Stitching in time f(t)·|V (G)|O(1), where t =

tw(G[Nm
G [J]]) and f is some computable function.

In what follows, given any feasible solution S on an instance (G, w) of Π and any (a, b)-
subripple ρa,b of an r-ripple ρ, we denote by A((G, w), S, ρa,b) the output of running the
algorithm A for Π-m-Stitching on inputs (G, w), the vertex set J of ρa,b, and the solution S.
The algorithm is defined as follows.

Algorithm StitchAndCertify
Input: a (connected) vertex-weighted graph (G, w : V (G) → N) and ε > 0.
Output: a vertex set Ŝ ⊆ V (G) and (1 + ε)-perturbation w′ of w such that Ŝ is an
optimal solution for Π on (G, w′).

1. Let r ∈ V (G) be an arbitrary vertex and let ρ be the r-ripple in G.
2. Let Ŝ be a feasible solution for Π on G (obtained by leveraging the guessability of Π;

c.f. Definition 1.6).
3. Let k = ⌈ 2m

ε ⌉ + 2m.
4. While there exists an (a, b)-subripple ρa,b of width k − 2m such that

w
(
A((G, w), Ŝ, ρa,b)

)
< w(Ŝ) (6)

then replace Ŝ with A((G, w), S, ρa,b).
5. Otherwise, return (Ŝ, w′ : V (G) → R+) where w′ is defined as

w′ : x 7→

{
w(x) if x ∈ Ŝ

(1 + ε)w(x) otherwise.
(7)

4.2.2 Running time
Recall that the parameter for Π-Stitching is the tree-width of the closed m-neighborhood
of the vertex set J along which we stitch. Each call to the algorithm A for Π-Stitching
(Inequality 6) made inside StitchAndCertify runs on a subripple of width k − 2m. Hence the
closed m-neighborhood of the subgraph along which we stitch is contained in δm[ρa,b], which
is a subripple of width k − 2m + 2m = k. By Proposition 4.4 we know that G[δm[ρa,b]] has
tree-width at most λk. These observations allow us to upper-bound the running time of each
call to A by f

(
tw(G[δm[ρa,b]])

)
· |V (G)|O(1) ≤ f

(
λk

)
· |V (G)|O(1).

Now, since all other lines of the algorithm clearly take polynomial time (recall that
Π is guessable by Definition 1.6), the calls to A dominate the running time. Note that,
for W = maxx∈V (G) w(x), the number of iterations in which we find a strictly better solution
is bounded by W ·n: the weight of the initial solution is at most W ·n, all weights are integers,
and the value cannot improve to below 0. Thus, since k ∈ O(m/ε) the entire algorithm runs
in time at most W · f(O(λm/ε)) · |V (G)|O(1), as desired.

4.2.3 Proof of correctness
To prove that StitchAndCertify is indeed a (1 + ε)-certified algorithm, we must show that the
output (Ŝ, w′ : V (G) → R+) consists of an optimal solution Ŝ for Π on the instance (G, w′)
(which is clearly a (1 + ε)-perturbation of the input (G, w)). It is easy to see that Ŝ is indeed
a solution to Π, since it is initialized as a feasible solution and is only replaced by the output
of A, which is also a feasible solution by definition. Hence it suffices to prove optimality.

B. M. Bumpus, B. M. P. Jansen, and J. Venne 19:13

Assume, by way of contradiction, that Ŝ is not optimal. Then there is a solution I for Π
on (G, w′) such that

w′(Ŝ) > w′(I) =⇒ w′(Ŝ \ I) > w′(I \ Ŝ) =⇒ w(Ŝ \ I) > (1 + ε)w(I \ Ŝ) (8)

(by the definition of w′; see Equation (7)). The remainder of this proof will rest on the
following claim which states that not only is w(Ŝ \ I) > (1 + ε)w(I \ Ŝ), but moreover, there
exists an index of the modular slice whose intersection with Ŝ \ I has greater weight than
that of I \ Ŝ.

▷ Claim 4.10. For the given Ŝ and I, there exists an index 0 ≤ i ≤ k − 1 such that the
preconditions of Lemma 4.9 are met for s = m; stating this explicitly, there is a choice of i

such that w((Ŝ \ I) ∩ (ρ ⊖ S mod k
2m (i))) > w(I \ Ŝ).

Claim 4.10 (whose proof we defer to the end of this section) enables us to apply Lemma 4.9
in order to find a “heavy” subripple; i.e. a subripple ρa,b ∈ ρ ⊖ S mod k

2m (i) satisfying

w((Ŝ \ I) ∩ ρa,b) > w((I \ Ŝ) ∩ δm[ρa,b]). (9)

To aid the upcoming derivation, we now argue that the sets A := Ŝ\ρa,b, B := (I\Ŝ)∩δm[ρa,b],
and C := I ∩ Ŝ ∩ ρa,b, form a partition of D := (Ŝ \ ρa,b) ∪ (I ∩ δm[ρa,b]). To see this, observe
first that A, B, C are disjoint: A ∩ C = ∅ since C lives inside ρa,b but A outside; A ∩ B = ∅
since A lives inside Ŝ but B outside; and B ∩ C = ∅ since C lives inside Ŝ but B outside.
To establish that A, B, C partition D, it therefore suffices to argue their union covers D.
For this, the crucial insight is that those vertices of I ∩ Ŝ ∩ δm[ρa,b] that are not contained
in I ∩ Ŝ ∩ ρa,b, belong to Ŝ \ ρa,b and therefore to A.

Using this property we now deduce

w(Ŝ) = w
(
Ŝ \ ρa,b

)
+ w

(
Ŝ ∩ ρa,b

)
= w

(
Ŝ \ ρa,b

)
+ w

(
(Ŝ \ I) ∩ ρa,b

)
+ w

(
I ∩ Ŝ ∩ ρa,b

)
> w

(
Ŝ \ ρa,b

)
+ w

(
(I \ Ŝ) ∩ δm[ρa,b]

)
+ w

(
I ∩ Ŝ ∩ ρa,b

)
(by Inequality (9))

= w
(
(Ŝ \ ρa,b) ∪ (I ∩ δm[ρa,b])

)
(A, B, C partition D)

≥ w
(
(Ŝ \ ρa,b) ∪ (I ∩ Nm

G [ρa,b])
)

(δm[ρa,b] ⊇ Nm
G [ρa,b])

= w(I ⊕m
G,ρa,b

Ŝ) (by Definition 1.4).

But then this means that the m-stitch of I onto Ŝ along the subripple ρa,b of width
k − 2m yields a solution (since Π is m-stitchable) whose weight under w is strictly better
than Ŝ. By definition of Π-m-Stitching, the output of A for the subripple ρa,b is at least
as good, thus satisfying Inequality (6) of StitchAndCertify. We conclude that the algorithm
cannot possibly have terminated. Thus, since we have found our desired contradiction, all
that remains to be done is to prove Claim 4.10.

Proof of Claim 4.10. Applying Lemma 4.7 on (G, w) and ρ with X = (Ŝ \ I) we obtain an
index i such that modular k-slice S mod k

2m (i) satisfies

w((Ŝ \ I) ∩ S mod k
2m (i)) ≤ 2m

k
w(Ŝ \ I). (10)

SWAT 2024

19:14 Fixed-Parameter Tractable Certified Algorithms in Planar Graphs and Beyond

Now observe that, by the definition of ⊖ (Definition 4.6), we have

w((Ŝ \ I) ∩ (ρ ⊖ S mod k
2m (i))) = w(Ŝ \ I) − w((Ŝ \ I) ∩ S mod k

2m (i))

≥ w(Ŝ \ I) − 2m

k
w(Ŝ \ I) (by Inequality (10))

= k − 2m

k
w(Ŝ \ I)

>
k − 2m

k
(1 + ε)w(I \ Ŝ) (by Inequality (8)).

Notice that, since we defined k as k = ⌈ 2m
ε ⌉ + 2m (Line 3 of StitchAndCertify), we must have

ε ≥ 2m
k−2m . Combining this observation with our derivation above, we obtain precisely the

desired inequality of Claim 4.10 as follows.

w((Ŝ\I) ∩ (ρ ⊖ S mod k
2m (i))) >

k − 2m

k
(1 + ε)w(I \ Ŝ) (from the derivation above)

≥ k − 2m

k
(1 + 2m

k − 2m
)w(I \ Ŝ) = w(I \ Ŝ).

This concludes the proof of Claim 4.10 and hence also the proof of Theorem 1.7. ◁

5 Discussion

Our main theorem allows us to obtain FPT-time certified algorithms for vertex-minimization
problems such as H-Subgraph-Free-Deletion and Dominating Set (Corollary 3.6 of
Theorem 1.7). However, as mentioned in Section 1, our results also apply to the complementary
maximization problems simply by virtue of being certified algorithms. Inspired by Makarychev
and Makarychev’s notation [13], we define the notion of the complementary problem as
follows.

▶ Definition 5.1. Fix a vertex-minimization (resp. maximization) problem Π as in Defini-
tion 2.2. The complementary vertex-maximization (resp. minimization) problem is obtained
by equipping the vertex-subset property that encodes feasibility for Π with following maximiza-
tion (resp. minimization) objective: for any given vertex-weighted instance (G, w : V (G) → N)
find a set S ⊆ V (G) such that w(V (G) \ S) is maximum (resp. minimum) subject to the
requirement that S be feasible with respect to Π.

Makarychev and Makarychev [13] discuss many examples of complementary problems;
perhaps the prototypical example pair is Vertex Cover and Independent Set: every
minimum vertex cover S in a graph G corresponds to a maximum independent set V (G) \ S.

Notice that one can deduce [13, Theorem 5.11] that any certified algorithm A for some
problem Π is also an approximation algorithm for the complementary problem to Π; this
is recalled below for completeness. Furthermore, it is easy to show a polynomial-time
equivalence between certified algorithms for a problem and its complementary problem.

▶ Theorem 5.2 ([13]). If A is a γ-certified algorithm for a vertex-minimization (resp. maximi-
sation) problem Π, then A is a γ-approximation algorithm for both Π and its complementary
vertex-maximization (resp. minimization) problem.

Recalling that Vertex Cover is just K2-Deletion, we find that Corollary 3.6 yields a
polynomial-time (1 + ε)-certified algorithm for Independent Set on minor-closed graph
classes of bounded local tree-width. This improves – in terms of generality and running time
– on the XP-time (1 + ε)-certified algorithm for Independent Set on planar graphs which
was due to Angelidakis, Awasthi, Blum, Chatziafratis and Dan [1].

B. M. Bumpus, B. M. P. Jansen, and J. Venne 19:15

Further questions

As we mentioned in Section 1, any certified algorithm A for a problem Π happens to also be
an approximation algorithm for both Π and its complementary problem Πc. Thus a natural
direction for future work is to seek (1 + ε)-certified algorithms for other problems that admit
efficient polynomial-time approximation schemes. In contrast, by Theorem 5.2, whenever
either Π or Πc do not admit any EPTAS, then the question that we just posed is clearly
not a viable direction for further work. Thus for such problems such as weighted planar
Feedback Vertex Set (for which, for instance, bidimensional techniques [10] do not apply)
even simply finding XP-time certified algorithms can be a fruitful direction of research.

Another interesting direction for future research concerns the range of weight values. Our
running-time analysis crucially relies on the assumption that the weights are non-negative
integers of value at most nO(1): this property ensures that the local search terminates
after nO(1) improvements. The algorithm by Angelidakis et al. [1] also requires polynomially
bounded weights. Is it possible to give FPT-time (1 + ε)-certified algorithms on inputs whose
weights are encoded in nO(1) bits, but may have value 2Ω(n)?

References
1 H. Angelidakis, P. Awasthi, A. Blum, V. Chatziafratis, and C. Dan. Bilu-linial stability,

certified algorithms and the independent set problem. In Michael A. Bender, Ola Svensson,
and Grzegorz Herman, editors, 27th Annual European Symposium on Algorithms, ESA 2019,
September 9-11, 2019, Munich/Garching, Germany, volume 144 of LIPIcs, pages 7:1–7:16.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.ESA.2019.7.

2 B. S. Baker. Approximation algorithms for NP-complete problems on planar graphs. J. ACM,
41(1):153–180, January 1994. doi:10.1145/174644.174650.

3 Y. Bilu and N. Linial. Are stable instances easy? Comb. Probab. Comput., 21(5):643–660,
September 2012. doi:10.1017/S0963548312000193.

4 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

5 Marek Cygan, Dániel Marx, Marcin Pilipczuk, and Michał Pilipczuk. Hitting forbidden
subgraphs in graphs of bounded treewidth. Information and Computation, 256:62–82, 2017.
doi:10.1016/j.ic.2017.04.009.

6 M. Delorme, S. García, J. Gondzio, J. Kalcsics, D. Manlove, and W. Pettersson. New algorithms
for hierarchical optimisation in kidney exchange programmes. Technical report ERGO 20–005,
Edinburgh Research Group in Optimization, 2020. URL: https://optimization-online.org/
2020/10/8058/.

7 Erik D. Demaine and Mohammad Taghi Hajiaghayi. Equivalence of local treewidth and linear
local treewidth and its algorithmic applications. In J. Ian Munro, editor, Proceedings of the
Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2004, pages 840–849.
SIAM, 2004. URL: http://dl.acm.org/citation.cfm?id=982792.982919.

8 R. Diestel. Graph theory. Springer, 2010. ISBN:9783642142789.
9 David Eppstein. Diameter and treewidth in minor-closed graph families. Algorithmica,

27(3):275–291, 2000. doi:10.1007/S004530010020.
10 Fedor V. Fomin, Daniel Lokshtanov, Venkatesh Raman, and Saket Saurabh. Bidimensionality

and EPTAS. In Dana Randall, editor, Proceedings of the Twenty-Second Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2011, pages 748–759. SIAM, 2011. doi:
10.1137/1.9781611973082.59.

11 M. Grohe. Local tree-width, excluded minors, and approximation algorithms. Combinatorica,
23:613–632, 2000. doi:10.1007/s00493-003-0037-9.

SWAT 2024

https://doi.org/10.4230/LIPIcs.ESA.2019.7
https://doi.org/10.1145/174644.174650
https://doi.org/10.1017/S0963548312000193
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1016/j.ic.2017.04.009
https://optimization-online.org/2020/10/8058/
https://optimization-online.org/2020/10/8058/
http://dl.acm.org/citation.cfm?id=982792.982919
https://doi.org/10.1007/S004530010020
https://doi.org/10.1137/1.9781611973082.59
https://doi.org/10.1137/1.9781611973082.59
https://doi.org/10.1007/s00493-003-0037-9

19:16 Fixed-Parameter Tractable Certified Algorithms in Planar Graphs and Beyond

12 T. Hazan, G. Papandreou, and D. Tarlow. Bilu-Linial Stability, pages 375–400. The MIT
Press, 2016.

13 Konstantin Makarychev and Yury Makarychev. Perturbation resilience. In Tim Roughgarden,
editor, Beyond the Worst-Case Analysis of Algorithms, pages 95–119. Cambridge University
Press, 2020. doi:10.1017/9781108637435.008.

14 Konstantin Makarychev, Yury Makarychev, and Aravindan Vijayaraghavan. Bilu-linial stable
instances of max cut and minimum multiway cut. In Chandra Chekuri, editor, Proceedings of
the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, pages
890–906. SIAM, 2014. doi:10.1137/1.9781611973402.67.

15 David Manlove. Algorithmics of matching under preferences, volume 2. World Scientific, 2013.

https://doi.org/10.1017/9781108637435.008
https://doi.org/10.1137/1.9781611973402.67

	1 Introduction
	2 Preliminaries
	3 Applications of Theorem 1.7
	4 Proving Theorem 1.7
	4.1 Definitions for Theorem 1.7
	4.2 Proof of Theorem 1.7
	4.2.1 The algorithm
	4.2.2 Running time
	4.2.3 Proof of correctness

	5 Discussion

